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Abstract

In this work we consider secure communication over quantum wiretap channels, with
unreliable entanglement assistance, when the assistance is unreliable due to two reasons:
Interception or Loss. In the first model, Eve may intercept the entanglement resource.
In the second model, Eve is passive, and the resource may dissipate to the environment
beyond her reach. Both models are based on a hard decision approach, where Bob
either receives the assistance entirely, or not at all. Once communication begins, Alice
encodes without prior knowledge on whether Bob has received the assistance or not.
Nonetheless, we assume that Bob knows whether he has the assistance or not. This is
a practical assumption, based on the common use of heralded entanglement generation
in practical implementations.

The operational principle of communication with unreliable entanglement assistance
is to adapt the transmission rate to the availability of entanglement assistance, without
resorting to feedback and repetition. To this end, we define two message sets, M and
M ′, transmitted at rates R and R′, respectively. The rate R is a guaranteed rate that
is associated with the information that Bob should be able to decode in both cases,
whether he has the assistance or not. The rate R′ is an excess rate, corresponding to
additional information that Bob should be able to decode only when the assistance is
available. Hence, if Bob does not have the assistance, he decodes at a rate of R, and if
Bob has the assistance, he decodes at an overall rate of R+R′.

For the passive model, we derive a multi-letter formula for the secrecy capacity for
general quantum wiretap channels, subject to a maximal error criterion and semantic
security. For the interception model, we derive achievable rates, and a multi-letter
formula for the special class of degraded channels.

We demonstrate our results through two examples, the quantum erasure channel and
the amplitude damping channel. Specifically, we show that time division is optimal for
the erasure channel in both the interception and passive models. On the other hand,
we observe that time division is not necessarily possible for the amplitude damping
channel under interception, and the boundary of our achievable region is disconnected.
Nonetheless, In the passive model, our rate region outperforms time division.
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Abbreviations and Notations

Symbol Description

X, Y, Z Classical systems
A,B,C Quantum systems
Xn n–length sequences (X1, . . . , Xn)
pX(x), PY |X(y|x) PMF of X and DMC transition probabilities
P(X ) The set of all probability distributions on X
Pn

Y |X(yn|xn) Memoryless extension ∏i PY |X(yi|xi)
M Number of messages in a code
M Set of messages
f, g Encoder f : {1, . . . ,M} → X n, decoder g : Yn → {1, . . . ,M}
R = 1

n logM Coding rate (bits per channel use)
P

(n)
e,max Maximal probability of decoding error
S Common randomness shared by sender/receiver
HA,HB,HE Finite‐dimensional Hilbert spaces of systems A,B,E
L(HA) Set of linear operators on HA

S (HA) Set of density operators on HA

ρA Density operator (state) on HA

|ψ⟩ ∈ HA Pure state (unit vector) in HA

Tr[·] Trace of an operator
∥ρ− σ∥1 Trace distance between ρ and σ
H(X) Classical entropy of X
H(ρ) Von Neumann (quantum) entropy of ρ
H(X|Y ) Conditional entropy
H(A|B)ρ Conditional quantum entropy
I(X;Y ) Classical mutual information
I(A;B)ρ Quantum mutual information
I(A⟩B)ρ Coherent information
χ(N ) Holevo information of a quantum channel N
A(n)

δ (pX) δ-typical set with respect to a probability distribution pX

Π(n)
δ (ρ) Quantum δ-typical projector

NA→B Quantum channel from A (Alice) to B (Bob)
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NA→BE Quantum wiretap channel, from A to B and E (Eve)
1 Identity operator
id Ideal (noiseless) channel
Gn

A The entanglement resource intended for Alice
Gn

B The entanglement resource intended for Bob
ΨGn

AGn
B

Pre–shared entangled state between Alice and Bob
C(PY |X) Channel capacity of a classical channel
CCR(PY |X) Channel capacity of a classical channel with common-randomness

assistance
CS(PY Z|X) Secrecy capacity of a classical channel
C(L) Channel capacity of a quantum channel
CS(N ) Secrecy capacity of a quantum channel
CEA(L) Entanglement‐assisted capacity of a quantum channel
CPE−EA(N ) Secrecy capacity under a passive eavesdropper with (reliable) entan-

glement assistance
CSI−EA(N ) Secrecy capacity under interception with (reliable) entanglement as-

sistance
CEA∗(N ) Capacity with unreliable entanglement assistance
CPE−EA∗(N ) Secrecy capacity under a passive eavesdropper with unreliable en-

tanglement assistance
CSI−EA∗(N ) Secrecy capacity under interception with unreliable entanglement

assistance
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Thesis Outline

The thesis is divided into six chapters:

• Chapter 1 reviews the notion of channel capacity and entanglement assistance.
The chapter covers known capacity results in different settings: without assis-
tance, with reliable entanglement assistance, and with unreliable entanglement
assistance—all in the absence of secrecy constraints.

• Chapter 2 reviews the secrecy capacity. We begin with different security criteria
and review secrecy capacity results without assistance, with reliable and secure
entanglement assistance, and with unsecure entanglement assistance.

• Chapter 3 presents the main contribution on security with unreliable entangle-
ment assistance in the interception model.

• Chapter 4 presents the main contribution on security with unreliable entangle-
ment assistance under passive eavesdropping.

• Chapter 5 contains detailed analysis for the results stated in Chapters 3 and 4.

• Chapter 6 summarizes the thesis and outlines directions for future work.

Table 2 indicates the chapter in which each setting is presented. The rows indicate
the assistance that is provided to Alice and Bob before communication begins. The
columns represent the security guarantee. Here, “Unsecure” means that there is no
secrecy constraint, “Passive Eve” refers to the model in which the eavesdropper cannot
access the shared resource, and “Interception” refers to the model where Eve may steal
(intercept) the assistance.

Unsecure Passive Eve Interception
No assistance Chap.1 Chap.2 Chap.2
Reliable assistance Chap.1 Chap.2 Chap.2
Unreliable assistance Chap.1 Chap.4 Chap.4

Table 2: Thesis organization.

Table 3 provides the capacity notation and the capacity theorem for each setting:
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Unsecure Passive Eve Interception
No assistance C(L) (Th. 1.3, [1, 2]) CS(N ) (Th. 2.3, [3, 4]) CS(N ) (Th. 2.3, [3, 4])
Reliable assistance CEA(L) (Th. 1.4, [5]) CPE-EA(N ) (Th. 2.7, [5]) CSI-EA(N ) (Th. 2.5, [6])
Unreliable assistance CEA∗(L) (Th. 1.5, [7]) CPE-EA∗(N ) (Th. 4.1) CSI-EA∗(N ) (Th. 3.1)

Table 3: Capacity notation and theorem references.
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Chapter 1

Entanglement Assistance

Entanglement resources play a pivotal role in a wide range of quantum networking
scenarios, including physical-layer security [8, 9], network communication protocols
[10, 11, 12], quantum interferometry [13], quantum sensor networks [14, 15], and com-
munication complexity [16]. Moreover, the presence of shared entanglement can sub-
stantially enhance communication rates over quantum channels [17, 18], as demon-
strated in recent experimental implementations [19].

In general, quantum communication protocols can be categorized into two types:
unassisted and entanglement-assisted, depending on whether the sender and receiver
share entanglement prior to communication. In this context, “assistance” refers to a
shared resource of correlation, which is cannot be used in order to send information by
itself. Nevertheless, correlation assistance can be leveraged to enhance the communi-
cation rate in some cases. The motivation is as follows: In a dynamic communication
network, the design may utilize inactive periods to generate shared assistance. Once
information arrives and the transmission resumes, the transmitter and the receiver may
use the assistance in order to increase throughput.

This chapter begins with preliminaries on quantum systems, classical and quantum
information‐theoretic measures, and typical projectors. We then present the capacity
of a classical channel and the capacity with common‐randomness assistance. Next, we
present the capacities of quantum channels under three settings: unassisted, entangle-
ment‐assisted, and unreliable entanglement‐assisted. The chapter concludes with the
quantum packing lemma, a fundamental tool in the analysis of quantum capacities.

1.1 Preliminaries

Quantum information theory provides a general probabilistic framework that captures
the performance behavior for communication system of a quantum nature. As the
quantum theory reduces to the classical description in the classical limit, quantum
information theory can be viewed as a generalization of the classical Shannon theory.

7



1.1.1 Classical Entropy and Mutual Information

A central theme in classical information theory is the quantification of information.
Two key measures are entropy and mutual information, which form the foundation for
characterizing the performance of communication systems.

The entropy of a discrete random variable X with probability mass function pX(x)
is defined as:

H(pX) = −
∑
x∈X

pX(x) log pX(x),

and represents the average uncertainty or information content of X. We often use
the simplified notation of H(X) ≡ H(pX). When X is uniformly distributed over M
symbols, H(X) = logM , which corresponds to maximum uncertainty. The set of all
probability distributions on X is denoted by P(X ).

Given two random variables X and Y , the mutual information between them is
defined as:

I(X;Y ) = H(X) +H(Y ) −H(XY ),

and quantifies the amount of information Y provides about X, and vice versa. Equiv-
alently, it can also be written as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

pXY (x, y) log pXY (x, y)
pX(x)pY (y)

.

Mutual information plays a central role in defining the limits of communication over
noisy channels.

1.1.2 Quantum Systems

We use standard notation in quantum information processing. We label quantum
systems by A,B,C, ..., and classical systems by X,Y, Z, ....

A quantum system is represented by a Hilbert space. We assume that the dimen-
sions are finite. The Hilbert space for a system A is denoted by HA. We denote a
vector in this space by the “ket” notation,

|ψ⟩ ∈ HA , (1.1)

and its conjugate by the “bra” notation,

⟨ψ| ≡ (|ψ⟩)† . (1.2)

A quantum bit (qubit) is represented by a Hilbert space of dimension 2.

Example 1.1.1. Consider a qubit, HA = C2. The computational basis {|0⟩ , |1⟩}, con-
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sists of the following vectors:

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
. (1.3)

Density Operators

The state of System A is represented by a density operator ρA, i.e., a unit-trace positive
semidefinite operator:

ρA ≥ 0 , Tr(ρA) = 1 . (1.4)

The set of all density operators on HA is denoted by S (HA). The set of linear operators
from HA to HA is denoted by L(HA). Hence, S (HA) ⊆ L(HA). The state is said to
be pure if ρA has rank 1, or equivalently, ρA = |ψ⟩⟨ψ| for some unit-vector |ψ⟩ ∈ HA.

A bipartite state ρAB of a pair of systems, A and B, is represented by a density
operator on the tensor-product Hilbert space, HA ⊗ HB. That is,

ρAB ∈ S (HA ⊗ HB) . (1.5)

Entanglement

A state ρAB is called separable if there exists an ensemble of product states,

{pX(x) , φx ⊗ θx} (1.6)

in S (HA ⊗ HB), such that

ρAB =
∑

x

pX(x)φx ⊗ θx . (1.7)

We say that A and B are entangled if ρAB is not separable.
In the special case of a pure state |ψAB⟩ ∈ HA ⊗ HB, we say that A and B are

entangled if the state cannot be written as a product, i.e.,

|ψAB⟩ ̸= |ϕ⟩ ⊗ |χ⟩ (1.8)

for all |ϕ⟩ ∈ HA and |χ⟩ ∈ HB.

Example 1.1.2. Consider two qubit systems A and B, with HA = HB = C2. The
Einstein–Podolsky–Rosen (EPR) state,

∣∣Φ+⟩
AB ∈ HA ⊗ HB, is defined as

∣∣∣Φ+
⟩

AB
= 1√

2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B) (1.9)

9



(also known as a Bell state). The corresponding density operator is given by

ρAB =
∣∣∣Φ+

⟩⟨
Φ+
∣∣∣
AB

∈ S (HA ⊗ HB) . (1.10)

In this case, we say that the qubits A and B are maximally entangled.

Quantum Measurements

Quantum measurements involve inherent uncertainty and may even disturb and change
the state. A measurement is thus characterized in terms of the probability distribution
of the measurement outcome and the corresponding post-measurement state. The out-
come distribution of a quantum measurement can be described in terms of a collection
of operators. Specifically, a positive operator-valued measure (POVM) is a set,

{Dm}M
m=1 , (1.11)

of positive semidefinite linear operators in L(HA) such that

M∑
m=1

Dm = 1 (1.12)

where 1 is the identity operator on HA. Each operatorDm is associated with a measure-
ment outcome m. In a measurement carried out using such a POVM, the probability
of the measurement outcome m is given by the Bourne rule,

Pr(m) = Tr(DmρA) . (1.13)

Unitary and Isometric Evolutions

In an isolated system, the evolution of quantum states is always unitary, i.e., ρA may
evolve to

ρ′
A = V ρAV

† , (1.14)

where V : HA → HA is unitary, V †V = V V † = 1A. If we allow extension of the system
using auxiliaries, the notion of a noiseless evolution can be generalized to an isometry,
rather than a unitary. An operator V : HA → HB is called an isometry if V †V = 1A.
In this case, we must have dim(HA) ≤ dim(HB). In error-correction codes that do not
account for security, encoders are typically isometric.

Example 1.1.3. The Pauli unitary operators can be viewed as quantum logical gates on
H = C2:

ΣX =
(

0 1
1 0

)
ΣY =

(
0 −i
i 0

)
ΣZ =

(
1 0
0 −1

)
. (1.15)
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Example 1.1.4. Consider two qubit systems A and B, with HA = HB = C2. The Bell
states can be defined by ∣∣∣Φ(i,j)

⟩
AB

= (Σi
XΣj

Z ⊗ 1)
∣∣∣Φ+

⟩
AB

(1.16)

where ΣX and ΣZ are the Pauli operators from Example 1.1.3. Each state is maximally
entangled and together they form an orthonormal basis for HA ⊗ HB,

1.1.3 Quantum Entropy and Information Measures

The von Neumann entropy for a density operator ρ is defined as

H(ρ) ≡ − Tr[ρ log ρ] . (1.17)

The quantum entropy, H(ρ), is identical to the classical entropy with respect to the
eigenvalue distribution. Specifically, every density operator has a spectral decomposi-
tion of the following form:

ρ =
dim(H)∑

x=1
pX(x) |ψx⟩⟨ψx| , (1.18)

where the eigenvalues pX(x) form a probability distribution over {1, 2, . . . , dim(H)},
and the eigenvectors |ψx⟩ form an orthonormal basis for HA. Then, the quantum
entropy satisfies

H(ρ) = H(pX) . (1.19)

For a quantum system A in a state ρA, we often use the notation H(A)ρ ≡ H(ρA).

Consider a bipartite state ρAB ∈ S (HA⊗HB). In analogy to the classical definition,
the quantum mutual information is defined as

I(A;B)ρ ≡ H(A)ρ +H(B)ρ −H(AB)ρ . (1.20)

Furthermore, the conditional quantum entropy is defined by

H(A|B)ρ = H(AB)ρ −H(B)ρ . (1.21)

The conditional mutual information is defined accordingly: I(A;B|C)ρ = H(A|C)ρ +
H(B|C)ρ −H(A,B|C)ρ.

We note that in the quantum setting, the conditional quantum entropy can be
negative, even in finite dimensions. The coherent information from A to B is defined

11



as

I(A⟩B)ρ ≡ H(B)ρ −H(AB)ρ (1.22)

= −H(A|B)ρ . (1.23)

Example 1.1.5. Consider the EPR state from Example 1.1.2,∣∣∣Φ+
⟩

AB
= 1√

2
[|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B]

= 1√
2

[(
1
0

)
⊗
(

1
0

)
+
(

0
1

)
⊗
(

0
1

)]
. (1.24)

The corresponding density operator is given by

ρAB =
∣∣∣Φ+

⟩⟨
Φ+
∣∣∣
AB

(1.25)

=


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

 . (1.26)

This is a pure state (of rank 1), and therefore

H(AB)ρ = 0 . (1.27)

Next, we compute the reduced state of subsystem A. Tracing out system B yields
a maximally mixed state:

ρA = TrB(ρAB) (1.28)

= 1
2
1 (1.29)

=
(1

2 0
0 1

2

)
, (1.30)

where 1 is the identity operator on HA. The eigenspectrum of ρA is given by pX =(
1
2 ,

1
2

)
, hence the quantum entropy is

H(A)ρ = H(pX) = log 2 = 1 . (1.31)

By symmetry, we also have

H(B)ρ = 1 . (1.32)

12



We can now compute the mutual information between A and B:

I(A;B)ρ = H(A)ρ +H(B)ρ −H(AB)ρ = 1 + 1 − 0 = 2 . (1.33)

Finally, the conditional quantum entropy is

H(A|B)ρ = H(AB)ρ −H(B)ρ = 0 − 1 = −1 , (1.34)

and the coherent information is

I(A⟩B)ρ = −H(A|B)ρ = 1 . (1.35)

1.1.4 Quantum Trace Distance

A fundamental measure of distinguishability between quantum states is the trace dis-
tance. For two operators ρ, σ ∈ L (H), the trace distance is defined as

∥ρ− σ∥1 := Tr
[√

(ρ− σ)†(ρ− σ)
]
, (1.36)

and the normalized trace distance is 1
2∥ρ − σ∥1. The normalized trace distance takes

values in the interval [0, 1]. If ρ and σ commute, then the normalized trace distance is
the same as the total variation distance between eigenspectra of ρ and σ.

1.1.5 Typical Projectors

Classical Types

We begin with the definition of a classical type. Consider a classical sequence xn ≡
(x1, x2, . . . , xn) ∈ X n. The type of the sequence xn is defined as the empricial distri-
bution P̂xn(a) = N(a|xn)

n for a ∈ X , where N(a|xn) is the number of occurences of the
letter a in the sequence xn. Consider a type P on X . The associated type class T (n)(P )
is then

T (n)(P ) = {xn ∈ X n : P̂xn = P} . (1.37)

Let δ > 0. The δ-typical set, A(n)
δ (pX), with respect to an (arbitrary) probability

distribution pX , is defined as the set of all sequences xn whose type is close to pX in
the following sense:

A(n)
δ (pX) =

{
xn ∈ X n :

∣∣∣P̂xn(a) − pX(a)
∣∣∣ ≤ δ · pX(a) , for all a ∈ X

}
. (1.38)
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Quantum Typical Projectors

Next, we move to the quantum method of types. Consider an ensemble {pX(x), |x⟩}x∈X ,
with an average state,

σ =
∑
x∈X

pX(x) |x⟩⟨x| . (1.39)

Let A1, . . . , An be a sequence of systems, associated with the tensor-product Hilbert
space, H⊗n

A . The δ-typical projector with respect to the ensemble above projects onto
the subspace that is spanned by |xn⟩ ≡

⊗n
i=1 |xi⟩Ai

, where xn are classical δ-typical
sequences. Specifically,

Π(n)
δ (σ) =

∑
xn∈A(n)

δ
(pX)

|xn⟩⟨xn| . (1.40)

The typical projector satisfies the following properties. There exists a > 0 and ϵ > 0
such that

1 − 2−an ≤ Tr{Π(n)
δ (σ)σ⊗n} ≤ 1 , (1.41)

(1 − 2−an)2n(1−δ)H(σ) ≤ Tr{Π(n)
δ (σ)} ≤ 2n(1+δ)H(σ) , (1.42)

(1 − 2−an)2−n(1+δ)H(σ)Π(n)
δ (σ) ≤ Π(n)

δ (σ)σ⊗nΠ(n)
δ (σ) ≤ 2−n(1−δ)H(σ)Π(n)

δ (σ) , (1.43)

for sufficiently large n (see [20, Th. 1.1] and [21, Sec. 15.1.2]). These properties result
from the classical asymptotic equipartition property (AEP) [22, Sec. 3.1]. We now give
the quantum interpretation.

Intuition. Let

σ ∈ S (HA) (1.44)

be a given density operator. Consider a sequence of systems A1, A2, . . . , An in the joint
state

ρA1···An = σ⊗n . (1.45)

The δ-typical projector, Π(n)
δ (σ), projects onto the δ-typical subspace,

T(σ) ⊂ H⊗n
A , (1.46)

given by

T(σ) = span{ |xn⟩ : xn ∈ A(n)
δ (pX)} . (1.47)
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Suppose we perform a binary measurement specified by the operators {D0, D1},
where

D1 = Π(n)
δ (σ) , (1.48)

D0 = 1 −D1 . (1.49)

This is referred to as a typical measurement, where the measurement outcome “1” cor-
responds to the typical subspace, whereas “0” corresponds to the non-typical subspace.
Then,

• Property (1.41) means that the probability of a projection onto the typical sub-
space approaches certainty, i.e., Pr(“1”) → 1 as n → ∞.

• Property (1.42) shows that the dimension of this typical subspace is approximately
2nH(ρ). That is, dim [T(σ)] ≈ 2nH(σ).

• Property (1.43) implies that the state σ⊗n is close to a symmetric (maximally
mixed) state on the typical subspace. The eigenvalues are either ≈ 2−nH(σ), or
negligible.

Quantum Conditional Typical Projectors

Furthermore, we now define the conditional δ-typical subspace and projector. Consider
an ensemble {pX(x), ρx

B}, with an average state σB =
∑

x∈X pX(x)ρx
B. Given a fixed

sequence xn ∈ X n and for every a ∈ X , let In(a) denote the set of indices i ∈ [1 : n]
such that xi = a. Then, the conditional δ-typical projector is defined as Π(n)

δ (σB|xn) =⊗
a∈X

(
Π(|In(a)|)

δ (ρa
B)
)

{Bi:i∈In(a)}
.

Similarly as before, the conditional typical projector satisfies the properties below.
There exist a > 0 and ϵn(δ) such that

1 − 2−an ≤ Tr
{

Π(n)
δ (σB|xn)ρxn

Bn

}
≤ 1 (1.50)

(1 − 2−an)2n(1−ϵn(δ))H(B|X′)σ ≤ Tr
{

Π(n)
δ (σB|xn)

}
≤ 2n(1+ϵn(δ))H(B|X′)σ (1.51)

2−n(1+ϵn(δ))H(B|X′)σ Π(n)
δ (σB|xn) ≤ Π(n)

δ (σB|xn)ρxn

BnΠ(n)
δ (σB|xn)

≤ 2−n(1−ϵn(δ))H(B|X′)σ Π(n)
δ (σB|xn)

(1.52)

for sufficiently large n, where ϵn(δ) tends to zero as n → ∞ and δ → 0 (see [20, Th.
1.2] and [21, Sec. 15.2.4]), ρxn

Bn =
⊗n

i=1 ρ
xi
Bi
, and the classical random variable X ′ is

distributed according to the type of xn.
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Figure 1.1: Classical channel model.

1.2 Classical Channels

1.2.1 Channel Model

In classical information theory, a communication channel is an abstract model de-
scribing the probabilistic relationship between the transmitted and received signals. A
standard model is the discrete memoryless channel (DMC), described by a conditional
probability distribution PY |X(y|x), where x ∈ X is an input symbol and y ∈ Y is an
output symbol. The memoryless assumption implies that the channel’s behavior at
each time step is independent of past inputs or outputs.

Formally, for a sequence of inputs Xn = (X1, . . . , Xn), the corresponding outputs
Y n = (Y1, . . . , Yn) are generated according to:

Pn
Y |X(yn|xn) =

n∏
i=1

PY |X(yi|xi).

1.2.2 Coding Definitions (Unassisted)

Reliable communication over a noisy channel requires the use of a channel coding
scheme. A (2nR, n) code consists of:

• An encoding function f : {1, . . . , 2nR} → X n, assigning each message a codeword
of length n (we assume throughout this thesis that 2nR is an integer).

• A decoding function g : Yn → {1, . . . , 2nR}, producing an estimate for the
transmitted message based on the received sequence.

We denote the code by (f, g).
The communication scheme is depicted in Figure 1.1. The sender, Alice, selects a

message m ∈ {1, ..., 2nR}. She encodes the message by the codeword xn = f(m), and
transmits xn through n uses of the classical channel. Bob recieves yn and decodes by
m̂ = g(yn).

The error probability given that Alice sent a message m ∈ {1, ..., 2nR} is

P (n)
e (f, g|m) = Pr [g(Y n) ̸= m | m] =

∑
yn:g(yn )̸=m

Pn
Y |X(yn|f(m)), (1.53)
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and the maximum error probability is defined as

P (n)
e,max(f, g) = max

m
P (n)

e (f, g|m). (1.54)

The rate of the code is the ratio of information bits per channel use:

R = logM
n

(bits per channel use) , (1.55)

where M = 2nR denotes the total number of messages.
A (2nR, n, ε) classical code satisfies

P (n)
e,max(f, g) ≤ ε . (1.56)

A rate R is called achievable if ∀ε > 0 and sufficiently large n, there exists a (2nR, n, ε)
classical code.

The channel capacity is defined as the supremum of achievable rates. We denote
the capacity of a classical channel by C(PY |X).

1.2.3 Shannon’s Capacity Theorem

Shannon’s fundamental result establishes the capacity limit for reliable communication
over a noisy channel [23].

Theorem 1.1 (see [23]). The capacity of a classical channel PY |X is given by

C(PY |X) = max
pX

I(X;Y )

where the maximum is over all input distributions pX on X , and we compute the mutual
information I(X;Y ) with respect to the joint distribution pXY (x, y) = pX(x)PY |X(y|x).

Shannon’s channel coding theorem states that:

• For any rate R < C, there exists a sequence of (M,n) codes such that
lim infn→∞

log M
n ≥ R and P (n)

e,max → 0.

• For any rate R > C, no sequence of codes can achieve P (n)
e,max → 0.

Hence, the channel capacity C characterizes the maximum achievable rate for reli-
able communication.

1.3 Common-Randomness Assistance

In addition to the conventional communication model, one may consider the scenario
where the sender and receiver have access to shared common randomness, independent
of the channel input and output. This auxiliary resource can enhance the ability to
coordinate actions and construct more elaborate coding strategies.
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Figure 1.2: Common randomness channel model.

1.3.1 Definition

The common randomness is represented here by a random variable S ∼ pS , known to
both the sender and the receiver.

Formally, a (2nR, n) code with common randomness assistance consists of a pair
{(f, g)}, where:

• f : {1, . . . , 2nR} × Sn → X n is the encoding function.

• g : Yn × Sn → {1, . . . , 2nR} is the corresponding decoding function.

The coding scheme with common-randomness assistance is illustrated in Figure 1.2.
The rest of the coding definitions are similar to the unassisted case. We denote the

common-randomness-assisted capacity by CCR(PY |X), where the subscript ‘CR’ stands
for common-randomness.

1.3.2 Capacity with Common Randomness

For memoryless channels, the availability of unlimited common randomness does not
increase the capacity for reliable communication. This was established by Ahlswede in
his foundational work [24], where he introduced the elimination technique to show that
the randomized code ensemble can be derandomized without loss in capacity.

Theorem 1.2 (Ahlswede [24]). The capacity of a classical channel PY |X with common-
randomness assistance satisfies:

CCR(PY |X) = C(PY |X) = max
pX

I(X;Y ).

We note that common randomness is yet valuable in settings beyond standard
coding, such as secrecy systems [25], zero-error communication [26], and coordination
problems [27]. In such cases, common randomness facilitates strong synchronization,
private key agreement, and improved system design.
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1.4 Quantum Channels

Quantum channels describe the physical evolution of quantum systems and serve as
mathematical models for noisy transmission media, such as optical fibers [28]. The ca-
pacity of a quantum channel is the ultimate characteristic for communication through-
put, i.e, the optimal rate at which information can be reliably transmitted with asymp-
totically vanishing error.

1.4.1 Channel Model

A quantum channel is defined as completely-positive trace-preserving (CPTP) linear
map,

NA→B : L(HA) → L(HB) (1.57)

(see [21, Def. 4.4.2-4.4.3] for the definition of the CPTP properties). The quantum
channel maps Alice’s quantum state ρA on Alice’s Hilbert space HA, to Bob’s quantum
state ρB = NA→B(ρA) on Bob’s Hilbert space HB. The ideal (noiseless) channel
id : L(H) → L(H) is defined by the relation id(ρ) = ρ for all ρ.

We assume that the channel is memoryless. That is, if the input An ≡ A1A2 . . . An

is sent through the channel, then the input state ρAn undergoes the tensor-product
map N ⊗n

A→B. Therefore, the output state is

ρBn = N ⊗n
A→B (ρAn) . (1.58)

Every quantum channel has a Stinspring representation, i.e, there exists an operator
V : HA → HB ⊗ HE such that

NA→B(ρ) = TrE(V ρV †) (1.59)

for ρ ∈ L(HA), where V †V = 1.

In addition, every quantum channel can be represented as a Kraus map, i.e, an
operator-sum form:

NA→B(ρ) =
∑

i

KiρK
†
i (1.60)

with ∑iKiK
†
i = 1.

The quantum channel generalizes the classical channel PY |X , which can be viewed
as a linear map from the input distribution pX to an output distribution pY .
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Figure 1.3: Quantum channel model.

1.4.2 Coding Definitions (Unassisted)

To communicate classical information over a quantum channel NA→B, one uses an
ensemble of quantum states to encode classical messages. A (2nR, n) code for commu-
nication of classical information over a quantum channel consists of:

• An encoding map F : {1, . . . , 2nR} → S (H⊗n
A ), which assigns to each message m

a quantum codeword φm = F(m), where φm ∈ S (H⊗n
A ).

• A measurement POVM DBn = {Dm}2nR

m=1, which consists of measurement oper-
ators Dm ∈ S (H⊗n

B ) for m ∈ {1, . . . , 2nR}, such that ∑2nR

m=1Dm = 1Bn . The
measurement POVM is used by the receiver to decode the message.

The communication scheme is depicted in Figure 1.3. To send a message m, Alice
encodes her input by preparing the input state

ρm
An = F(m) , (1.61)

where An = (A1, . . . , An), and then transmits An through the memoryless channel,
NA→B. The output state is thus

ρm
Bn = N ⊗n

A→B (ρm
An) , (1.62)

where Bn = (B1, . . . , Bn). Bob receives Bn, and then performs the decoding measure-
ment {Dm}2nR

m=1 to obtain an estimate, which is distributed according to

Pr(m̂|m) = Tr(Dm̂ · ρm
Bn) . (1.63)

The error probability given that Alice sent the message m ∈ {1, .., 2nR} is

P (n)
e (F ,D|m) = 1 − Tr{Dmρ

m
Bn}, (1.64)

and the maximum error probability is defined by

P (n)
e,max(F ,D) = max

m
P (n)

e (F ,D|m). (1.65)

A (2nR, n, ε) code over a quantum channel satisfies

P (n)
e,max(F ,D) ≤ ε. (1.66)
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A rate R is said to be achievable if ∀ε > 0 and sufficiently large n, there exists a
(2nR, n, ε) code. The channel capacity is defined as the supremum of achievable rates.

We denote the (unassisted) capacity of a quantum channel NA→B by C(N ).

1.4.3 Unassisted Capacity Theorem

The unassisted capacity of a quantum channel NA→B is characterized by the Holevo–
Schumacher–Westmoreland (HSW) theorem [1, 2]. It describes the optimal rate at
which classical information can be transmitted reliably over many independent uses of
a quantum channel, without any additional resources such as entanglement or common
randomness.

The Holevo information of a quantum channel NA→B is defined as:

χ(N ) ≡ max I(X;B)ω , (1.67)

where the maximization is over classical-quantum states of the form:

ωXB =
∑

x

pX(x) |x⟩⟨x| ⊗ NA→B(ωx
A) , (1.68)

and {|x⟩} is an orthonormal basis on the classical register X.

Remark. It is important to notice that in the quantum setting, X is not the channel
input, but rather an auxiliary random variable (a classical system). In general, auxiliary
variables appear in many network information settings, both classical and quantum.
Here, the variable X selects the input state from a collection of quantum states, {ψx

A :
x ∈ X }.

The unassisted capacity was independently characterized by Holevo [1] and Schu-
macher and Westmoreland [2]. Hence, the result is commonly referred to as the
HSW Theorem.

Theorem 1.3 (HSW Capacity Theorem [1, 2]). The capacity of a quantum channel
NA→B satsfies:

C(N ) ≥ χ(N ) . (1.69)

Furthermore,

C(N ) = lim
n→∞

1
n
χ(N ⊗n), (1.70)

where χ(N ⊗n) is the Holevo information with respect to the product channel N ⊗n
A→B :

L(H⊗n
A ) → L(H⊗n

B ).

For channels with additive Holevo information, the capacity simplifies to the single-
letter formula [29, Sec. 8.3]:
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Figure 1.4: Entanglement‑assisted quantum channel model.

C(N ) = χ(N ) . (1.71)

This holds for many channels, such as the erasure channel, dephasing channel, depolar-
izing channel, quantum Gaussian channel, etc. In the past, many researchers believed
that (1.71) holds for all channels.

In general, however, regularization is necessary, as Hastings [30] showed that there
exist channels with a super-additive behavior, such that

1
n
χ(N ⊗n) > χ(N ). (1.72)

A single-letter capacity formula is an open problem in general.

1.5 Entanglement-Assisted Communication

1.5.1 Model and Motivation

In the entanglement-assisted model, the sender and the receiver are allowed to share
an arbitrary amount of prior entanglement before communication begins. This shared
entanglement is independent of the channel and can be leveraged to enhance the com-
munication rate. Specifically, the idea is to utilize inactive periods to generate shared
entanglement, which can later be used in order to increase throughput, once the trans-
mission resumes.

We view the entanglement-assisted setting as the quantum parallel of communi-
cation with common randomness, as in Section 1.3. Nonetheless, the behavior is dif-
ferent, as entanglement assistance can significantly improve achievable rates. In the
entanglement-assisted communication setting, Alice applies an encoding map that acts
jointly on her share of the entangled state and the message, and transmits the resulting
state through the quantum channel. Bob then decodes using both the channel output
and his share of the entanglement.
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1.5.2 Coding Definitions

A (2nR, n) entanglement-assisted code for communication over a quantum channel con-
sists of:

• A shared entangled state ΨGn
AGn

B
∈ S (HGn

A
⊗ HGn

B
) between the sender and the

receiver, where Gn
A is the entanglement resource at the transmitter, and Gn

B at
the receiver.

• A collection of encoding maps F (m)
Gn

A→An : S (HGn
A

) → S (H⊗n
A ) form ∈ {1, .., 2nR}.

• A decoding POVM DBnGn
B

= {Dm}2nR

m=1, such that ∑2nR

m=1Dm = 1, where Dm ∈
S (H⊗n

B ⊗ HGn
B

) for m ∈ {1, . . . , 2nR}. The decoding POVM is associated with
the measurement performed by the receiver in order to estimate the message,
using both the channel output and his share of entanglement.

We denote the code by (Ψ,F ,D). The communication scheme is depicted in Fig-
ure 1.4. Alice selects a message m ∈ {1, ..., 2nR}. She prepares the input state by
applying the encoding map on her share of entanglement assistance:

ρm
AnGn

B
= (F (m)

Gn
A→An ⊗ id)(ΨGn

AGn
B

) , (1.73)

and transmits An through n uses of the quantum channel. Here, the ideal (noiseless)
channel, id, acts on Bob’s share of entanglement assistance, Gn

B, since Alice does not
have access to this resource. The output state is thus

ρm
BnGn

B
=
(
N ⊗n

A→B ⊗ id
)

(ρm
AnGn

B
) . (1.74)

Bob receives Bn, and then performs the decoding measurement {Dm}2nR

m=1 to obtain
an estimate, which is distributed according to

Pr(m̂|m) = Tr(Dm̂ · ρm
BnGn

B
) . (1.75)

The conditional error probability, given that Alice sent the message m, is

P (n)
e (Ψ,F ,D|m) = 1 − Tr

[
Dm · ρm

BnGn
B

]
. (1.76)

The maximum error probability is

P (n)
e,max(Ψ,F ,D) = max

m
P (n)

e (Ψ,F ,D|m) . (1.77)

A (2nR, n, ε) entanglement-assisted code over a quantum channel satisfies

P (n)
e,max(Ψ,F ,D) ≤ ε . (1.78)
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A rate R is said to be achievable if ∀ε > 0 and sufficiently large n, there exists a
(2nR, n, ε) code with entanglment assistance.

The capacity is defined as the supremum of achievable rates with entanglment
assistance. We denote the entanglement-assisted capacity of a quantum channel N by
CEA(N ).

1.5.3 Entanglement-Assisted Capacity

The entanglement-assisted capacity of a quantum channel NA→B is the maximum rate
at which classical information can be transmitted reliably using the channel, assuming
unlimited prior entanglement. Remarkably, the capacity formula has a single-letter
form.

Theorem 1.4 (Bennet et al. [5]). The entanglement-assisted capacity of a quantum
channel NA→B is given by:

CEA(N ) = max
|ϕGA⟩

I(G;B)ω , (1.79)

where the maximum is over all bipartite states |ϕGA⟩, and

ωGB = (id ⊗ N )(|ϕGA⟩⟨ϕGA|) ,

with dim(HG) ≤ dim(HA).

We note that G is an auxiliary system in the optimization formula. This auxiliary
can be interpreted as Bob’s entanglement resource.

The entanglement-assisted capacity formula is additive, meaning f(N ⊗n) = n ·
f(N ) where f(N ) = max I(G;B)ω. It also provides an upper bound on the unassisted
capacity, as C(N ) ≤ CEA(N ). The entanglement-assisted capacity can significantly
exceed the unassisted capacity [31, 32].

1.5.4 Superdense Coding

A fundamental example that illustrates the advantage of entanglement assistance is
superdense coding [33]. Based on the Holevo bound [34], the capacity of a noiseless
quantum channel without entanglement assistance is

1
[ classical bit
qubit transmission

]
.

Superdense coding shows that entanglement assistance can be utilized to double this
capacity. That is, if Alice and Bob are provided with entanglement resource, the
transmission rate becomes

2
[ classical bits
qubit transmission

]
.
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Figure 1.5: Illustration of Superdense Coding

Specifically, it turns out that a single EPR pair is sufficient (see Example 1.1.2). The
protocol includes the following:

• A shared entangled state
∣∣Φ+⟩

GAGB
∈ HGA

⊗ HGB
between the sender and the

receiver, where GA is the entanglement resource at the transmitter and GB at
the receiver.

• Encoding operators Σi
XΣj

Z , for i, j ∈ {0, 1}, where ΣX and ΣZ are the Pauli
operators (see Example 1.1.3).

• A decoding POVM, corresponding to a Bell-state measurement.

The method is demonstrated in Figure 1.5. Alice selects a two-bit message m =
(m[0],m[1]), where m[i] ∈ {0, 1}. She prepares the input state by applying Xm[0]Zm[1]

on her share of the entangled resource:∣∣∣Φ(m)
⟩

AGB

= (Σm[0]
X Σm[1]

Z ⊗ id)
∣∣∣Φ+

⟩
GAGB

, (1.80)

and transmits A through the noiseless quantum channel idA→B. We note that
{∣∣∣Φ(m)

⟩}
constitute the Bell basis in Example 1.1.4.

Bob receives system B, and performs a Bell-state measurement on
∣∣∣Φ(m)

⟩
BGB

(the
Bell measurement is represented in Figure 1.5 by the application of a Hadamard gate
and a CNOT gate, followed by a measurement in the computational basis). This
measurement allows him to perfectly distinguish between the four orthogonal Bell states
and recover the message (m[0],m[1]) with probability 1.

Thus, superdense coding enables entanglement-assisted communication at a rate of
2 classical bits per qubit transmission via the noiseless qubit channel.
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1.6 Unreliable Entanglement-Assisted Communication

Entanglement resources are useful in many applications. Unfortunately, it is a fragile
resource [35, 36]. In order to generate entanglement assistance in optical communica-
tion, the transmitter first prepares an entangled pair locally, and then transmits half of
it [37]. Since photons are easily lost to the environment [38], current implementations
incorporate a back channel to notify the transmitter in case of a failure, with numer-
ous repetitions. This approach has clear disadvantages and may even result in system
collapse. However, ensuring resilience and reliability is critical for developing future
communication networks [39].

In the classical literature of cooperation resources, Steinberg introduced the concept
of uncertain cooperation in classical information theory in 2014 [40], and Huleihel
and Steinberg later expanded on it [41]. Their framework captures ad-hoc networks
where key resources—bandwidth, time slots, energy—may or may not be available,
since availability depends on factors beyond the designer’s control (for example, relay
battery levels, weather conditions, or peer willingness). Previous work has examined
unreliable cooperation in multi-user scenarios such as the multiple-access channel [42]
and broadcast channel [43, 44, 45], as well as in related frameworks like outage analysis
[46, 47], ARQ [48, 49], cognitive radios [50], and the broadcast approach for fading
channels—where the transmission rate is dynamically adapted to the channel state
[51, 52, 53]. In contrast, we focus here on the reliability of static entanglement resources
in a point-to-point quantum channel.

Communication with unreliable entanglement assistance was recently introduced
by Pereg et al. [7] as a setup where a back channel and repetition are not required.
Instead, the rate is adapted to the availability of entanglement assistance. Thereby,
the principle of operation ensures reliability by design. In communication with unreli-
able entanglement assistance, Alice and Bob are provided with unreliable entanglement
resources, as the communicating parties are uncertain about the availability of entan-
glement assistance.

Specifically, Alice wishes to send two messages, at rates R and R′. She encodes both
messages using her share of the entanglement resources, as she does not know whether
Bob will have access to the entangled resources. Bob has two decoding procedures. If
the entanglement assistance has failed to reach Bob’s location, he performs a decoding
operation to recover the first message alone. Hence, the communication system operates
on a rate R. Whereas if Bob has entanglement assistance, he decodes both messages,
hence the overall transmission rate is R + R′. In other words, R is a guaranteed rate,
and R′ is the excess rate of information that entanglement assistance provides. We
define the capacity region as the set of all rate pairs (R,R′) that can be achieved with
asymptotically vanishing decoding errors.
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⟩
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Figure 1.6: Illustration of unreliable entanglement assistance that is controlled by an
imaginary switch. Thus, there are two scenarios: (a) “On”: Bob decodes both m and
m′. (b) “Off”: Bob decodes m alone.

1.6.1 Coding Definitions

A (2nR, 2nR′
, n) code with unreliable entanglement assistance consists of the following:

• Two message sets {1, . . . , 2nR} and {1, . . . , 2nR′} where 2nR, 2nR′ are assumed to
be integers.

• A pure entangled state ΨGn
A,Gn

B
.

• A collection of encoding maps, Fm,m′

Gn
A→An : S (HGn

A
) → S (H⊗n

A ), form ∈ {1, . . . , 2nR}
and m′ ∈ {1, . . . , 2nR′}.

• Two decoding POVMs, DBnGn
B

= {Dm,m′} and D∗
Bn = {D∗

m}.

We denote the code by (F ,Ψ,D,D∗)
The communication scheme is depicted in Figure 1.6. The sender Alice has the

systems An and Gn
A as well, where Gn

A and Gn
B represent the entanglement resources.

The model captures two scenarios, i.e. when entanglement assistance is present or
absent. This is illustrated in Figure 1.6 by an imaginary switch that controls the
assistance. Without assistance, Bob is only required to decode one message, and given
entanglement assistance, he should recover both messages.

Specifically, Alice chooses two classical messages, m ∈ {1, . . . , 2nR} and m′ ∈
{1, . . . , 2nR′}. She prepares the input state by

ρm,m′

AnGn
B

=
(
F (m,m′)

Gn
A→An ⊗ id

) (
ΨGn

AGn
B

)
, (1.81)

and transmits An over n channel uses of NA→B. The channel output of Bob is

ρm,m′

BnGn
B

= (N ⊗n
A→B ⊗ id)(ρm,m′

AnGn
B

) . (1.82)

If the entanglement assistance is present, i.e. Bob has access to the entanglement
resource Gn

B, then he should recover both messages. He combines the output with the
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entangled system Gn
B and performs the measurement POVM DBnGn

B
= {Dm,m′} to

obtain an estimate (m̂, m̂′).
Otherwise, if entanglement assistance is absent, then Bob decondes less information.

If Bob does not have the resource Gn
B, then he is only required to recover the first

message, m. Hence, he performs the measurement D∗
Bn = {D∗

m} to obtain an estimate
m̂ of the first message alone. For this reason, the first message, m, is referred to as the
guaranteed information, and the second message, m′, as the excess information that
entanglement assistance provides.

Each scenario is associated with a different error probability. In the presence of
entanglement assistance, the conditional probability of error given that the messages
m and m′ were sent is:

P (n)
e (F ,Ψ,D|m,m′) = 1 − Tr

[
Dm,m′(N ⊗n

A→B ⊗ id)(F (m,m′)
Gn

A→An ⊗ id)(ΨGn
A,Gn

B
)
]
, (1.83)

as the decoder measures DBnGn
B

= {Dm,m′} in this scenario. Without assistance, the
conditional probability of error is:

P ∗(n)
e (F ,Ψ,D∗|m,m′) = 1 − Tr

[
D∗

m(N ⊗n
A→B ◦ F (m,m′)

Gn
A→An)(ΨGn

A
)
]
, (1.84)

as the decoder does not have access to Gn
B and measures D∗

Bn = {D∗
m} in this scenario.

Notice that the encoded input remains the same in both scenarios, since Alice
does not know whether entanglement assistance is present or not. Therefore, the error
depends on m and m′ in both cases.

We denote the maximal error probabilities by:

P (n)
e,max(F ,Ψ, D) = max

m,m′
P (n)

e (F ,Ψ, D|m,m′), (1.85)

P ∗(n)
e,max(F ,Ψ,D∗) = max

m,m′
P ∗(n)

e (F ,Ψ,D∗|m,m′). (1.86)

A (2nR, 2nR′
, n, ε) code with unreliable entanglement assistance satisfies

P (n)
e,max(F ,Ψ,D) ≤ ε (1.87)

and

P ∗(n)
e,max(F ,Ψ,D∗) ≤ ε . (1.88)

A rate pair (R,R′) is called achievable if for every ε > 0 and sufficiently large n,
there exists a (2nR, 2nR′

, n, ε) code with unreliable entanglement assistance.
The capacity region CEA∗(N ) with unreliable entanglement assistance is defined as

the set of all achievable rate pairs.

Remark. The communication scheme with unreliable entanglement assistance is con-
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ceptually analogous to a scenario with unreliable common randomness. However, while
common randomness does not enhance the communication rate, entanglement assis-
tance does. Thus, the model is meaningful only in the entanglement-assisted setting.

Remark. Entanglement assistance does not increase the capacity of a classical channel.
In this case, the capacity region is given by

CEA∗(PY |X) =
{

(R,R′) : R+R′ ≤ C(PY |X)
}

for a classical channel PY |X .

1.6.2 Capacity Results

General Channels

Define

REA*(N ) =
∪

pX ,φG1G2 ,F(x)

{
(R,R′) : R ≤ I(X;B)ω

R′ ≤ I(G2;B|X)ω

}
, (1.89)

where

ωXG2A =
∑
x∈X

pX(x) |x⟩⟨x| ⊗ (id ⊗ F (x)
G1→A)(φG2G1) , (1.90)

and

ωXG2B = (id ⊗ NA→B)(ωXG2A) . (1.91)

Theorem 1.5 (Pereg et al. [7]). The capacity region of a quantum channel NA→B with
unreliable entanglement assistance satisfies

CEA∗(N ) ⊇ REA∗(N ) . (1.92)

Furthermore,

CEA∗(N ) =
∞∪

n=1

1
n
REA∗(N ⊗n) . (1.93)

Entanglement Breaking Channels

Entanglement breaking is a fundamental property of a broad class of quantum channels
that map any entangled input state into a separable output state [54]. A quantum
channel NA→B is called entanglement breaking if, for every input state ρAA′ , where A′
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is an arbitrary reference system, the channel output is separable, i.e.,

(NA→B ⊗ idA′)(ρAA′) =
∑
x∈X

pX(x)ψx
B ⊗ ψx

A′ ,

for some probability mass function pX and pure states ψx
B and ψx

A′ .
The Kraus representation of an entanglement-breaking channel consists of Kraus

operators with unit rank. Moreover, any entanglement-breaking channel can be ex-
pressed as a sequential composition of a measurement channel followed by a classical-
to-quantum channel (see [55, Corollary 4.6.1]).

From a Shannon-theoretic viewpoint, entanglement-breaking channels are relatively
well understood. Their unassisted capacity is given by the single-letter Holevo infor-
mation [56], i.e., C(N ) = χ(N ). While such a channel cannot be used in order to
generate entanglement, classical messages can still be transmitted, and entanglement
assistance can significantly enhance their capacity [31]. In the setting of unreliable en-
tanglement assistance, the capacity region for entanglement-breaking channels is given
by a single-letter formula.

Theorem 1.6 (Pereg [57]). The capacity region of an entanglement-breaking quantum
channel NA→B with unreliable entanglement assistance is given by

CEA∗(N ) = REA∗(N ) . (1.94)

1.7 Regularization and Single-Letter Characterizations

As demonstrated by the results in this chapter, some capacity results are expressed in
the form of a regularization limit:

freg(N ) = lim
n→∞

1
n

f1(N ⊗n) . (1.95)

Regularized expressions are also referred to as multi-letter formulas. Such formulas are
given, for example, in the capacity theorem for a general quantum channel, without
assistance, as well as in the unreliable entanglement-assisted capacity.

The main limitation of regularized capacity formulas lies in their lack of computabil-
ity and conceptual transparency. Since they involve limits over increasing blocklengths,
such expressions typically do not admit closed-form evaluations and are difficult to com-
pute in practice [58].

Another limitation of regularized formulas is their lack of uniqueness. That is,
a multi-letter formula does not uniquely characterize the capacity of a channel for a
given task. For example [21, Sec. 13.1.3], consider the capacity of a classical channel,
which is given by C(PY |X) = maxp(x) I(X;Y ) = maxp(x) [H(X) −H(X|Y )]. Define
Ia(PY |X) ≜ maxp(x) [H(X) − aH(X|Y )]. It is clear that C(PY |X) > Ia(PY |X) for
a > 1. However, if we consider the multi-letter formula of Ia(PY |X), we find that it
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coincides with the capacity: limn→∞
1
nIa(Pn

Y |X) = C(PY |X) for all a ≥ 1. Thus, the
capacity formula is not unique under regularization.

A further limitation is the lack of insights into optimal code design. Single-letter
formulas provide valuable guidance on how to design optimal coding strategies across
a variety of scenarios. For example, in the multiple access channel, the single-letter
characterization highlights approaches such as time-sharing and successive-cancellation
decoding [59, 60]. In parallel Gaussian channels, they lead to practical ideas such as
the water-filling method for power allocation [61].

Nonetheless, for specific classes of channels—such as entanglement-breaking channels—
single-letter formulas have been established. Regularization-free characterizations re-
main an active area of research, as they not only facilitate practical computations but
also provide deeper insight into the structure of quantum information tasks.

1.8 Packing Lemma

We conclude this chapter with the quantum packing lemma, a pivotal tool in the
analysis of quantum information-theoretic tasks.

The quantum packing lemma plays a central role in establishing achievability results,
particularly in entanglement-assisted communication scenarios. It provides a general
framework for encoding classical messages into a Hilbert space such that the receiver can
reliably distinguish them. Specifically, if the sender prepares an ensemble of quantum
states and the receiver applies an appropriate set of projectors, the lemma ensures the
existence of a decoding measurement with low average error probability.

This lemma underpins all the capacity theorems presented in this chapter and plays
a central role in the analysis of secrecy capacities, including the results of this thesis.

Lemma 1.8.1 (Quantum Packing Lemma [10]). Let {pX(x), σx}x∈X be a quantum en-
semble with average state σ =

∑
x pX(x)σx. Suppose there exist a code projector Π and

codeword projectors {Πx}x∈X satisfying:

Tr{Πσx} ≥ 1 − ε, (1.96)

Tr{Πxσx} ≥ 1 − ε, (1.97)

Tr{Πx} ≤ h, (1.98)

ΠxΠ ≤ 1
HΠ, (1.99)

for all x ∈ X , where ε ∈ (0, 1), and 0 < h < H. Let M be a set of messages
of size |M|. Construct a random codebook C = {X(m)}m∈M where each X(m) is
independently drawn from pX . Define the corresponding codeword states as σX(m).
Then, there exists a POVM {Dm}m∈M such that the expected average probability of
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correct decoding satisfies:

EC

{
1

|M|
∑

m∈M
Tr
[
DmσX(m)

]}
≥ 1 − 2

(
ε+ 2

√
ε
)

− 4|M| · h
H . (1.100)
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Chapter 2

Secrecy Capacity

Secure communication is a fundamental goal in both classical and quantum informa-
tion theory. The concept of secrecy capacity characterizes the maximum rate at which
information can be reliably transmitted from a sender to an intended receiver, while
ensuring that an eavesdropper gains negligible information about the transmitted mes-
sage. This notion plays a central role in cryptographic applications and physical-layer
security, where the goal is to exploit the properties of the communication channel itself
to guarantee confidentiality.

In the classical setting, secrecy is typically studied through the wiretap channel
model introduced by Wyner [62], where an eavesdropper observes a degraded version
of the main communication. In the quantum regime, secrecy capacities extend to both
classical and quantum communication, leveraging phenomena such as entanglement and
measurement disturbance. A notable example of a practical secrecy scheme is quantum
key distribution (QKD), where the goal is to generate a shared secret key between two
parties that remains secure against any quantum adversary [63]. Physical layer security
complements the cryptographic key distribution approach, and leverages the inherent
disturbance of the physical channel to ensure secure transmissions without relying on
secret keys [64].

This chapter reviews the notion of secrecy capacity for both classical and quantum
channels, along with known single-letter expressions and regularized formulas. We begin
by defining the quantum wiretap channel and several security notions, including weak
security, strong security, and semantic security. We then present the secrecy capacity
of the classical wiretap channel. We then turn to quantum channels, presenting the
secrecy capacity of a quantum wiretap channel, under three scenarios: unassisted,
entanglement-assisted with adversarial access to the entanglement, and entanglement-
assisted with a passive adversary. The chapter concludes with the quantum covering
lemma, a fundamental tool in the analysis of quantum secrecy capacities.
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2.1 Quantum Wiretap Channel

The quantum wiretap channel is a fundamental model for secure communication in the
quantum setting.

A quantum wiretap channel NA→BE : S (HA) → S (HB ⊗ HE) maps a state at the
sender’s system to a joint state of the legitimate receiver and eavesdropper’s systems.
The sender, receiver, and eavesdropper are often referred to as Alice, Bob and Eve,
respectively. Hence, if Alice prepares her input A in the state ρA, the joint output of
Bob and Eve is given by ρBE = NA→BE(ρA).

We denote the marginal channel to the legitimate receiver, i.e., from Alice to Bob,
by LA→B, and the adversarial marginal, from Alice to Eve, by LA→E . The marginal
channels are also referred to as the main channel and the eavesdropper’s channel, re-
spectively.

The quantum wiretap channel NA→BE is called degraded if there exists a degrading
channel PB→E such that

LA→E = PB→E ◦ LA→B .

The classical parallel is commonly referred to as a a stochastically degraded wiretap
channel.

We assume that the channel is memoryless, i.e., if Alice sends a sequence of input
systems An ≡ (A1, . . . , An), then the channel input ρAn undergoes the tensor-product
mapping N ⊗n

A→BE .

2.2 Security Criteria

To ensure security in the wiretap channel, one typically requires the eavesdropper’s
output state to be (almost) uncorrelated with the transmitted message. Several notions
of security have been proposed to formalize this idea, including weak secrecy, strong
secrecy, and semantic security.

2.2.1 Weak vs. Strong Secrecy

Let M denote the transmitted message and En the eavesdropper’s quantum system
after n uses of the channel.

Strong secrecy. The system satisfies strong secrecy if the mutual information be-
tween the message and Eve’s system vanishes in the limit of n → ∞:

lim
n→∞

I(M ;En)ρ = 0 , (2.1)

for a uniformly distributed message, M .
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Figure 2.1: Classical wiretap channel model.

This ensures that the correlation between the message and the information that is
leaked to the eavesdropper becomes negligible, providing a strong guarantee of confi-
dentiality.

Weak secrecy. A weaker requirement is:

lim
n→∞

1
n
I(M ;En)ρ = 0 , (2.2)

for a uniformly distributed message M .
This condition only requires that the rate of information leakage vanishes asymp-

totically. Since it allows for a sublinear amount of leakage, weak secrecy is generally in-
sufficient for cryptographic applications but still relevant in some information-theoretic
models [65].

2.2.2 Semantic Security and Indistinguishability

Semantic security requires that Eve cannot gain any advantage in learning anything
about the message, regardless of its distribution. In quantum information theory, this
is often formulated in terms of indistinguishability:

Let ρm
En denote the eavesdropper’s state when a message m ∈ {1, . . . , 2nR} is sent.

The communication scheme is said to satisfy semantic security if

max
m∈{1,...,2nR}

1
2

∥ρm
En − θEn∥1 ≤ δ, (2.3)

for arbitrarily small δ > 0 and sufficiently large n, where θEn is a constant state that
does not depend on m. This condition ensures that Eve’s state becomes indistinguish-
able (in probability) from a state that is completely independent of the transmitted
message.

2.3 Classical Wiretap Channel

In classical information theory, a discrete memoryless wiretap channel is modeled by a
transition probability PY Z|X , where X is the channel input, and Y and Z denote the
outputs at the legitimate receiver and the eavesdropper, respectively.
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2.3.1 Coding Definitions

Reliable communication over the wiretap channel requires both reliable communication
to the legitimate receiver and secrecy against the eavesdropper.

A (2nR, n) secrecy code consists of:

• An encoding channel, F : {1, . . . , 2nR} → X n.

• A decoder, g : Yn → {1, . . . , 2nR}.

The communication scheme is depicted in Figure 2.1. Alice selects a messagem from
{1, . . . , 2nR}. She generates a codeword xn according to the probability distribution
F (·|m), and transmits xn through n uses of the classical wiretap channel. The channel
outputs of Bob and Eve, respectively, are distributed according to

Q(yn, zn|m) =
∑

xn∈X n

F (xn|m)Pn
Y Z|X(yn, zn|xn) . (2.4)

Bob receives yn and decodes by m̂ = g(yn).
The error probability given that the message m was sent is

P (n)
e (F, g|m) = Pr[g(Y n) ̸= m | m] =

∑
yn:g(yn )̸=m

Q(yn|m), (2.5)

for m ∈ {1, ..., 2nR}. Hence, the maximum error probability is

P (n)
e,max(F, g) = max

m
P (n)

e (F, g|m). (2.6)

Define the security level, with respect to an eavesdropper distribution Q0 ∈ P(Zn),
by:

∆S(F,Q0) = max
m

1
2

∥Q(·|m) −Q0(·)∥1 , (2.7)

where Q0(zn) is an output distribution that does not depend on m.
A (2nR, n, ε, δ) secrecy code satisfies

P (n)
e,max(F, g) ≤ ε (2.8)

and

∆S(F,Q0) ≤ δ (2.9)

for some Q0 ∈ P(Zn).
A rate R is said to be achievable if, for every ε, δ > 0 and sufficiently large n, there

exists a (2nR, n, ε, δ) code.
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Figure 2.2: Quantum wiretap channel model.

The secrecy capacity CS(PY Z|X) is the supremum of all such achievable secrecy
rates.

2.3.2 Classical Secrecy Capacity

The capacity theorems for classical wiretap channels were originally established by
Wyner in the degraded case [62], and extended to the general wiretap channel by
Csiszár and Körner [66], laying the foundation for information-theoretic security.

Theorem 2.1 (Wyner [62]). The classical secrecy capacity of a discrete memoryless
degraded wiretap channel PY Z|X is given by the single-letter expression:

CS(PY Z|X) = max
pX

[I(X;Y ) − I(X;Z)] . (2.10)

Theorem 2.2 (Csiszár and Körner [66]). The classical secrecy capacity of a general
discrete memoryless wiretap channel PY Z|X , under the strong secrecy criterion, admits
a single-letter characterization:

CS(PY Z|X) = max
pUX

[I(U ;Y ) − I(U ;Z)] , (2.11)

where the auxiliary random variable U satisfies |U| ≤ |X |.

This result demonstrates that, despite the need for auxiliary variables, the secrecy
capacity of general wiretap channels can still be expressed in a single-letter form.

2.4 Quantum Channels (Unassisted)

2.4.1 Coding Definitions

To transmit classical information securely over a quantum wiretap channel NA→BE , one
uses a secrecy code that ensures both reliability and security from an eavesdropper. A
(2nR, n) secrecy code consists of the following:

• An encoding map F : {1, ..., 2nR} → S (H⊗n
A ), which assigns each message m ∈

{1, ..., 2nR} to a quantum codeword ρm
An ∈ S (H⊗n

A ).
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• Ameasurement POVM DBn = {Dm}2nR

m=1 ⊂ S (H⊗n
B ) such that∑2nR

m=1Dm = 1Bn ,
used by the receiver to decode the message.

We denote the code by (F ,D). The communication scheme is depicted in Figure 2.2.
Alice selects a message m ∈ {1, ..., 2nR}, and encodes the message by preparing the
input state ρm

An . The output state is

ρm
Bn = L⊗n

A→B (ρm
An) , (2.12)

where LA→B is the marginal channel for Bob.
Bob receives Bn, and then performs the decoding measurement {Dm}2nR

m=1 to obtain
an estimate, which is distributed according to

Pr(m̂|m) = Tr(Dm̂ · ρm
Bn) . (2.13)

The error probability given the message m was sent is

P (n)
e (F ,D | m) = 1 − Tr [Dm · ρm

Bn ] . (2.14)

The maximal probability of error is defined by

P (n)
e,max(F ,D) = max

m
P (n)

e (F ,D | m) . (2.15)

To ensure security, we also require that Eve’s states corresponding to different
messages are nearly indistinguishable. Formally, Let LA→E denote the complementary
channel to Eve, and define the state at Eve’s side when message m is sent by

ρm
En = L⊗n

A→E(ρm
An). (2.16)

Define the security level with respect to a constant state θEn , by:

∆S(F , θEn) = max
m

1
2

∥ρm
En − θEn∥1 . (2.17)

A (2nR, n, ε, δ) secrecy code satisfies

P (n)
e,max(F ,D) ≤ ε, ∆S(F , θEn) ≤ δ , (2.18)

for some θEn .
A rate R is said to be achievable if, for every ε, δ > 0 and sufficiently large n, there

exists a (2nR, n, ε, δ) code.
The secrecy capacity CS(N ) of a quantum channel N is defined as the supremum

of all achievable rates.
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2.4.2 Secrecy Capacity

Consider a quantum wiretap channel NA→BE , and suppose that Alice and Bob do not
share entanglement a priori. The private information of the quantum wiretap channel
is defined by

IS(N ) ≡ max
pX(x),ωx

A

[I(X;B)ω − I(X;E)ω] , (2.19)

where the maximization is over the ensemble of quantum input states, and

ωXBE ≡
∑
x∈X

pX(x) |x⟩⟨x| ⊗ NA→BE(ωx
A) , (2.20)

with |X | ≤ dim(HA)2 + 1.

Remark. The variableX in the definition above is an auxiliary classical random variable
used to describe the ensemble of quantum inputs. It is not a direct channel input, but
rather plays a role analogous to the auxiliary variable U in Theorem 2.2.

Theorem 2.3 (see [3, 4]). The secrecy capacity of a quantum wiretap channel NA→BE

without assistance is given by

CS(N ) = lim
k→∞

1
n
IS(N ⊗n) . (2.21)

A single-letter formula for the secrecy capacity remains an open problem for a gen-
eral quantum wiretap channel. The private information is known to be super additive
as well [67].

2.4.3 Degraded Channels

For degraded quantum wiretap channels, the secrecy capacity admits a single-letter
characterization, in contrast to the general case where regularization is required [68, 67].
This result mirrors the classical setting and simplifies both analysis and computation.

Theorem 2.4 (see [4, 69]). The secrecy capacity of a degraded quantum wiretap chan-
nel NA→BE is given by

CS(N ) = max
pX(x),ωx

A

[I(X;B)ω − I(X;E)ω] , (2.22)

where ωXBE =
∑

x pX(x) |x⟩⟨x| ⊗ N (ωx
A), and the maximization is over classical-

quantum input ensembles {pX(x), ωx
A}, with |X | ≤ [dim(HA)]2.

This result holds regardless of the secrecy criterion. The degraded structure allows
one to bound Eve’s information via a post-processing of Bob’s output, enabling a
simpler security analysis.
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2.5 Entanglement Assisted Secrecy Capacity

Qi et al. [6] consider secure communication with reliable entanglement assistance. In
principle, if the transmitter and receiver share perfect entanglement beforehand, it can
be utilized to generate a joint key, and then encode the information using the one-time
pad protocol. Their model, however, does not allow Alice and Bob to generate a secret
key in this manner, as Qi et al. [6] assume that the eavesdropper has access to the
legitimate receiver’s entanglement resource.

In other words, the entanglement assistance is not secure. The model can viewed
as the quantum analog of a wiretap channel with common randomness that is available
to Alice, Bob, and Eve.

While the assumption that both Bob and Eve can measure the same system may
seem to contradict the no-cloning theorem, our interception model provides an oper-
ational meaning to their setting. We now present the definitions and results of Qi et
al. [6].

2.5.1 Coding Definitions

To transmit classical information securely over a quantum wiretap channel NA→BE with
entanglement assistance, we consider the adversarial setting where the eavesdropper
(Eve) has access not only to the output of the wiretap channel but also to Bob’s share
of the entangled resource.

A (2nR, n) secrecy code with entanglement assistance is defined as before, and con-
sists of:

• A pure entangled state ΨGn
AGn

B
∈ S (HGn

A
⊗ HGn

B
), initially shared between Alice

and Bob, where Eve is assumed to also have access to the system Gn
B.

• A collection of encoding maps F (m)
Gn

A→An : S (HGn
A

) → S (H⊗n
A ), which, given

m ∈ {1, ..., 2nR}, map ΨGn
A
to a codeword ρm

An .

• A decoding POVM DBnGn
B

= {Dm}2nR

m=1 ⊂ S (H⊗n
B ⊗HGn

B
) such that∑2nR

m=1Dm =
1, used by the receiver to decode the message using both the channel output and
his share of entanglement.

We denote the code by (Ψ,F ,D).
In the secret communication scheme with entanglement assistance, Alice selects a

message m ∈ {1, ..., 2nR}. She prepares the input state by applying the encoding map

ρm
AnGn

B
= (F (m)

Gn
A→An ⊗ id)(ΨGn

AGn
B

) , (2.23)

and transmits An through n uses of the quantum channel.
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The output state is thus

ρm
BnGn

B
=
(
L⊗n

A→B ⊗ id
)

(ρm
An ⊗ ΨGn

B
) , (2.24)

where LA→B is the marginal channel to Bob.
Bob receives Bn, and then performs the decoding measurement {Dm}2nR

m=1 to obtain
an estimate, which is distributed according to

Pr(m̂|m) = Tr(Dm̂ · ρm
BnGn

B
) . (2.25)

The error probability given a message m was sent is:

P (n)
e (Ψ,F ,D | m) = 1 − Tr

[
Dm · ρm

BnGn
B

]
. (2.26)

The maximal error probability is

P (n)
e,max(Ψ,F ,D) = max

m
P (n)

e (Ψ,F ,D | m) . (2.27)

To ensure security, we now require privacy against an adversary who holds both the
channel output En and the entangled system Gn

B. In our framework, this means that
Eve has intercepted the entanglement resource. Let

ωm
EnGn

B
=
(
L⊗n

A→E ⊗ id
)

(ρm
An ⊗ ΨGn

B
) (2.28)

be Eve’s state when message m is sent. The security level under interception of Eve
with respect to a constant state θEnGB

is

∆SI(Ψ,F , θEnGn
B

) = max
m

1
2

∥∥∥ωm
EnGn

B
− θEnGn

B

∥∥∥
1
, (2.29)

where SI indicates security under interception.
A (2nR, n, ε, δ) secrecy code with entanglement assistance satisfies

P (n)
e,max(Ψ,F ,D) ≤ ε , ∆SI(Ψ,F , θEnGn

B
) ≤ δ , (2.30)

for some θEnGn
B
.

A rate R is said to be achievable if, for every ε, δ > 0 and sufficiently large n, there
exists a (2nR, n, ε, δ) code.

The entanglement-assisted secrecy capacity in this adversarial setting, denoted
CSI-EA(N ), is defined as the supremum of all such achievable rates. The subscript
‘SI-EA’ stands for security under interception, with entanglement assistance.

Remark. The no-cloning theorem states that it is impossible to create an identical copy
of an arbitrary unknown quantum state [70]. While the assumption that both Bob and
Eve have access to the same entangled subsystem appears to contradict this principle,
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Figure 2.3: Entanglement-assisted wiretap channel model with a passive eavesdropper.

our interception model gives an operational interpretation of such a setting by treating
the entanglement as a resource that may be intercepted rather than duplicated (See
Sec. 3.2.5).

2.5.2 Capacity Results

Define

ISI-EA(N ) = max
φGA

[I(G;B)ω − I(G;E)ω] , (2.31)

where the maximum is over all bipartite states φGA, and

ωGBE ≡ (id ⊗ NA→BE)(φGA) . (2.32)

Theorem 2.5 (see [6]). The secrecy capacity of a quantum wiretap channel NA→BE

with (reliable) entanglement assistance is bounded by

CSI−EA(N ) ≥ ISI−EA(N ) . (2.33)

Furthermore, if the channel is degraded, the bound is tight.

Theorem 2.6 (see [6]). The secrecy capacity of a degraded quantum wiretap channel
NA→BE with (reliable) entanglement assistance satsifies

CSI−EA(N ) = ISI−EA(N ) . (2.34)

A single-letter formula for the entanglement-assisted secrecy capacity for general
channels is an open problem.

2.6 Passive Model

Another natural model to consider is one in which the eavesdropper is passive and does
not have access to the entanglement assistance, as in the standard wiretap scenario. See
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Figure 2.3. In this setting, the sender and receiver may utilize the shared entanglement
to establish a secret key in advance, thereby ensuring security from the eavesdropper.
The model can thus be viewed as the quantum analog of a wiretap channel with key
assistance, assumed to be secure beyond Eve’s reach.

Assuming unlimited entanglement assistance, the generation of the key does not
pose a constraint. Consequently, the problem reduces to that of reliable communication
with entanglement assistance, without additional secrecy considerations.

The entanglement-assisted secrecy capacity of a quantum channel N with a passive
eavesdropper is denoted by CPE-EA(N ), where ‘PE-EA’ stands for a passive eavesdrop-
per, while Alice and Bob are provided with reliable entanglement assistance. In this
model, the secrecy capacity coincides with the entanglement-assisted capacity given in
Theorem 1.4:

Theorem 2.7. The entanglement-assisted secrecy capacity of a quantum channel NA→BE,
when Eve is passive and cannot access Bob’s share of entanglement, is:

CPE−EA(N ) = CEA(N ) = max
|ϕGA⟩

I(G;B)ω , (2.35)

where the maximum is over all bipartite states |ϕGA⟩, and

ωGB = (id ⊗ N )(|ϕGA⟩⟨ϕGA|) ,

with dim(HG) ≤ dim(HA).

This result is analogues to classical communication assisted by common randomness
that is hidden from the adversary, i.e., a shared secret key. If the eavesdropper is passive
and does not have access to the secret key, there is no secrecy penalty, and the secrecy
capacity matches the capacity without secrecy [71].

One can achieve this using one-time pad (OTP) encryption. In the classical case,
Alice and Bob share a random key and encrypt the message using bitwise XOR. In
the quantum setting, for example, if they share EPR states (see Example 1.1.2), they
can measure their respective states to generate identical random bits, which serve as a
shared secret key. This is equivalent to assuming that Alice and Bob have a pre-shared
secret key, which Eve cannot access.

2.7 Soft Covering Lemma and Channel Resolvability

We conclude this chapter with the quantum soft covering lemma, which plays a key
role in establishing indistinguishability guarantees in secrecy analysis. The soft cover-
ing lemma is a fundamental technical tool in both classical and quantum information
theory. It provides a probabilistic guarantee that a randomly generated codebook will
closely approximate the average behavior of a given ensemble. This result is especially
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powerful in the context of secrecy capacities, along with other tasks such as channel
simulation [5] and lossy compression [55, 72].

In our analysis, the quantum soft covering lemma plays a central role in establishing
security guarantees. Specifically, it allows us to show that the ensemble average of
the eavesdropper’s states—generated by a random codebook—is close to the overall
average state. As a result, the eavesdropper cannot reliably distinguish which particular
codeword was sent.

Lemma 2.7.1 (see [73]). Let {pX(x), σx}x∈X be an ensemble, with mean state σ ≡∑
x∈X pX(x)σx. Furthermore, suppose that there is a code projector Π and codeword

projectors {Πx}x∈X , that satisfy:

Tr{Πσx} ≥ 1 − ϵ , (2.36)

Tr{Πxσx} ≥ 1 − ϵ , (2.37)

Tr{Π} ≤ H , (2.38)

ΠxσxΠx ≤ 1
hΠx , (2.39)

for all x ∈ X , where ε ∈ (0, 1), and 0 < h < H. Consider a random codebook
C ≡ {X(k)}k∈K of size |K|, where each codeword is independently drawn according to
pX(x).

Then,

Pr


∥∥∥∥∥∥ 1

|K|
∑
k∈K

σX(k) − σ

∥∥∥∥∥∥
1

> ϵ+ 4
√
ϵ+ 24 4

√
ϵ

 ≤ 1 − 2H exp
(

− ϵ3

4 ln 2
· |K|h

H

)
.

(2.40)

This result ensures that the average of the quantum states σX(k) over the codebook
C is close to the target mean state σ with high probability.

We note that the quantum soft covering lemma can be viewed as a direct conse-
quence of quantum channel resolvability. In particular, quantum channel resolvability
studies the approximation of the average output state of a quantum channel by using a
randomly selected codebook. The quality of this approximation is set by the distance
between the ensemble average and the target output state. The covering lemma can
thus be viewed as a corollary of the general resolvability framework [74] (see also [75]).
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Chapter 3

Security Under Interception

In this chapter, we present our results on security under interception. We consider
secure communication with unreliable entanglement assistance, where the assistance
could be intercepted by the adversary, Eve. We require correct decoding by Bob and
semantic security against Eve.

The interception model is highly relevant in the current landscape of quantum
communications, where entanglement is not only difficult to generate but also inherently
fragile. Ensuring secure communication in such scenarios is critical to the advancement
of quantum cryptography and security.

We establish an achievable rate region for communication with unreliable entan-
glement assistance under interception. Furthermore, we derive a multi-letter capacity
formula also for the interception model for the class of degraded wiretap channels.

To demonstrate our results, we consider the erasure channel and the amplitude
damping channel. For the erasure channel, we show that time-division is optimal and
we derive a single-letter formula. For the amplitude damping channel, we encounter a
phenomenon that is somewhat rare in network information theory [76]: Time sharing
is impossible and the boundary of our achievable region is disconnected.

3.1 Interception Model

Before communication begins, the legitimate parties try to generate entanglement assis-
tance. To this end, Alice prepares an entangled pair locally and transmits one particle.

While the particle travels from the transmitter, Eve tries to steal it, hence the
particle may fail to reach Bob.

In the optimistic case, Alice and Bob generate entanglement successfully prior to
the transmission of information. Hence, Bob can decode the information while using
the entangled resource, which is not available to Eve.

However, in the pessimistic case, Eve intercepts the assistance and Bob must decode
without it. Nonetheless, secrecy needs to be maintained, whether Bob or Eve hold the
entangled resource.
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m,m′
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B

D m̂, m̂′

(a)

|Ψ⟩

m,m′ F

N⊗n

An Bn

En
m,m′

Gn
A Gn

B

D∗ ˆ̂m

(b)

Figure 3.1: Interception illustration with an imaginary switch. As Eve may steal the
resource, there are two scenarios: (a) “Left”: Bob decodes both m and m′. (b) “Right”:
Bob decodes m alone.

Consider the following approach. Alice encodes two messages at rates R and R′,
unaware of whether Bob holds the entanglement resource or not. Whereas, Bob and Eve
know whether the resource is in their possession. In practice, this is realized through
heralded entanglement generation [77]. If the entangled resource is not available to Bob,
then he decodes the first message alone; hence, the transmission rate is R. Whereas,
given entanglement assistance, Bob decodes both messages, hence the overall rate is
R +R′. The rate R is thus associated with information that is guaranteed to be sent,
while R′ with the excess information that entanglement assistance provides. In this
manner, we adapt the transmission rate to the availability of entanglement assistance.

3.2 Coding Definitions

We now present the coding definitions for secure communication with unreliable entan-
glement assistance, under the interception model.

Before communication begins, the legitimate parties try to generate entanglement
assistance. In the optimistic case, Alice and Bob have entanglement resources, Gn

A and
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Gn
B, respectively (see Figure 3.1(a)). However, Gn

B is not necessarily available to Bob,
due interception.

In the communication phase, Alice sends n inputs through a memoryless quantum
wiretap channel NA→BE , while she is unaware of whether Bob has the entanglement
resource. Nevertheless, based on the common use of heralded entanglement generation
in practical systems [77], we assume that Bob knows whether he has the assistance or
not.

3.2.1 Coding with Unreliable Assistance

Definition 3.2.1. A (2nR, 2nR′
, n) secrecy code with unreliable entanglement assis-

tance under interception consists of the following:

• Two message sets {1, . . . , 2nR} and {1, . . . , 2nR′}, where 2nR and 2nR′ are assumed
to be integers.

• A pure entangled state ΨGn
A,Gn

B
.

• A collection of encoding maps F (m,m′)
Gn

A−→An : S (HGn
A

) → S (H⊗n
A ) form ∈ {1, . . . , 2nR}

and m′ ∈ {1, . . . , 2nR′}.

• Two decoding POVMs DBnGn
B

= {Dm,m′} and D∗
Bn = {D∗

m}.

We denote the code by (Ψ,F ,D,D∗).

The communication scheme is depicted in Figure 3.1. Alice selects two messages,
m ∈ {1, . . . , 2nR} and m′ ∈ {1, . . . , 2nR′}. In addition, Alice holds the resource Gn

A.
She prepares the input state by applying the encoding map,

ρm,m′

AnGn
B

=
(
F (m,m′)

Gn
A−→An ⊗ id

) (
ΨGn

AGn
B

)
, (3.1)

and transmits An through n uses of the quantum wiretap channel. The channel output
of Bob and Eve is

ρm,m′

BnEnGn
B

= (N ⊗n
A→BE ⊗ id)(ρm,m′

AnGn
B

) . (3.2)

Bob receives Bn. As opposed to Alice, both Bob and Eve know whether they hold Gn
B

or not (thanks to heralded entanglement generation). Depending on the availability
of the entanglement assistance, he decides whether to decode both messages or only
the guaranteed information. Given entanglement assistance, Bob has access to Gn

B, in
which case he performs a measurement using the POVM DBnGn

B
= {Dm,m′} to recover

both messages. If Eve intercepts the assistance, then Bob recovers the messagem alone,
using the POVM D∗

Bn = {D∗
m}.

Bob is required to decode correctly the guaranteed information m, whether the
entanglement resource is stolen or not. Whereas, Bob only needs to decode the excess
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information m′ if the entanglement was stolen and thus not available to him. In both
cases, Alice and Bob need to maintain full secrecy from Eve.

3.2.2 Correct Decoding Criteria

Since there are two scenarios in our setting, we also have two error criteria. In the
presence of entanglement assistance, Bob decodes with DBnGn

B
= {Dm,m′}. Hence, the

conditional probability of error given that Alice sent the messages m and m′ is:

P (n)
e (Ψ,F ,D|m,m′) = 1 − Tr

{
Dm,m′ ρm,m′

BnGn
B

}
= 1 − Tr

{
Dm,m′(L⊗n

A−→B ⊗ id)(F (m,m′)
Gn

A−→An ⊗ id)(ΨGn
A,Gn

B
)
}
. (3.3)

In the absence of entanglement assistance, Bob decodes with D∗
Bn = {Dm}, and the

conditional error probability is:

P ∗(n)
e (Ψ,F ,D∗|m,m′) = 1 − Tr

{
D∗

m ρm,m′

Bn

}
= 1 − Tr

{
D∗

m(L⊗n
A−→B ◦ F (m,m′)

Gn
A−→An)(ΨGn

A
)
}
. (3.4)

Notice that both probabilities depend on m and m′, since Alice does not know whether
the assistance is available to Bob or not, so she encodes both messages.

Next, define the maximal probabilities of error as:

P (n)
e,max(Ψ,F ,D) = max

m,m′
P (n)

e (Ψ,F ,D|m,m′) , (3.5)

P ∗(n)
e,max(Ψ,F ,D∗) = max

m,m′
P ∗(n)

e (Ψ,F ,D∗|m,m′) . (3.6)

3.2.3 Security Criteria Under Interception

Suppose that Eve may steal the entanglement resource Gn
B. In the pessimistic case,

Eve intercepts the entanglement resource, and Bob decodes without it. In other words,
Alice and Eve share the entanglement, instead of Bob. See Figure 3.1(b).

Semantic security requires that Eve cannot gain any information on Alice’s message,
regardless of the message distribution. Hence, the state of Eve’s resources needs to be
close to a constant state that does not depend on Alice’s messages. Formally, define
the security level under interception, with respect to a constant state θEnGn

B
, by

∆SI(Ψ,F , θEnGn
B

) = max
m,m′

1
2

∥∥∥ρm,m′

EnGn
B

− θEnGn
B

∥∥∥
1
. (3.7)

Notice that we include the entangled resource Gn
B in the indistinguishability criterion

due to the pessimistic case above.
The notion of SI denotes security under interception.
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3.2.4 Capacity Region

Definition 3.2.2. A (2nR, 2nR′
, n, ϵ, δ) secrecy code with unreliable entanglement as-

sistance under interception satisfies

max
(
Pe,max(Ψ,F , D), P ∗

e,max(Ψ,F ,D∗)
)

≤ ϵ (3.8)

and

∆SI(Ψ,F , θEnGn
B

) ≤ δ (3.9)

for some θEnGn
B
.

A rate pair (R,R′) is called achievable if ∀ ϵ, δ > 0 and sufficiently large n, there
exists a (2nR, 2nR′

, n, ϵ, δ) code.
The secrecy capacity region with unreliable entanglement assistance under intercep-

tion is the closure of the set of all such pairs, and we deonte it by CSI-EA*(N ), where
SI is security under interception, and EA* denoted unreliable entanglement assistance.

3.2.5 Remarks

Heralded Entanglement Generation

In practical implementations, heralded entanglement generation allows Bob to reliably
determine whether entanglement has been successfully established. Therefore, the as-
sumption that Bob is aware of the presence or absence of the entangled resource is
well-justified. In optical communication settings, heralded entanglement [77, 78] in-
volves both Alice and Bob locally creating an entangled photon or spin-photon pair
(as illustrated in Figure 3.2). These pairs are denoted by |ΦGAPA

⟩ and |ΦGBPB
⟩, where

PA and PB refer to the respective photons. To generate entanglement, Alice sends her
photon PA to Bob. If the transmission is successful, Bob receives both PA and PB,
enabling him to perform a Bell-state measurement. The successful measurement col-
lapses the photonic systems while projecting the remaining quantum systems GA and
GB into an entangled state. If the photon fails to arrive, the measurement outcome
indicates this failure.

Security of Excess Message

A straightforward method to leverage entanglement assistance is to first generate a
shared secret key, and then use it to encrypt the message via a one-time pad protocol.
However, this approach poses a security risk in the interception model: if Eve intercepts
the entanglement resource, she also obtains Alice’s key, resulting in a complete breach
of secrecy.
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Figure 3.2: Heralded entanglement generation in optical systems.

Eve’s Interception Consequences

Eve’s interception has severe consequences on entanglement-assisted communication.
For example, suppose that Alice uses the super dense coding protocol to encode two
classical bits, and then transmits her qubit via a quantum erasure channel. Consider
the event that Bob receives an erasure, hence Eve receives the transmitted qubit. Nev-
ertheless, without the entanglement resource, there is no leakage, because each qubit
by itself has no correlation with Alice’s messages. On the other hand, if Eve has both
qubits, then she can use the super dense decoder in order to recover Alice’s bits.

Hard Decision Approach

Our model considers two extreme scenarios, i.e., the entanglement resources are either
entirely available to Bob or not at all. In digital communications, this strategy aligns
with a hard decision approach [79]. Indeed, the decoder in our setting makes a hard
decision on whether the entanglement resources are viable. This approach fundamen-
tally differs from noisy entanglement models that ensure reliability with respect to the
average state [80].

Correlation Between Guaranteed Information and Entanglement Resource

We observe that guaranteed information could have correlation with the receiver’s en-
tanglement resource. Indeed, the guaranteed informationm needs to be encoded in such
a manner that Bob could recover it even in the absence of the entanglement resource,
see Figure 3.1(b). Nevertheless, Alice encodes her resource Gn

A using an encoding map
that depends on both m and m′ (the details will be given in Sec. 5.1). As a result, the
encoding operation may induce correlation between the guaranteed information m and
the entangled resource Gn

B. We will see the consequences of this observation on the
rate region formula.
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3.3 Results

We consider communication with unreliable entanglement assistance under intercep-
tion. Recall that Alice does not know whether the entanglement resource has reached
Bob’s location, hence she encodes two messages, at rates R and R′. If entanglement
assistance is available to Bob, he recovers both messages. Yet, if Eve has stolen the
resource, he recovers the first message alone. Nonetheless, we require the information
to be secret from Eve in both scenarios (see security requirement in (3.7)).

First, we establish an achievable secrecy rate region. Let NA→BE be a quantum
wiretap channel. Define

RSI-EA*(N ) ≡
∪

pX ,φG1G2 ,F(x)

{
(R,R′) : R ≤ [I(X;B)ω − I(X;EG2)ω]+

R′ ≤ [I(G2;B|X)ω − I(G2;E|X)ω]+

}
(3.10)

where [x]+ ≡ max(x, 0). The union is over all auxiliary variables X ∼ pX , bipartite
states φG1G2 , and encoding channels F (x)

G1→A, hence

ωXG2A ≡
∑
x∈X

pX(x) |x⟩⟨x| ⊗ (id ⊗ F (x)
G1→A)(φG2G1) , (3.11)

ωXG2BE ≡ (id ⊗ id ⊗ NA→BE)(ωXG2A) . (3.12)

Remark. While the setting resembles layered secrecy broadcast models [81, 82], the
analysis is much more involved, and the formulas have a different form. Specifically,
instead of the mutual information term I(X;E)ω in the private information formula,
we now have I(X;EG2)ω that includes the receiver’s entanglement resource, cf. (2.19)
and (3.10).

Remark. Based on the model description, it may seem at a first glance as if X should
not be correlated with G2, since the guaranteed information needs to be recovered in
the absence of the entanglement resource. However, as pointed out in Sec. 3.2.5, Alice’s
encoding may induce correlation between the guaranteed information and the receiver’s
resource. Similarly, in the rate region formula, the application of the encoding channel
F (x)

G1→A could create correlation between X and G2 (see (3.11)).

3.3.1 General Channels

Our main result, for general quantum wiretap channels, is given in the theorem below.

Theorem 3.1. The region RSI−EA∗(N ) is achievable with unreliable entanglement as-
sistance under interception. That is, the capacity region is bounded by

CSI−EA∗(N ) ⊇ RSI−EA∗(N ) . (3.13)
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The proof of Theorem 3.1 is given in Sec. 5.1. We modify the quantum superposition
coding (SPC) scheme in [7] by inserting local randomness elements that are used in
the encoding, one for each message, in order to confuse Eve. In the analysis, we use
the quantum covering lemma [73] in a non-standard manner. In addition, our proof
modifies the methods of Cai [83, 12], originally applied to multiple-access channels
(without secrecy), using random message permutations.

Remark. In the coding scheme described in Sec. 3.2, we specified that Bob applies
one of two distinct POVMs, depending on who holds the entanglement resource —
Bob or Eve. If Bob has entanglement assistance, then he performs DBnGn

B
to decode

both m and m′. Otherwise, if Eve has sabotaged his assistance, Bob performs D∗
Bn

to decode m alone. Nonetheless, the quantum SPC scheme [7] employs a sequential
decoder. On the first stage, Bob performs a measurement to obtain an estimate for the
guaranteed message m. Then, Bob moves on to the second stage. In the presence of
the entanglement resource, Bob performs a second measurement to estimate the excess
message m′, and in the absence of his resource, he aborts. The gentle measurement
lemma [84, 85] guarantees that there is no collapse after the first measurement, i.e., the
output state remains nearly unchanged.

3.3.2 Degraded Channels

For the class of degraded channels, we establish a multi-letter capacity formula.

Theorem 3.2. Let NA→BE be a degraded quantum wiretap channel. The capacity
region with unreliable entanglement assistance under interception satisfies

CSI−EA∗(N ) =
∞∪

n=1

1
n
RSI−EA∗(N ⊗n) . (3.14)

The proof of Theorem 3.2 is given in Sec. 5.2.

3.4 Examples

3.4.1 Amplitude Damping Channel

Consider the amplitude damping channel, specified by the input-output relation:

LA→B(ρ) = K0ρK
†
0 +K1ρK

†
1 , (3.15)

with K0 = |0⟩⟨0| +
√

1 − γ |1⟩⟨1| , K1 = √
γ |0⟩⟨1| , (3.16)

where γ ∈
[
0, 1

2

]
.

The amplitude damping channel has a Stinespring representation, such that the
complementary channel, from Alice to Eve, is an amplitude damping channel as well,
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Figure 3.3: Achievable rate region for the amplitude damping channel with unreliable
entanglement assistance under interception, for γ = 0.3.

with a parameter (1 − γ) [86, Sec. II-A]. The amplitude damping channel is de-
graded. The secrecy capacity of the channel, without assistance, is given by CS(N ) =
maxq∈[0,1] h2((1 − γ)q) − h2(γq) (see [86, Eq.(36)]). The entanglement-assisted capac-
ity, without secrecy, is given by CEA(L) = maxp∈[0,1] h2(p) + h2((1 − γ)p) − h2(γp) (see
[86, Eq. (38)]), and it can be achieved with a state of the form |ϕ1⟩ =

√
1 − p |0⟩ ⊗

|0⟩ + √
p |1⟩ ⊗ |1⟩.

We numerically compute achievable regions for each setting, using the following
ensemble. Define |uβ⟩ =

√
1 − β |0⟩ |0⟩ +

√
β |ϕ1⟩, and set |ϕG1G2⟩ = 1

∥uβ∥ |uβ⟩, pX =

(1 − q, q), and F (x)(ρ) = Σx
XρΣx

X , x ∈ {0, 1}, where ΣX is the Pauli bit-flip operator.
We note that β = 0 yields the optimal choice without assistance, whereas β = 1 is
optimal when entanglement assistance is available reliably.

The resulting achievable region for the interception model, is indicated by the solid
blue line in Figure 3.3. For comparison, the dashed line indicates the region that is
achieved through a classical mixture of optimal strategies, for communication with and
without entanglement assistance. We observe that time division is impossible because
the use of entanglement can lead to a leakage of guaranteed information. As can be seen
in Figure 3.3, the point (R,R′) = (0, 0.648) is disconnected from the set of boundary
points for which R > 0.

3.4.2 Erasure Channel

Consider the qubit erasure channel, specified by

LA→B(ρ) = (1 − ϵ)ρ+ ϵ |e⟩⟨e| , (3.17)
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where |e⟩ is an erasure state that is orthogonal to the qubit space and ϵ ∈
[
0, 1

2

]
. The

channel has the following isometric extension,

NA→BE(ρ) = V ρV † , (3.18)

where the isometry V : HA → HB ⊗ HE is given by V =
√

1 − ϵ1A→B ⊗ |e⟩E +
√
ϵ1A→E ⊗ |e⟩B. The erasure channel is degraded as well.
The capacity of the quantum erasure channel without entanglement assistance

and without secrecy constraints is given by C(N ) = 1 − ϵ [87]. When entangle-
ment assistance is available, the entanglement-assisted capacity increases to CEA(N ) =
2(1 − ϵ) [17]. Under secrecy constraints and without assistance, the secrecy capacity
drops to CS(N ) = 1−2ϵ [21, Proposition. 24.7.1]. In the setting with secrecy constraints
and entanglement assistance, the capacity becomes CSI-EA(N ) = 2(1 − 2ϵ).

In our model of security with unreliable entanglement assistance under intercep-
tion, we obtain a single-letter capacity characterization. The capacity in this case can
be achieved through atime-division strategy, dividing the block between two secure
schemes, either completely relying on entanglement assistance, or not at all. Thereby,
there is no gain beyond the straightforward time-sharing approach.

Theorem 3.3. Time division is optimal for the qubit erasure channel with unreliable
entanglement assistance and security under interception, i.e,

CSI−EA∗(N ) =
∪

0≤λ≤1

{
(R,R′) : R ≤ (1 − λ)(1 − 2ϵ)

R′ ≤ 2λ(1 − 2ϵ)

}
. (3.19)

Proof. Achievability follows by a classical mixture of the optimal strategies, with and
without entanglement assistance. That is, set |ϕG1G2⟩ to be an EPR state, pX =
(1 − λ, λ), and F (x)(ρ) as in the previous example. To show the converse part, let
(R,R′) ∈ 1

nRSI-EA*(N ⊗n), and let Z be an erasure flag. We have

R ≤ 1
n

(I(X;Bn)ω − I(X;EnGn
2 )ω)

= 1
n

(I(X;Bn|Z)ω − I(X;EnGn
2 |Z)ω)

= 1
n

((1 − ϵ)I(X;An)ω − ϵI(X;AnGn
2 )ω)

≤ 1
n

(1 − 2ϵ)I(X;An)ω

≤ (1 − 2ϵ)
(

1 − 1
n
H(An|X)ω

)
. (3.20)

The first inequality follows from Theorem 3.2, using the fact that the erasure channel
is degraded, allowing for a multi-letter secrecy capacity formula. The first equality
follows from the fact that there are isometries mapping Bn and En to BnZ and EnZ,
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respectively. The second equality follows from the definition of the erasure channel, and
because when there is an erasure, X is independent of the erasure state. The second
inequality holds because mutual information is non-negative. The last inequality is due
to the fact that I(X;An)ω = H(An)ω −H(An|X)ω ≤ n−H(An|X)ω.

Similarly,

R′ ≤ 1
n

(1 − 2ϵ)I(Gn
2 ;An|X)ω ≤ 1

n
(1 − 2ϵ)2H(An|X)ω . (3.21)

The first inequality follows from the same initial steps as the former, and the second
holds since I(A;B)ρ ≤ 2H(A)ρ in general. The converse part follows by defining
λ ≡ 1

nH(An|X)ω.

3.5 Discussion

3.5.1 Operational Meaning of Interception

At a first glance, the assumption in the model of Qi et al. [6], presented in Sec. 2.5,
that Eve has access to the receiver’s entangled resource may appear to contradict the
no-cloning theorem, which prohibits the duplication of an unknown quantum state [70].
However, this assumption can be given operational meaning through our interception
model. In our setting, Eve’s access to the entanglement is interpreted as an interception:
either Bob or Eve possesses the entangled share, but not both. This interpretation
avoids any violation of the no-cloning principle and provides a physical justification
for the scenario considered by Qi et al. [6]. The capacity in their model can thus be
interpreted as the maximal value of the excess rate, i.e.,

CSI-EA(N ) ≡ max
{
R′ : (0, R′) ∈ CSI-EA*(N )

}
.
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3.5.2 Quantum Superposition Coding Technique

The analysis modifies the quantum superposition coding (SPC) scheme from [7]. The
quantum SPC scheme was inspired by the classical SPC technique [88, 22]. Originally,
the classical SPC scheme consists of a collection of sequences un(m) and vn(m′), where
m and m′ are messages that are associated with different users in a multi-user network.
In this scheme, the sequences un(m) are referred to as cloud centers, while vn(m′) are
displacement vectors. The resulting codewords, denoted as cn(m,m′) = un(m)+vn(m′)
are referred to as satellites.

In analogy, quantum SPC [7] uses quantum operations that map quantum cloud
centers to quantum satellite states. Suppose that Alice and Bob share an entangled
state ϕ a priori. Each cloud center is associated with a classical sequence xn(m), and at
the center of each cloud there is a state, σm = F (xn(m))(ϕ), where F (xn(m)) is a quantum
encoding map that is conditioned on xn(m). Applying random Pauli operators that
encode the message m′ takes us from the cloud center to a satellite ρm,m′ on the cloud
that depends on both messages, m and m′. The channel input is thus the satellite
state. See Figure 3.4. Bob decodes in two steps.

Initially, Bob aims to recover the cloud, i.e., he estimates the message m. If the
entanglement resource is unavailable to Bob at this stage, the decoding process con-
cludes after the first step. However, if Bob has access to entanglement assistance, he
proceeds to the second step to decode the satellite associated with message m′. It was
later shown that quantum SPC is optimal for entanglement-breaking quantum channels
with unreliable entanglement assistance [57].

In our model, Alice inserts local randomness elements k and k′ to confuse Eve.
Effectively, she encodes the pair (m, k) and (m′, k′), instead of m and m′, respectively.
Hence, the analysis in the secure setting is more involved compared to the basic quan-
tum SPC from [7].

3.5.3 Semantic Security and Maximal Error Criterion

Our model imposes two stringent requirements: semantic security and the maximal
error criterion. These are notably stronger than the more common standards in clas-
sical and quantum information theory. In particular, most achievability results are
typically derived under the average error probability criterion [21, 4, 89], which allows
for more tractable analysis using random coding arguments and expectation bounds.
By contrast, maximal error probability requires reliable decoding uniformly over all
messages and is generally more challenging to satisfy. The requirement of semantic
security further strengthens the confidentiality guarantee beyond standard security no-
tions, ensuring indistinguishability of message distributions. Consequently, our results
establish a stronger form of security and reliability compared to traditional frameworks.
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Chapter 4

Security Under Passive
Eavesdropping

In this chapter, we present our results on security under passive eavesdropping. We
consider secure communication with unreliable entanglement assistance, where the as-
sistance is unreliable because it may be lost to the environment. However, as opposed
to the interception model, the eavesdropper in this setting does not have access to the
lost entanglement. This model resembles scenarios in quantum key distribution (QKD)
settings where not all losses are attributed to the eavesdropper, as addressed by Graifer
et al. [90].

We establish a regularized capacity formula for general quantum wiretap channels.
This stands in contrast to the interception model, where we derived a regularized
capacity formula only for the class of degraded channels.

To demonstrate our results, we analyze the quantum erasure channel and the ampli-
tude damping channel. For the erasure channel, we show that time-division is optimal
and derive a single-letter formula. For the amplitude damping channel, we present an
achievable region that outperforms time-division.

4.1 Passive Model

We consider secure communication with unreliable entanglement assistance, under the
assumption that Eve is passive and cannot intercept the entangled resource. In this
model, the entanglement assistance is unreliable because it may be lost to the environ-
ment.

The coding strategy mirrors that of the interception model. Alice encodes two mes-
sages, at rates R and R′, without knowing whether Bob has access to the entanglement
resource. In contrast, Bob knows whether the resource is available to him.

If the entangled resource is unavailable, Bob decodes only the first message, achiev-
ing a rate of R. Whereas, if the entanglement is available, Bob decodes both messages,
attaining a total rate of R+R′. The rate R thus corresponds to guaranteed information,
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Figure 4.1: Unreliable entanglement assistance under the passive model, where the
resource may get lost to the environment. We model this with an imaginary switch.
There are two scenarios: (a) “Left”: Bob decodes both m and m′. (b) “Right”: Bob
decodes m alone.

while R′ represents the excess information enabled by entanglement assistance. In this
way, the communication rate is adapted to the presence or absence of entanglement
assistance.

4.2 Coding Definitions

We now present the coding definitions for secure communication with unreliable en-
tanglement assistance, under the model of a passive eavesdropper. The definitions
closely follow those of the interception model, with the key difference being the secu-
rity requirement. In this model, the pessimistic case assumes that the entanglement
assistance is unavailable to both Bob and Eve. Consequently, neither party can use the
entanglement resource to decode the message, which simplifies the security condition
compared to the interception scenario.
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4.2.1 Coding with Unreliable Assistance

Before communication begins, the legitimate parties try to generate entanglement as-
sistance. In the optimistic case, Alice and Bob have entanglement resources, Gn

A and
Gn

B, respectively (see Figure 4.1(a)). However, in the pessimistic case, the assistance
gets lost to the environment (see Figure 4.1(b)).

Definition 4.2.1. A (2nR, 2nR′
, n) secrecy code with unreliable entanglement assis-

tance under the passive-eavesdropper model consists of:

• Two message sets {1, . . . , 2nR} and {1, . . . , 2nR′}, where 2nR and 2nR′ are assumed
to be integers.

• A pure entangled state ΨGn
A,Gn

B
.

• A collection of encoding maps F (m,m′)
Gn

A−→An : S (HGn
A

) → S (H⊗n
A ) form ∈ {1, . . . , 2nR}

and m′ ∈ {1, . . . , 2nR′}.

• Two decoding POVMs DBnGn
B

= {Dm,m′} and D∗
Bn = {D∗

m}.

We denote the code by (Ψ,F ,D,D∗).

As in Section. 3.2, Alice prepares

ρm,m′

AnGn
B

=
(
F (m,m′)

Gn
A→An ⊗ id

)(
ΨGn

AGn
B

)
,

sends An through N ⊗n
A→BE to obtain ρm,m′

BnEnGn
B
, and Bob receives Bn (and Gn

B only if
the assistance was not lost).

4.2.2 Decoding and Error Criteria

Bob’s two decoding strategies and their error probabilities P (n)
e,max(Ψ,F ,D) and

P
∗(n)
e,max(Ψ,F ,D∗) are identical to (3.5) and (3.6), respectively.

4.2.3 Security Criteria Under Passive Eavesdropper

The passive model assumes that Eve does not gain access to the resource Gn
B. In the

pessimistic case, the entanglement resource is lost to the environment, and neither Bob
nor Eve can benefit from it. See Figure 4.1(b). The security level with respect to a
constant state θEn is given by,

∆PE(Ψ,F , θEn) = max
m,m′

1
2

∥∥∥ρm,m′

En − θEn

∥∥∥
1

(4.1)

(cf. (3.7)). The security requirement for the passive model can thus be viewed as a
relaxation of the one we had in the interception model.

The subscript ‘PE’ stands for a passive eavesdropper.
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4.2.4 Capacity Region

Definition 4.2.2. A (2nR, 2nR′
, n, ϵ, δ) secrecy code under the passive model satisfies

max
{
P (n)

e,max, P
∗(n)
e,max

}
≤ ϵ, ∆PE(Ψ,F , θEn) ≤ δ

for some θEn .
A rate pair (R,R′) is called achievable if ∀ϵ, δ > 0 and sufficiently large n there exists

a (2nR, 2nR′
, n, ϵ, δ) code. The secrecy capacity region with unreliable entanglement

assistance under a passive eavesdropper, denoted CPE-EA∗(N ), is the closure of all
achievable pairs.

4.3 Results

Here, we consider the model of a passive eavesdropper, where Eve cannot intercept the
assistance. The entangled resource is unreliable as it may get lost to the environment.

Define:

RPE-EA*(N ) ≡
∪

pX ,φG1G2 ,F(x)

{
(R,R′) : R ≤ [I(X;B)ω − I(X;E)ω]+

R′ ≤ I(G2;B|X)ω

}
(4.2)

where ωXG2BE is as in (3.12).
Our main result for the passive model is given below.

Theorem 4.1. The region RPE−EA∗(N ) is achievable with unreliable entanglement
assistance and a passive eavesdropper. That is, the capacity region is bounded by

CPE−EA∗(N ) ⊇ RPE−EA∗(N ) . (4.3)

Furthermore, the capacity region with unreliable entanglement assistance and a passive
eavesdropper satisfies

CPE−EA∗(N ) =
∞∪

n=1

1
n
RPE-EA*(N ⊗n) . (4.4)

Notice that here we have a regularized formula for a general wiretap channel, and not
just degraded channels (cf. Theorem 3.2 and Theorem 4.1).

The analysis follows similar steps to those in Sections 5.1-5.2, with a few simplifi-
cations arising from the relaxation of the security assumption, as Eve is not granted
access to the entangled resource in this model. The full details are provided in Sec. 5.3.

Remark. In this model, Eve does not have access to the entangled resource. Hence,
Alice can employ time-padding to encode the excess message m′ . This method, for
example, ensures that Eve cannot decode the excess message without access to the
resource. As a result, the bound for R′ excludes Eve’s system.
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Figure 4.2: Achievable rate regions for the amplitude damping channel with unreliable
entanglement assistance for γ = 0.3.

4.4 Examples

4.4.1 Amplitude Damping Channel

Consider the amplitude damping channel, along with the encoding scheme defined in
Section 3.4.1.

The resulting achievable regions, for both the interception and passive models, are
indicated by the solid lines in Figure 4.2, in blue and red, respectively. For comparison,
the dashed lines indicate the regions that are achieved through a classical mixture of
optimal strategies, for communication with and without entanglement assistance.

We observe that the achievable region under the passive model strictly contains that
of the interception model. This is expected, as the security requirements are weaker
in the passive case. In particular, the achievable values of R′ are higher, which reflects
the fact that in the passive model, the excess message m′ can be securely transmitted
whenever the entanglement assistance is available, without any rate penalty, as seen in
(4.2).

Furthermore, while time-sharing is not possible in the interception setting, we ob-
serve that in the passive model, our coding scheme outperforms such time division,
yielding a strictly larger region.

4.4.2 Erasure Channel

Consider the qubit erasure channel. In the passive model, the capacity region is also
achieved by a single-letter time-sharing formula, as stated in the following theorem:

Theorem 4.2. Time division is optimal for the qubit erasure channel with unreliable
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entanglement assistance and a passive eavesdropper, i.e,

CPE−EA∗(N ) =
∪

0≤λ≤1

{
(R,R′) : R ≤ (1 − λ)(1 − 2ϵ)

R′ ≤ 2λ(1 − ϵ)

}
. (4.5)

Achievability follows by a classical mixture of the optimal strategies, the strategy
for unassisted secure capacity, and the strategy for assisted capacity without a security
demand. The converse follows similar arguments as in (3.20).
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Chapter 5

Analysis

In this chapter, we present the proofs of the main theorems for both the interception and
passive models. Section 5.1 contains the proof of Theorem 3.1, which establishes the
inner bound for the interception model. Section 5.2 provides the converse proof for the
degraded case (Theorem 3.2). Finally, Section 5.3 presents the proof of Theorem 4.1,
corresponding to the passive model.

5.1 Proof of Theorem 3.1 (Achievability)

In this section, we prove Theorem 3.1, which establishes the inner bound on the capacity
region for the interception model over general quantum wiretap channels.

Consider secure communication with unreliable entanglement assistance under in-
terception. We show that every secrecy rate pair (R,R′) in the interior of RSI-EA*(N ) is
achievable. Suppose Alice wishes to send a pair of messages, (m,m′) ∈ {1, . . . , 2nR} ×
{1, . . . , 2nR′}. In the optimistic case, entanglement is successfully generated prior to
the transmission of information, hence Bob can decode while using the entangled re-
source, which is not available to Eve. However, in the pessimistic case in this model,
Eve intercepts the resource, in which case, Bob must decode without it.

The coding scheme modifies the quantum SPC construction from [7]. Here, we
insert local randomness elements, which will be denoted in the analysis as k, k′, and
are used in the encoding of each message in order to confuse Eve. Our secrecy analysis
relies on the quantum covering lemma [73], as stated in Lemma 2.7.1.

For semantic security, our proof modifies the methods of Cai [83, 12], originally
applied to multiple-access channels (without secrecy), using random message permuta-
tions.

Before we state the proof, we make the following observations. First, we note that
pure states |ϕG1G2⟩ are sufficient to exhaust the union in the rate region formula in
(3.10), since G1 can be extended to include a purifying reference system. In addition,
we can restrict the proof to isometric encoding maps, F (x)

G1→A for x ∈ X , by similar
arguments as in [7]. To see this, consider using a collection of encoding channels,
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F (x)
G1→A′ for x ∈ X , for transmission via N̂A′→BE . Every quantum channel F (x)

G1→A′ has
a Stinespring representation, with an isometry F (x)

G1→A′A0
. Since it is an encoding map,

we may think of A0 as Alice’s ancilla. Then, let A ≡ (A′, A0) be the augmented channel
input. We are effectively coding over the channel NA→BE , where NA→BE(ρA′A0) =
N̂A′→BE(TrA0(ρA′A0)), using the isometric map F (x)

G1→A. From this point, we will focus
on the quantum wiretap channel NA→BE and use the isometric encoding map F (x)

G1→A.

5.1.1 Notation

We introduce the following notation. For every x ∈ X , consider the input state

∣∣ψx
AG2

⟩
= (F (x)

G1→A ⊗ 1) |ϕG1G2⟩ , (5.1)

which results in the output

ωx
BEG2 = (NA→BE ⊗ id)(ψx

AG2) . (5.2)

Then, consider a Schmidt decomposition,

∣∣ψx
AG2

⟩
=
∑
y∈Y

√
pY |X(y|x)

∣∣∣ξy|x
⟩

⊗
∣∣∣ξ′

y|x

⟩
(5.3)

where pY |X is a conditional probability distribution. We will often use the notation∣∣ψxn⟩ =
⊗n

i=1 |ψxi⟩.
Next, let us define a unitary operator that will be useful in the definition of our

encoder. Denote the Heisenberg-Weyl operators, on a qudit of dimension d, by

Σ(a, b) = Σa
XΣb

Z , for a, b ∈ {0, . . . , d− 1} , (5.4)

where ΣX =
∑d−1

k=0 |k + 1 mod d⟩ ⟨k| and ΣZ =
∑d−1

k=0 exp
{

2πik
d

}
|k⟩⟨k|.

Let xn ∈ X n be a given sequence. For every conditional type t on Yn given xn,
we will apply an operator of the form (−1)ctΣ(at, bt) for at, bt ∈ {0, . . . , dt − 1} and
ct ∈ {0, 1}, where dt is the size of the corresponding conditional type class. Then,
define the unitary

U(γ) =
⊕

t

(−1)ctΣ(at, bt) (5.5)

corresponding to a vector γ = ((at, bt, ct)t), where the direct sum is over all conditional
types. Furthermore, let Γxn denote the set of all such vectors γ.

5.1.2 Code Construction

We now describe the construction of a secrecy code with unreliable entanglement assis-
tance. Let |ϕG1G2⟩⊗n be the assistance that Alice and Bob would like to share. We also
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let R0 and R′
0 denote the rates of the Alice’s local random elements, where 0 < R0 < R

and 0 < R′
0 < R′.

Classical Codebook Generation

Select 2n(R+R0) sequences independently at random,

{
xn(m, k)

}
m∈{1,...,2nR} , k∈{1,...,2nR0 } , (5.6)

each i.i.d. ∼ pX . Then, for every m and k, select 2n(R′+R′
0) conditionally independent

sequences at random,

{
γ(m′, k′|xn(m, k)

}
m′∈{1,...,2nR′ } , k′∈{1,...,2nR′

0 }
, (5.7)

each uniformly distributed over Γxn(m,k). The codebooks are publicly revealed, to Alice,
Bob, and Eve.

Encoding

Alice chooses a message pair (m,m′). To ensure secrecy, Alice further selects local
randomness elements, k and k′, chosen uniformly at random, from {1, . . . , 2nR0} and
{1, . . . , 2nR′

0}, respectively. To encode the first message m, she applies the encoding
map

F
(xn)
Gn

1 →An =
n⊗

i=1
F

(xi)
G1→A , with x

n ≡ xn(m, k) , (5.8)

on her share of the entangled state |ϕG1G2⟩⊗n. The resulting input state is
∣∣∣ψxn

AnGn
2

⟩
(see (5.1)).

To encode the excess messagem′, she applies the unitary U(γ), with γ ≡ γ(m′, k′|xn).
This yields the input state ∣∣∣χγ,xn

AnGn
2

⟩
= (U(γ) ⊗ 1)

∣∣∣ψxn

AnGn
2

⟩
. (5.9)

Alice transmits An through n uses of the wiretap channel NA→BE . The output is

ργ,xn

BnEnGn
2

= (N ⊗n
A→BE ⊗ id)(χγ,xn

AnGn
2
) . (5.10)

Decoding

Bob has two decoding strategies. If Bob holds the entangled resource Gn
2 , then he

decodes both messages, m and m′. However, if Eve has stolen Gn
2 , then Bob decodes

the message m alone. Specifically, Bob decodes in two steps. First, he performs a
measurement, using a POVM {Λm,k}, which will be described later, in order to estimate
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the message m. If he has access to the entanglement resource Gn
2 , then he continues to

decode the message m′ using a second POVM {Υm′,k′}, which will also be described
later.

5.1.3 Code Properties

Before we go into the error analysis, we show that Alice’s operations for encoding the
second message m′ can be effectively reflected to Bob’s side.

Using the schmidt decomposition in (5.3), we have∣∣∣ψxn

AnGn
2

⟩
=

∑
yn∈Yn

√
PY n|xn(yn|xn)

∣∣∣ξyn|xn

⟩
⊗
∣∣∣ξ′

yn|xn

⟩

for xn ∈ X n.

Now, we can partition the sum over yn ∈ Yn according to conditional type classes
Tn(t|xn), where t ∈ Pn(Y). That is, we write:∣∣∣ψxn

AnGn
2

⟩
=

∑
t∈Pn(Y)

∑
yn∈Tn(t|xn)

√
PY n|xn(yn|xn)

∣∣∣ξyn|xn

⟩
⊗
∣∣∣ξ′

yn|xn

⟩
=

∑
t∈Pn(Y)

√
P (t|xn) · 1√

|Tn(t|xn)|
∑

yn∈Tn(t|xn)

∣∣∣ξyn|xn

⟩
⊗
∣∣∣ξ′

yn|xn

⟩
=

∑
t∈Pn(Y)

√
P (t|xn) |Φt⟩ , (5.11)

where

P (t|xn) =
∑

yn∈Tn(t|xn)
PY n|xn(yn|xn), (5.12)

|Φt⟩ = 1√
|Tn(t|xn)|

∑
yn∈Tn(t|xn)

∣∣∣ξyn|xn

⟩
⊗
∣∣∣ξ′

yn|xn

⟩
. (5.13)

Note that |Φt⟩ is a maximally entangled state on the product of the typical subspaces
associated with Tn(t|xn).

Using the ricochet property [91, Eq. (17)]

(U ⊗ id) |ΦAB⟩ = (id ⊗ UT ) |ΦAB⟩ . (5.14)

We can then reflect the unitary operation to the entangled resource at the receiver
along with the environment:∣∣∣χγ,xn

AnGn
2

⟩
= (1 ⊗ UT (γ))

∣∣∣ψxn

AnGn
2

⟩
. (5.15)
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Thus, we can write the output state as follows:

ργ,xn

BnEnGn
2

= (N ⊗n
A→BE ⊗ id)(χγ,xn

AnGn
2
)

= (N ⊗n
A→BE ⊗ id)((1 ⊗ UT (γ))ψxn

AnGn
2
(1 ⊗ U∗(γ)))

= (1 ⊗ UT (γ))
[
(N ⊗n

A→BE ⊗ id)(ψxn

AnGn
2
)
]

(1 ⊗ U∗(γ))

= (1 ⊗ UT (γ))ωxn

BnEnGn
2
(1 ⊗ U∗(γ)) (5.16)

where ωx
BEG2

is as in (5.2).

5.1.4 Error Analysis

We now analyze the probability for erroneous decoding by Bob, for the guaranteed
message and the excess message. Let α > 0 be arbitrarily small. We analyze the error
probability in each scenario.

Eve has stolen the resource

We begin with the pessimistic case, where Bob does not have the entangled resource
Gn

2 , as it was stolen by Eve. Bob’s reduced state is given by

ργ,xn

Bn = TrEnGn
2
((1 ⊗ UT (γ))ωxn

BnEnGn
2
(1 ⊗ U∗(γ)))

= ωxn

Bn . (5.17)

The second equality follows from trace cyclicity, as U∗UT = 1. Observe that the state
does not depend on γ. That is, the reduced output state is not affected by the encoding
of m′. Therefore, based on the HSW Theorem [1, 2], there exists a decoding POVM
D∗

Bn = {Λm,k} such that

E

 1
2n(R+R′)

∑
m,m′

P ∗(n)
e (Ψ,F ,D∗|m,m′)

 ≤ α , (5.18)

for sufficiently large n, provided that

R+R0 < I(X;B)ω − ϵ1 . (5.19)

Bob has entanglement assistance

We move to the optimistic case, where Eve has failed to intercept Gn
2 , hence Bob holds

the entangled resource. Based on the analysis above, Bob’s first measurement recovers
the correct guaranteed messagem, with a high probability. In general, upon performing
a measurement, it may lead to a state collapse. Denote the post-measurement state,
after the first measurement, by ρ̃γ,xn

BnGn
2
. According to the gentle measuring lemma

[84, 85], this state is close in trace distance to the original state, before the measurement
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took place, as

1
2

∥∥∥ρ̃γ,xn

BnEnGn
2

− ργ,xn

BnEnGn
2

∥∥∥ ≤ 2−n 1
2 (I(X;B)ω−R−R0−ϵ1) , (5.20)

which tends to zero if (5.19) holds. Hence, we may focus our error analysis on the
original state, before the measurement:

ργ,xn

BnGn
2

= TrEn(ργ,xn

BnEnGn
2
)

= TrEn((1 ⊗ UT (γ))ωxn

BnEnGn
2
(1 ⊗ U∗(γ)))

= (1 ⊗ UT (γ))ωxn

BnGn
2
(1 ⊗ U∗(γ)) (5.21)

where γ ≡ γ(m′, k′|xn), and ωxn

BnGn
2

= TrEn(ωxn

BnEnGn
2
). Based on the arguments in

Appendix A.1, which are based on the quantum packing lemma in Lemma 1.8.1, there
exists a POVM {Υm′,k′|xn} such that the expected error probability is bounded by

E

 1
2n(R+R′)

∑
m,m′

Pe(Ψ,F ,D|m,m′)

 ≤ α , (5.22)

for sufficiently large n, provided that

R′ +R′
0 < I(G2;B|X)ω − ϵ2 . (5.23)

5.1.5 Secrecy Analysis

We note that secrecy is required whether Eve has intercepted Bob’s entanglement re-
source Gn

2 or not.

Consider Eve’s joint state, including both her output and the entanglement resource,
which could be in her possession. Similarly, as before, we express Eve’s joint state as

ργ,xn

EnGn
2

= (1 ⊗ UT (γ))ωxn

EnGn
2
(1 ⊗ U∗(γ)) (5.24)

where ωxn

EnGn
2

= TrBn(ωxn

BnEnGn
2
) (see (5.2)).

Next, we analyze the secrecy for each of Alice’s messages. Denote

∆m′|m,k(C ) = 1
2

∥∥∥∥∥∥∥
1

2nR′
0

2nR′
0∑

k′=1
ρ

γ(m′,k′|xn),xn

EnGn
2

− ζxn

EnGn
2

∥∥∥∥∥∥∥
1

,

∆∗
m(C ) = 1

2

∥∥∥∥∥∥ 1
2nR0

2nR0∑
k=1

ωxn

EnGn
2

− ω⊗n
EG2

∥∥∥∥∥∥
1

, (5.25)

with xn ≡ xn(m, k), and ζxn

EnGn
2

= 1
|Γxn |

∑
γ∈Γxn ρ

γ,xn

EnGn
2
.
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Guaranteed information indistinguishability bound

We apply the quantum covering lemma [73], Lemma 2.7.1, with the ensemble below,

{pXn(xn), ωxn

EnGn
2
}xn∈X n , (5.26)

and the following typical projectors, Π = Π(n)
δ (ωEnGn

2
) and Πxn = Π(n)

δ (ωEnGn
2
|xn). In

Appendix A.2, we show that the conditions of Lemma 2.7.1 are met for every m. Thus,

Pr
(
∆∗

m(C ) > e− λ
2 n
)

≤ exp
{

−2n(R0−I(X;EG2)ω−ϵ4)
}
. (5.27)

for sufficiently large n. The last bound tends to zero in a double exponential rate,
provided that

R0 > I(X;EG2)ω + ϵ4 . (5.28)

Excess information indistinguishability bound

Let xn ≡ xn(m, k) be fixed. Consider the uniform ensemble,{
p(γ|xn) = 1

|Γxn |
, ργ,xn

EnGn
2

}
γ∈Γxn

. (5.29)

Using the quantum covering lemma, Lemma 2.7.1 we show in Appendix A.2 that Alice’s
encoding simulates the average state,

ζxn

EnGn
2

= 1
|Γxn |

∑
γ∈Γxn

ργ,xn

EnGn
2

(5.30)

using the code projectors:

Π = Π(n)
δ (ωEn |xn) ⊗ Π(n)

δ (ωGn
2
|xn) ,

Πγ = (I ⊗ UT (γ))Π(n)
δ (ωEnGn

2
|xn)(I ⊗ U∗(γ)) .

By Lemma 2.7.1, for every m′ ∈ {1, . . . , 2nR′} and sufficiently large n,

Pr
(
∆m′|m,k(C ) > e− µ

2 n
)

≤ exp
{

−2n(R′
0−I(G2;E|X)ω−ϵ5)

}
, (5.31)

which tends to zero in a double exponential rate, provided that

R′
0 > I(E;G2|X)ω + ϵ5 . (5.32)

69



5.1.6 De-randomization

We now show that there exists a deterministic codebook under the requirements of
average error probabilities and maximal indistinguishability. Consider the following
error events,

A1 = { 1
2n(R+R′)

∑
m,m′

Pe(C |m,m′) >
√
α} , (5.33)

A2 = { 1
2n(R+R′)

∑
m,m′

P ∗
e (C |m,m′) >

√
α} , (5.34)

B = {∃(m,m′) : 1
2

∥∥∥ρm,m′

EnGn
B

− ω⊗n
EG2

∥∥∥
1
> δ} . (5.35)

By the union bound,

Pr(A0 ∪ A1 ∪ B) ≤ Pr(A0) + Pr(A1) + Pr(B) . (5.36)

By Markov’s inequality, Pr(Aj) ≤
√
α (see (5.18), (5.22)). As for the last term, by

the triangle inequality,

1
2

∥∥∥ρm,m′

EnGn
B

− ω⊗n
EG2

∥∥∥
1

= 1
2

∥∥∥∥∥∥∥
1

2n(R0+R′
0)

2nR0∑
k=1

2nR′
0∑

k′=1
ρ

γ(m′,k′|xn),xn

EnGn
B

− ω⊗n
EG2

∥∥∥∥∥∥∥
1

≤ 1
2

∥∥∥∥∥∥∥
1

2nR0

2nR0∑
k=1

 1
2nR′

0

2nR′
0∑

k′=1
ρ

γ(m′,k′|xn),xn

EnGn
B

− ζxn

EnGn
2


∥∥∥∥∥∥∥

1

+ 1
2

∥∥∥∥∥∥ 1
2nR0

2nR0∑
k=1

ζxn

EnGn
2

− ω⊗n
EG2

∥∥∥∥∥∥
1

≤ 1
2nR0

2nR0∑
k=1

∆m′|m,k(C ) + 1
2

∥∥∥∥∥∥ 1
2nR0

2nR0∑
k=1

ζ
xn(m,k)
EnGn

2
− ω⊗n

EG2

∥∥∥∥∥∥
1

. (5.37)

If we were to remove the encoding of γ, then Eve’s output would have been ωxn

EnGn
2
,

instead of ζx
EnGn

2
. Therefore, by trace monotonicity under quantum operations, the last

trace norm is bounded by ∆∗
m(C ) (see (5.25)). Thus,

Pr
(1

2

∥∥∥ρm,m′

EnGn
B

− ω⊗n
EG2

∥∥∥
1
> δ

)

≤ Pr

 1
2nR0

2nR0∑
k=1

∆m′|m,k(C ) ≥ δ

2

+ Pr
(

∆∗
m(C ) > δ

2

)

≤ Pr
(

∃k : ∆m′|m,k(C ) ≥ δ

2

)
+ exp {−2nϵ6}

≤ exp {−2nϵ7} (5.38)

hence, Pr(B) ≤ 2n(R0+R) ·exp {−2nϵ7} ≤ exp
{

−2
1
2 nϵ7

}
, for some ϵ7 > 0 and sufficiently

large n. Hence, we deduce from (5.19), (5.23), (5.28), (5.32), that there exists a deter-
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ministic codebook C such that the message-average error and indistinguishability tend
to zero, if

R < I(X;B)ω − I(X;EG2)ω − ϵ1 − ϵ4 ,

R′ < I(G2;B|X)ω − I(G2;E|X)ω − ϵ2 − ϵ5 .

5.1.7 Semantic Security and Maximal Error Criteria

We now complete the analysis for the maximum criteria. The proof modifies the meth-
ods of Cai [83, 12], originally applied to multiple-access channels.

Guaranteed information (expurgation)

Consider the semi-average error probability,

e(m) ≡ 1
2nR′

2nR′∑
m′=1

Pe(C |m,m′) . (5.39)

Based on the analysis above, the average of {e(m)}2nR

m=1 is bounded by α1/2. Therefore,
at most a fraction of η = α1/4 of the messagesm have e(m) > η. Then, we can expurgate
the worst η · 2nR messages, and the corresponding codewords. The guaranteed rate of
the expurgated code is R− 1

n log
(
(1 − η)−1), which tends to R as n → ∞. Denote the

expurgated message set by Mexp.

Excess information (message permutation)

We now construct a new code to satisfy the maximum criteria. The transmission
consists of two stages. In the first stage, Alice selects a uniform “key” L ∈ {1, . . . , n2}.
Assuming R′ > 0, Alice can send L with negligible rate loss, such that the message-
average error probabilities vanish. In the second stage, Alice chooses a permutation πL

on the message set {1, . . . , 2nR′}, and encodes the message pair (m0,m
′
0) = (m,πL(m′))

using the codebook C . Bob obtains an estimate, L̂ and (m̂0, m̂
′
0), and then declares

his estimation for the original messages as m̂ = m̂0 and m̂′ = π−1
L̂

(m̂′
0).

Based on our previous analysis, the message-average error probability in the first
stage is bounded by

Pr
(
L̂ ̸= L

)
= 1
n2

n2∑
ℓ=1

Pe(C |1, ℓ) ≤
√
α . (5.40)

Now, consider the second block. Let Π1, . . . ,Πn2 be an i.i.d. sequence of random
permutations, uniformly distributed on the permutation group on the excess message
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set {1, . . . , 2nR′}. Denote the random codebook by Π(C ). For a given m′,

Pr
(
Πℓ′(m′) = m̄′) = (2nR′ − 1)!

(2nR′)!
= 1

2nR′ (5.41)

for all m̄′ ∈ {1, . . . , 2nR′} and ℓ′ ∈ {1, . . . , n2}. Thus, for every message pair (m,m′) ∈
Mexp × {1, . . . , 2nR′},

E
[
P (n)

e (Π(C )|m,m′)
]

=
∑
m̄′

Pr
(
Πℓ′(m′) = m̄′)P (n)

e (C |m, m̄′)

= 1
2nR′

∑
m̄′

P (n)
e (C |m, m̄′) = e(m) ≤ λ . (5.42)

Now, by the Chernoff bound [83, Lemma 3.1],

Pr

 1
n2

n2∑
l′=1

P (n)
e (Π(C )|m.m′) > 4λ

 < e−λn2
. (5.43)

Therefore, the probability that, for some (m,m′), 1
n2
∑n2

l′=1 P
(n)
e (Π(C )|m,m′) > 4λ,

tends to zero in a super-exponential rate by the union bound. We deduce that there
exists a realization (π1, . . . , πn2) such that

P (n)
e (π(C )|m,m′) = 1

n2

n2∑
ℓ′=1

P (n)
e (πℓ′(C )|m,m′) ≤ 4λ (5.44)

for all (m,m′) ∈ Mexp × {1, . . . , 2nR′}.

This completes the proof.

5.2 Proof of Theorem 3.2

Consider a degraded wiretap channel. Achievability follows from Theorem 3.1. It
remains to prove the converse part for the multi-letter capacity formula in Theorem 3.2.

Suppose Alice and Bob would like to share the entangled resource ΨGn
AGn

B
, yet Bob’s

share may be stolen by Eve. In our model, there are two scenarios. Namely, either Bob
holds the entanglement resource Gn

B, or Eve, depending on whether Eve has succeeded
in her attempt to steal the resource. Alice first prepares a classical maximally correlated
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state,

πKMK′M ′ =

 1
2nR

2nR∑
m=1

|m⟩⟨m|M ⊗ |m⟩⟨m|K


⊗

 1
2nR′

2nR′∑
m′=1

∣∣m′⟩⟨m′∣∣
M ′ ⊗

∣∣m′⟩⟨m′∣∣
K′

 (5.45)

where M , K, M ′, and K ′ are classical registers, such that M and K are in perfect
classical correlation, and so are M ′ and K ′. Bob needs to recover the value of M in
both cases, whether he holds the resource or Eve. Whereas, Bob need only recover M ′,
if he holds the resource. Security requires that both M and M ′ are hidden from Eve,
whether she intercepted Gn

B or not.

Alice applies an encoding map FMM ′Gn
A→An onMM ′ and her share of entanglement,

Gn
A. Hence, the input state is

σKK′AnGn
B

= FMM ′Gn
A→An(πKMK′M ′ ⊗ ΨGn

AGn
B

) , (5.46)

and transmits An through n channel uses, hence the output

ωKK′BnEnGn
B

= N ⊗n
A→BE(ψKK′AnGn

B
) . (5.47)

If the entanglement resource is available to Bob, then he applies a decoding channel
DBnGn

B→M̂M̂ ′ , creating

ρKK′M̂M̂ ′En = DBnGn
B→M̂M̂ ′(ωKK′BnGn

BEn) . (5.48)

If Eve has stolen the entanglement resource, then Bob applies a decoding channel
D∗

Bn→M̃
, hence

ρ∗
KK′M̃En = D∗

Bn→M̃
(ωKK′BnGn

BEn) . (5.49)

Consider a sequence of (2nR, 2nR′
, n) codes, with vanishing errors and leakage, i.e.,

1
2
∥∥ρKM̂K′M̂ ′ − πKMK′M ′

∥∥
1 ≤ αn , (5.50)

1
2

∥∥∥ρ∗
KM̃

− πKM

∥∥∥
1

≤ α∗
n , (5.51)

and

I(KK ′;EnGn
B)ω ≤ βn (5.52)

where αn, α∗
n, and βn tend to zero as n → ∞. Eq. (5.52) represents a weaker form of
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secrecy, yet this is sufficient for the converse part. Based on entropy continuity,∣∣∣I(K;M)π − I(K; M̂)ρ∗

∣∣∣ ≤ nε∗
n , (5.53)∣∣∣I(K;M ′|K)π − I(K; M̂ ′|K)ρ

∣∣∣ ≤ nεn , (5.54)

where εn, ε
∗
n → 0 when n → ∞ (see [7, App.C, part B]) Consider the scenario where

Bob receives Bn alone, while Eve gets both En and Gn
B. Now,

nR = I(K;M)π

≤ I(K; M̂)ρ∗ + nϵ∗n

≤ I(K;Bn)ω + nϵ∗n

≤ I(K;Bn)ω − I(K;EnGn
B)ω + n(ε∗

n + βn) (5.55)

where the second line follows from (5.53), the third from the data processing inequality
(see (5.49)), and the last from (5.52). We move to the more challenging bound, on
the excess rate. Here, we use the degraded property. Consider the scenario where Bob
holds both Bn and Gn

B. As before, we use (5.52) and (5.54) to show that

nR′ = I(K ′;M ′|K)π

≤ I(K ′;Gn
BB

n|K)ω − I(K ′;EnGn
B|K)ω + n(εn + βn) .

We can also write this as

n(R′ − εn − βn) ≤ I(K ′Gn
B;Bn|K)ω − I(K ′Gn

B;En|K)ω−

[I(Gn
B;Bn|K)ω − I(Gn

B;En|K)ω] .

Due to our assumption that the quantum wiretap channel is degraded, the expression
within the square brackets above is nonnegative. Thus,

n(R′ − εn − βn) ≤ I(K ′Gn
B;Bn|K)ω − I(K ′Gn

B;En|K)ω . (5.56)

To complete the regularized converse proof, set X = K and G2 = (K ′, Gn
B) in (5.55)

and (5.56), and take n → ∞.

5.3 Proof of Theorem 4.1

5.3.1 Achievability

The achievability proof for the passive eavesdropper case follows the general structure
of the proof from Sec. 5.1 for the interception model, except for several important
simplifications and distinctions, arising from the passive nature of Eve:
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Guaranteed Rate:

For the guaranteed message, the indistinguishability bound simplifies from:

∆∗
m(C ) = 1

2

∥∥∥∥∥∥ 1
2nR0

2nR0∑
k=1

ωxn

EnGn
2

− ω⊗n
EG2

∥∥∥∥∥∥
1

(5.57)

to:

∆passive
m (C ) = 1

2

∥∥∥∥∥∥ 1
2nR0

2nR0∑
k=1

ωxn

En − ω⊗n
E

∥∥∥∥∥∥
1

(5.58)

Here we can apply the covering lemma in the same manner but with ωxn

En , and the
projectors

Π = Π(n)
δ (ωEn) , (5.59)

Πxn = Π(n)
δ (ωEn |xn) . (5.60)

Hence, the bound on R0 will be R0 < I(X;E)ω + ϵ5, instead of R0 < I(X;EG2)ω + ϵ5

(See A.2). This is the cause for the different bound for the guaranteed rate R.

Excess Rate:

Since in the passive model Eve cannot have access to Gn
2 , Alice and Bob can use the

entangled resource to generate a shared key beforehand and ensure security automat-
ically for the excess message. Hence, requiring additional local randmoness k′ is not
needed.

In the interception case, the rate R′ must satisfy (see Equation (3.10)):

R′ ≤ [I(G2;B|X)ω − I(G2;E|X)ω]+ . (5.61)

However, in the passive model, there is no I(G2;E|X)ω penalty, and we simply get:

R′ ≤ I(G2;B|X)ω . (4.2)

This is because the excess message is protected by the one-time pad, so leakage from
G2 is not a concern.

5.3.2 Converse

The converse proof for the passive model again follows a similar structure to the proof
of Theorem 3.2 (Sec. 5.2), except that the main difference is that degradability of the
channel is not required.

In the interception model, the converse proof forR′ (Equation (5.56)) relied crucially

75



on the degradedness condition:

R′ ≤ I(K ′Gn
B;Bn|K)ω − I(K ′Gn

B;En|K)ω

so that the difference

I(Gn
B;Bn|K)ω − I(Gn

B;En|K)ω ≥ 0

could be dropped (non-negative).
However, in the passive model, Eve cannot have Gn

B, so this penalty term is entirely
absent. The bound on R′ becomes:

R′ ≤ I(K ′Gn
B;Bn|K)ω

which can be established without assuming degradedness.
Thus, the converse proof applies to all channels, and we immediately get the regu-

larized capacity formula:

CPE-EA*(N ) =
∞∪

n=1

1
n
RPE-EA*(N ⊗n) .

This concludes the proof sketch and technical distinction between the passive and
interception models.
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Chapter 6

Conclusion and Future Directions

We study secure communication with unreliable entanglement assistance. Alice wishes
to send a secret message to Bob, while exploiting pre-shared entanglement assistance.
In our setting, the assistance is unreliable due to one of two reasons: Interception
or loss. In the interception model, Eve may steal the entanglement assistance (see
Figure 3.1(b)). Whereas, loss implies that Eve is passive and the assistance may get
lost to the environment (see Figure 4.1(b)). Our present work continues the line of
research that started with [7] and [57] on unreliable entanglement assistance. However,
the previous works [7, 57] did not include security concerns.

Here, we derive achievable rate regions for both the interception and loss models,
under a maximal error criterion and semantic security requirements. Furthermore, for
the interception model, we establish a multi-letter capacity formula for the special case
of degraded channels, while in the passive model, a multi-letter expression is obtained
for general quantum wiretap channels.

In the interception model, the guaranteed rate bound includes both Eve’s system
E and Bob’s entangled resource GB (see (3.10)), which reflects Eve’s access to the
entanglement assistance if she succeeds to intercept the resource. On the other hand,
in the passive eavesdropper model, the guaranteed rate bound does not involve the
entangled resource GB (see (4.2)), as the assistance is beyond Eve’s reach.

Moreover, the bound on the excess rate, in the passive model, does not include
Eve’s system at all (see (4.2)), i.e., secrecy does not entail a rate reduction. This is
expected because given reliable entanglement assistance, Alice and Bob can secure a
shared key, and apply the one-time pad encryption to the excess message.

As an example, we consider the erasure channel and the amplitude damping channel.
For the erasure channel, time division is optimal. This is “good news” from a practical
perspectives, as time division is much easier to implement. We observe that in general,
time division is impossible if Eve can actively intercept Bob’s entanlged resource, since
Alice’s operations on her share of the entanglement could leak information on the
guaranteed information. For the amplitude damping channel, the boundary of our
achievable region is disconnected in agreement with this property. In the passive model,
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on the other hand, our encoding scheme outperforms time division.
Some questions still remain open, as we do not have a full understanding of the

behavior of the capacity region, its convexity properties, and the type of entanglement
that allows positive guaranteed rate under interception. Furthermore, while we have
presented a regularized characterization, a single-letter capacity formula for the class
of degraded channels could lead to further insights.

From a broader perspective, it would be interesting to explore unreliable entangle-
ment assistance beyond the setting of point-to-point or broadcast communication. This
includes multi-user communication scenarios, as well as other information-theoretic
tasks that may benefit from entanglement assistance, such as coordination, secret-key
generation (e.g., QKD), and more.

Finally, investigating the experimental implications of unreliable entanglement presents
another compelling research direction.
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Appendix A

Packing Lemma and Covering
Lemma Properties

This appendix provides further details and supporting arguments for the information-
theoretic tools used in the main achievability proof in Sec. 5.1. Specifically, we verify
the conditions required for applying the quantum packing lemma and quantum covering
lemma. These results justify the claims regarding reliable decoding and security in the
presence or absence of entanglement assistance, as used in Sec. 5.1.

A.1 Packing Lemma with Entanglement Assistance

To justify the statement in the main text, we apply the quantum packing lemma in the
presence of entanglement assistance. Fix a codeword xn ∈ X n, and define the ensemble
{ργ,xn

BnGn
2
}γ with expected density operator

ρ̄xn

BnGn
2

= 1
|Γxn |

∑
γ∈Γxn

ργ,xn

BnGn
2
.

Let Π be the projector onto the δ-typical subspace of ρ̄xn

BnGn
2
, and Πγ the projector

associated with the codeword ργ,xn

BnGn
2
. Using standard typicality arguments and results

from [7, Appendix II], the following bounds hold:

Tr(Πρ̄) ≥ 1 − 2ε2(δ), (A.1)

Tr(Πγ ρ̄) ≥ 1 − ε3(δ), (A.2)

Tr(Πγ) ≤ 2n(H(BG2|X)+ε4(δ)), (A.3)

Πρ̄Π ≤ 2−n(H(B|X)+H(G2|X)−ε5(δ))Π. (A.4)

These bounds ensure that the requirements of the packing lemma in 1.8.1 are satis-
fied. Hence, there exists a decoding POVM {Υm′,k′|xn} with vanishing average error,
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provided the rate satisfies

R′ +R′
0 < I(G2;B|X)ω − ϵ2.

A.2 Covering Lemma Properties

Now, we apply the tools of typical projectors to prove the properties of the quan-
tum covering lemma. In the achievability proof, we establish two indistinguishability
bounds, which are achieved using the quantum covering lemma [73] Lemma 2.7.1.

A.2.1 Guaranteed information indistinguishability bound

To show the indistinguishability bound in Eq.(5.27), for the guaranteed information,
we apply the quantum covering lemma [73], Lemma 2.7.1, with the ensemble below,

{pXn(xn), ωxn

EnGn
2
}xn∈X n , (A.5)

and the following typical projectors,

Π = Π(n)
δ (ωEnGn

2
) , (A.6)

Πxn = Π(n)
δ (ωEnGn

2
|xn) . (A.7)

Based on standard typical projectors properties (see Section 1.1.5), there exists λ > 0
such that

Tr(Πω⊗n
EG2

) ≥ 1 − e−λn , (A.8)

Tr(Πxnω⊗n
EG2

) ≥ 1 − e−λn , (A.9)

Tr(Π) ≤ 2n(H(EG2)ω+ϵ4) , (A.10)

Πxnωxn

EnGn
2
Πxn ≤ 2−n(H(EG2|X)ω−ϵ4)Πxn . (A.11)

Thus, by the quantum covering lemma, for every m ∈ {1, . . . , 2nR} and sufficiently
large n,

Pr
(
∆∗

m(C ) > e− λ
2 n
)

≤ exp
{

−2n(R0−I(X;EG2)ω−ϵ5)
}
. (A.12)

We have thus shown that Eq.(5.27) in the main proof holds.

A.2.2 Excess information indistinguishability bound

Next, we prove the indistinguishability bound in Eq.(5.31) in the main proof, for the
excess information.
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Recall that given a fixed xn ≡ xn(m, k), we consider the uniform ensemble,{
p(γ|xn) = 1

|Γxn |
, ργ,xn

EnGn
2

}
γ∈Γxn

. (A.13)

with the average state,

ζxn

EnGn
2

= 1
|Γxn |

∑
γ∈Γxn

ργ,xn

EnGn
2
. (A.14)

In addition, we define the code projectors in terms of the δ-typical projectors and
the encoding unitary:

Π = Π(n)
δ (ωEn |xn) ⊗ Π(n)

δ (ωGn
2
|xn) , (A.15)

Πγ = (I ⊗ UT (γ))Π(n)
δ (ωEnGn

2
|xn)(I ⊗ U∗(γ)) , (A.16)

where ωEn and ωGn
2
are the reduced states of ωEnGn

2
. In order to apply the quantum

covering lemma, we need to show that there exists µ > 0 such that the following
properties hold:

Tr(Πργ,xn

EnGn
2
) ≥ 1 − e−µn , (A.17)

Tr(Πγρ
γ,xn

EnGn
2
) ≥ 1 − e−µn , (A.18)

Tr(Π) ≤ 2n(H(E|X)ω+H(G2|X)ω+ϵ6) , (A.19)

Πγρ
γ,xn

EnGn
2
Πγ ≤ 2−n(H(EG2|X)ω−ϵ6)Πγ . (A.20)

The first three arguments are similar to those in [91, Appendix II], while establishing
(A.20) is more involved in our setting. For completeness, we give the details for all
properties below.

We begin with the second property, in (A.18). Observe that

Tr
{
ργ,xn

EnGn
2
Πγ

}
= Tr

{
(1 ⊗ UT (γ))ωxn

EnGn
2
(1 ⊗ U∗(γ))

· (1 ⊗ UT (γ))Π(n)
δ (ωEnGn

2
|xn)(1 ⊗ UT (γ))

}
= Tr

{
(1 ⊗ UT (γ))ωxn

EnGn
2
Π(n)

δ (ωEnGn
2
|xn)(1 ⊗ UT (γ))

}
= Tr

{
ωxn

EnGn
2
Π(n)

δ (ωEnGn
2
|xn))

}
≥ 1 − 1

2
ϵ6 (A.21)

for sufficiently large n. The first equality follows from substituting the expressions for
ργ,xn

EnGn
2
from Eq. (60) in the main manuscript, and for Πγ in (A.16). The second equality
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holds since U∗(γ) = (UT (γ))−1, the third holds due to the trace cyclic property, and
the inequality is due to the conditional typical projector property in (1.50).

The third property, in (A.19), immediately follows from the dimension bound in
(1.51).

Now, we prove the first property, in (A.17). To this end, we express the projector
Π in terms of the complementary projectors below,

Π̂(n)
δ (ωEn |xn)) ≡ 1 − Π(n)

δ (ωEn |xn)) , (A.22)

Π̂(n)
δ (ωGn

2
|xn)) ≡ 1 − Π(n)

δ (ωGn
2
|xn)) . (A.23)

Then,

Π = Π(n)
δ (ωEn |xn) ⊗ Π(n)

δ (ωGn
2
|xn)

= (1 − Π̂(n)
δ (ωEn |xn)) ⊗ (1 − Π̂(n)

δ (ωGn
2
|xn))

= 1 ⊗ 1 − Π̂(n)
δ (ωEn |xn) ⊗ 1 − 1 ⊗ Π̂(n)

δ (ωGn
2
|xn)

+ Π̂(n)
δ (ωEn |xn) ⊗ Π̂(n)

δ (ωGn
2
|xn)

≥ 1 ⊗ 1 − Π̂(n)
δ (ωEn |xn) ⊗ 1 − 1 ⊗ Π̂(n)

δ (ωGn
2
|xn) (A.24)

where the first equality holds by the definition of Π in (A.15), and the second by
(A.22)-(A.23).

Therefore,

Tr
{
ρ

γ|xn

EnGn
2
Π
}

= Tr
{

(1 ⊗ UT (γ))ωxn

EnGn
2
(1 ⊗ U∗(γ))Π

}
≥ Tr

{
(1 ⊗ UT (γ))ωxn

EnGn
2
(1 ⊗ U∗(γ)) · (1 ⊗ 1)

}
− Tr

{
(1 ⊗ UT (γ))ωxn

EnGn
2
(1 ⊗ U∗(γ))

· (Π̂(n)
δ (ωEn |xn) ⊗ 1)

}
− Tr

{
(1 ⊗ UT (γ))ωxn

EnGn
2
(1 ⊗ U∗(γ))

· (1 ⊗ Π̂(n)
δ (ωGn

2
|xn))

}
. (A.25)

By the trace cyclic property, the first trace term equals Tr(ωxn

EnGn
2
) = 1, and the second

is

Tr(ωxn

EnGn
2
Π̂(n)

δ (ωEn |xn)) = 1 − Tr(ωxn

EnGn
2
Π(n)

δ (ωEn |xn))

≤ 1
2
ϵ6 (A.26)

where the inequality holds by (A.21). Similarly, the last trace term in (A.25) is bounded
by 1

2ϵ6. Substituting those terms in (A.25) yields the desired bound (A.17).
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It remains to show the last bound, in (A.20). Observe that

Πγρ
γ,xn

EnGn
2
Πγ

= (1 ⊗ UT (γ))Π(n)
δ (ωEnGn

2
|xn)(1 ⊗ U∗(γ))

· (1 ⊗ UT (γ))ωxn

EnGn
2
(1 ⊗ U∗(γ))

· (1 ⊗ UT (γ))Π(n)
δ (ωEnGn

2
|xn)(1 ⊗ U∗(γ))

= (1 ⊗ UT (γ)) · Π(n)
δ (ωEnGn

2
|xn)ωxn

EnGn
2
Π(n)

δ (ωEnGn
2
|xn)

· (1 ⊗ U∗(γ)) (A.27)

where the last equality holds since UT (γ) = (U∗(γ))−1. Based on the properties of
conditional typical projectors,

Π(n)
δ (ωEnGn

2
|xn)ωxn

EnGn
2
Π(n)

δ (ωEnGn
2
|xn)

≤ 2−n(H(EG2|X)ω−ϵ6)Π(n)
δ (ωEnGn

2
|xn) (A.28)

(see (1.52) in Sec. 1.1.5). Thus,

Πγρ
γ,xn

EnGn
2
Πγ

≤ 2−n(H(EG2|X)ω−ϵ6)(1 ⊗ UT (γ))

· Π(n)
δ (ωEnGn

2
|xn)(1 ⊗ U∗(γ))

≡ 2−n(H(EG2|X)ω−ϵ6)Πγ (A.29)

where the last equality follows the definition of Πγ in (A.16), thus proving (A.20). We
have thus proved the covering lemma conditions, (A.17)-(A.20), which imply Eq. (5.31)
in the main proof.

This concludes the proof for the indistinguishability bounds, for both the guaranteed
information and the excess information.

83



84



Bibliography

[1] A. S. Holevo, “The capacity of the quantum channel with general signal states,”
IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 269–273, Jan 1998.

[2] B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy
quantum channels,” Phys. Rev. A, vol. 56, no. 1, p. 131, July 1997.

[3] N. Cai, A. Winter, and R. W. Yeung, “Quantum privacy and quantum wiretap
channels,” Prob. Inform. Transm., vol. 40, pp. 318–336, 2004.

[4] I. Devetak, “The private classical capacity and quantum capacity of a quantum
channel,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 44–55, 2005.

[5] C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter,
“Entanglement-assisted capacity of a quantum channel and the reverse shannon
theorem,” in IEEE Trans. Inf. Theory, vol. 48, no. 10, 2002, pp. 2637–2655.

[6] H. Qi, K. Sharma, and M. M. Wilde, “Entanglement-assisted private communica-
tion over quantum broadcast channels,” J. Phys. A: Math. Theo., vol. 51, no. 37,
p. 374001, 2018.

[7] U. Pereg, C. Deppe, and H. Boche, “Communication with unreliable entanglement
assistance,” IEEE Trans. Inf. Theory, vol. 69, no. 7, pp. 4579–4599, 2023.

[8] J. Yin, Y. H. Li, S. K. Liao, M. Yang, Y. Cao, L. Zhang, J. G. Ren, W. Q. Cai,
W. Y. Liu, and S. L. Li, “Entanglement-based secure quantum cryptography over
1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020.

[9] E. Zlotnick, B. Bash, and U. Pereg, “Entanglement-assisted covert communi-
cation via qubit depolarizing channels,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT’2023), 2023, pp. 198–203.

[10] M.-H. Hsieh, I. Devetak, and A. Winter, “Entanglement-assisted capacity of quan-
tum multiple-access channels,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3078–
3090, 2008.

[11] F. Dupuis, P. Hayden, and K. Li, “A father protocol for quantum broadcast chan-
nels,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2946–2956, June 2010.

85



[12] U. Pereg, C. Deppe, and H. Boche, “The multiple-access channel with entangled
transmitters,” arXiv:2303.10456 [quant-ph]. Submitted to IEEE Trans. Inf.
Theory, 2023.

[13] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements:
beating the standard quantum limit,” Science, vol. 306, no. 5700, pp. 1330–1336,
2004.

[14] P. Komar, E. Kessler, M. Bishof, L. Jiang, A. Sárkozy, T. Zelevinsky, J. Ye, and
M. D. Lukin, “A quantum network of clocks,” Nature Physics, vol. 10, no. 8, pp.
582–587, 2014.

[15] T. J. Proctor, P. A. Knott, and J. A. Dunningham, “Multiparameter estimation
in networked quantum sensors,” Phys. Rev. Lett., vol. 120, no. 8, p. 080501, 2018.

[16] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, “Quantum communication
complexity advantage implies violation of a bell inequality,” Rev. Mod. Phys.,
vol. 82, no. 1, p. 665, 2010.

[17] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-
assisted classical capacity of noisy quantum channels,” Phys. Rev. Lett., vol. 83,
no. 15, p. 3081, Oct 1999.

[18] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-
assisted capacity of a quantum channel and the reverse shannon theorem,” IEEE
Trans. Inf. Theory, vol. 48, no. 10, pp. 2637–2655, Oct 2002.

[19] J. Chen et al., “Long-distance distribution of high-dimensional entanglement en-
abled by multiplexed quantum memories,” Nature Photonics, vol. 15, pp. 123–129,
2021.

[20] G. Kramer, “Topics in multi-user information theory,” Found. Trends Commun.
Inf. Theory, vol. 4, no. 4–5, pp. 265–444, 2008.

[21] M. M. Wilde, Quantum Information Theory, 2nd ed. Cambridge Univ. Press,
2017.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Wiley,
2006.

[23] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,
vol. 27, no. 3, pp. 379–423, 1948.

[24] R. Ahlswede, “Elimination of correlation in random codes for arbitrarily varying
channels,” Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 44, pp. 159–175, 1978.

86



[25] U. M. Maurer, “Secret key agreement by public discussion from common informa-
tion,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 733–742, 1993.

[26] C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Inf.
Theory, vol. 2, no. 3, pp. 8–19, 1956.

[27] P. Cuff, H. H. Permuter, and T. M. Cover, “Coordination capacity,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4181–4206, 2010.

[28] C. M. Caves and P. D. Drummond, “Quantum limits on bosonic communication
rates,” Rev. Mod. Phys., vol. 66, no. 2, pp. 481–537, 1994.

[29] A. S. Holevo, Quantum systems, channels, information: a mathematical introduc-
tion. Walter de Gruyter, 2012, vol. 16.

[30] M. B. Hastings, “Superadditivity of communication capacity using entangled in-
puts,” Nature Physics, vol. 5, no. 4, p. 255, March 2009.

[31] S. Hao, H. Shi, W. Li, J. H. Shapiro, Q. Zhuang, and Z. Zhang, “Entanglement-
assisted communication surpassing the ultimate classical capacity,” Phys. Rev.
Lett., vol. 126, no. 25, p. 250501, 2021.

[32] C. H. Bennett, I. Devetak, P. W. Shor, J. A. Smolin, A. V. Thapliyal, and A. Win-
ter, “Inequalities and separations among assisted capacities of quantum channels,”
Phys. Rev. Lett., vol. 93, no. 14, p. 140501, 2004.

[33] C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle op-
erators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett., vol. 69, no. 20, p.
2881, Nov 1992.

[34] A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum
communication channel,” Problemy Peredachi Informatsii, vol. 9, no. 3, pp. 3–11,
1973.

[35] G. S. Jaeger and . V. Sergienko, “Entanglement sudden death: a threat to advanced
quantum key distribution?” Natural Comput., vol. 13, no. 4, pp. 459–467, 2014.

[36] E. T. Campbell and S. C. Benjamin, “Measurement-based entanglement under
conditions of extreme photon loss,” Physical Rev. Lett., vol. 101, no. 13, p. 130502,
2008.

[37] J. Yin, Y. Cao, Y. H. Li, J. G. Ren, S. K. Liao, L. Zhang, W. Q. Cai, W. Y. Liu,
B. Li, and H. Dai, “Satellite-to-ground entanglement-based quantum key distribu-
tion,” Physical Rev. Lett., vol. 119, no. 20, p. 200501, 2017.

[38] A. Czerwinski and K. Czerwinska, “Statistical analysis of the photon loss in fiber-
optic communication,” Photon., vol. 9, no. 8, p. 568, 2022.

87



[39] G. Fettweis and H. Boche, “On 6G and trustworthiness,” Commun. ACM, vol. 65,
no. 4, pp. 48–49, 2022.

[40] Y. Steinberg, “Channels with cooperation links that may be absent,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT’2014), 2014, pp. 1947–1951.

[41] W. Huleihel and Y. Steinberg, “Channels with cooperation links that may be
absent,” IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5886–5906, 2017.

[42] ——, “Multiple access channel with unreliable cribbing,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT’2016), 2016, pp. 1491–1495.

[43] D. Itzhak and Y. Steinberg, “The broadcast channel with degraded message sets
and unreliable conference,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2017),
2017, pp. 1043–1047.

[44] ——, “The broadcast channel with degraded message sets and unreliable confer-
ence,” IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 5623–5650, 2021.

[45] U. Pereg and Y. Steinberg, “Arbitrarily varying broadcast channel with uncertain
cooperation,” in Proc. Int’l Zurich Semin. Inf. Commun. (IZS’2020). ETH Zurich,
2020, pp. 63–67.

[46] L. H. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic considerations
for cellular mobile radio,” IEEE Trans. Vehicular Tech., vol. 43, no. 2, pp. 359–378,
1994.

[47] R. Karasik, O. Simeone, and S. Shamai, “Robust uplink communications over
fading channels with variable backhaul connectivity,” IEEE Trans. Wireless Com-
mun., vol. 12, no. 11, pp. 5788–5799, 2013.

[48] G. Caire and D. Tuninetti, “The throughput of hybrid-arq protocols for the Gaus-
sian collision channel,” IEEE Trans. Inf. Theory, vol. 47, no. 5, pp. 1971–1988,
2001.

[49] A. Steiner and S. Shamai, “Multi-layer broadcasting hybrid-ARQ strategies for
block fading channels,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2640–
2650, 2008.

[50] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum gridlock
with cognitive radios: An information theoretic perspective,” Proc. of the IEEE,
vol. 97, no. 5, pp. 894–914, May 2009.

[51] Y. Liang, L. Lai, H. V. Poor, and S. Shamai, “A broadcast approach for fading
wiretap channels,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 842–858, 2013.

88



[52] S. Shamai and A. Steiner, “A broadcast approach for a single-user slowly fading
mimo channel,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2617–2635, Oct 2003.

[53] A. Cohen, M. Médard, and S. S. Shitz, “Broadcast approach meets network coding
for data streaming,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2022), 2022, pp.
25–30.

[54] M. Horodecki, P. W. Shor, and M. B. Ruskai, “Entanglement breaking channels,”
Rev. Math. Phys., vol. 15, no. 06, pp. 629–641, 2003.

[55] M. M. Wilde, N. Datta, M.-H. Hsieh, and A. Winter, “Quantum rate-distortion
coding with auxiliary resources,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp.
6755–6773, 2013.

[56] P. W. Shor, “Additivity of the classical capacity of entanglement-breaking quantum
channels,” J. Math. Phys., vol. 43, no. 9, pp. 4334–4340, May 2002.

[57] U. Pereg, “Communication over entanglement-breaking channels with unreliable
entanglement assistance,” Physical Rev. A, vol. 108, p. 042616, 2023.

[58] J. Körner, “The concept of single-letterization in information theory,” in Open
Prob. Commun. Comp. Springer, 1987, pp. 35–36.

[59] R. Ahlswede et al., “The capacity region of a channel with two senders and two
receivers,” Ann. Prob., vol. 2, no. 5, pp. 805–814, 1974.

[60] M. Wiese and H. Boche, “The arbitrarily varying multiple-access channel with
conferencing encoders,” IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1405–1416,
March 2013.

[61] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: information-theoretic and
communications aspects,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2619–2692,
Oct 1998.

[62] A. Wyner, “The wire-tap channel,” Bell Syst. Tech. J, vol. 54(8), pp. 1355–1387,
1975.

[63] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution
and coin tossing,” Theor. Comput. Sci., vol. 560, pp. 7–11, 2014.

[64] R. F. Schaefer, H. Boche, and H. V. Poor, “Secure communication under channel
uncertainty and adversarial attacks,” Proc. IEEE, vol. 103, no. 10, pp. 1796–1813,
2015.

[65] M. Bloch and J. Barros, Physical-layer security: from information theory to secu-
rity engineering. Cambridge Univ. Press, 2011.

89



[66] I. Csiszár and J. Körner, “Broadcast channels with confidential messages,” IEEE
Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, May 1978.

[67] K. Li, A. Winter, X. Zou, and G. Guo, “Private capacity of quantum channels is
not additive,” Phys. Rev. Lett., vol. 103, no. 12, p. 120501, 2009.

[68] D. Elkouss and S. Strelchuk, “Superadditivity of private information for any num-
ber of uses of the channel,” Phys. Rev. Lett., vol. 115, no. 4, p. 040501, 2015.

[69] I. Devetak and P. W. Shor, “The capacity of a quantum channel for simultaneous
transmission of classical and quantum information,” Commun. in Math. Phys.,
vol. 256, no. 2, pp. 287–303, 2005.

[70] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature,
vol. 299, pp. 802–803, 1982.

[71] I. Csiszár and P. Narayan, “Secrecy capacities for multiple terminals,” IEEE Trans.
Inf. Theory, vol. 50, no. 12, pp. 3047–3061, 2004.

[72] T. A. Atif, S. S. Pradhan, and A. Winter, “Quantum soft-covering lemma with
applications to rate-distortion coding, resolvability and identification via quantum
channels,” arXiv preprint arXiv:2306.12416, 2023.

[73] R. Ahlswede and A. Winter, “Strong converse for identification via quantum chan-
nels,” IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 569–579, 2002.

[74] M. Hayashi, Quantum information. Springer, 2006.

[75] M. Tahmasbi and M. R. Bloch, “Toward undetectable quantum key distribution
over bosonic channels,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 2, pp. 585–598,
2020.

[76] H. Boche and J. Nötzel, “Positivity, discontinuity, finite resources, and nonzero
error for arbitrarily varying quantum channels,” J. Math. Phys., vol. 55, no. 12,
p. 122201, 2014.

[77] S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of
entangled photon pairs,” Nature Photon., vol. 4, no. 8, pp. 553–556, 2010.

[78] W. Zo, S. Chin, and Y.-S. Kim, “Heralded optical entanglement distribution via
lossy quantum channels: A comparative study,” Optics Express, vol. 33, no. 6, pp.
12 459–12 474, 2025.

[79] J. G. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2001.

[80] Q. Zhuang, E. Y. Zhu, and P. W. Shor, “Additive classical capacity of quantum
channels assisted by noisy entanglement,” Phys. Rev. Lett., vol. 118, no. 20, p.
200503, 2017.

90



[81] S. Zou, Y. Liang, L. Lai, H. V. Poor, and S. Shamai, “Broadcast networks with
layered decoding and layered secrecy: Theory and applications,” Proc. IEEE, vol.
103, no. 10, pp. 1841–1856, 2015.

[82] U. Pereg, R. Ferrara, and M. R. Bloch, “Key assistance, key agreement, and layered
secrecy for bosonic broadcast channels,” in Proc. IEEE Inf. Theory Workshop
(ITW’2021), 2021, pp. 1–6.

[83] N. Cai, “The maximum error probability criterion, random encoder, and feedback,
in multiple input channels,” Entropy, vol. 16, no. 3, pp. 1211–1242, 2014.

[84] U. Pereg, “Communication over quantum channels with parameter estimation,”
IEEE Trans. Inf. Theory, vol. 68, no. 1, pp. 359–383, 2022.

[85] A. Winter, “Coding theorem and strong converse for quantum channels,” IEEE
Trans. Inf. Theory, vol. 45, no. 7, pp. 2481–2485, Nov 1999.

[86] V. Giovannetti and R. Fazio, “Information-capacity description of spin-chain cor-
relations,” Phys. Rev. A, vol. 71, no. 3, p. 032314, 2005.

[87] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, “Capacities of quantum erasure
channels,” Phys. Rev. Lett., vol. 78, no. 16, p. 3217, 1997.

[88] T. M. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp.
2–14, Jan 1972.

[89] M. Hayashi and H. Nagaoka, “General formulas for capacity of classical-quantum
channels,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1753–1768, 2003.

[90] M. Graifer, Y. Kochman, and O. Shayevitz, “Quantum key distribution with state
replacement,” in Proc. 59th Annu. Allerton Conf. Commun. Control Comput.
IEEE, 2023, pp. 1–8.

[91] M. Hsieh, I. Devetak, and A. Winter, “Entanglement-assisted capacity of quantum
multiple-access channels,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3078–3090,
July 2008.

91





מבצע ובוב לבוב, אחד פוטון שולחת אליס שזור, זוג אחד כל מכינים ובוב אליס שבו ,generation
הנותרים החלקיקים המדידה, בעקבות הפוטונים. אחד עם יחד שקיבל הפוטון על משותפת בל מדידת

שזורים. הופכים

וסודי אמין באופן מידע להעברת האפשריים השידור קצבי אפיון היא זו עבודה של המרכזית המטרה

מקסימלית שגיאה הסתברות של מחמירות דרישות תחת מתבצעת האנליזה לעיל. מהמקרים אחד בכל

סמנטית. וסודיות חסומה

קיבול ונוסחת הירוט, מודל עבור הסודיות קיבול תחום על פנימי חסם היא המרכזית התוצאה

נוסחת פיתחנו מדורגים, ערוצים של המחלקה עבור כן, כמו הפסיבי. המודל עבור אסימפטוטית

הירוט. במודל גם אסימפטוטית קיבול

תחילה, מקודדת R בקצב המובטחת ההודעה שבו בשכבות, קידוד על מבוססת בהוכחה הקידוד שיטת

על מופעלות השכבות שתי - R’ בקצב העודפת ההודעה של נוספת קידוד שכבת מוסיפים מכן ולאחר

מפענח בוב סדרתי: פענוח מאפשר זה מבנה אליס. בידי הנמצא המשאב של ראשוני קוונטי מצב אותו

או השזירות משאב את קיבל אם בין מקרה, בכל לשחזר נדרש שהוא המובטחת, ההודעה את תחילה

אחרת, העודפת. ההודעה את מפענח הוא אז לבוב, הגיע אכן השזור המשאב אם מכן, לאחר לא.

מוותר. הוא

את לטשטש הוא שתפקידם אקראיים אלמנטים עם יחד מקודדת הודעה כל סודיות, הבטחת לצורך

השזירות. סיוע את גנבה היא בו במקרה גם איב, בפני המידע

הסודיות אנליזת שלצורך בעוד הקוונטית, האריזה טענת באמצעות נעשתה השגיאה הסתברות אנליזת

תלוי בלתי כמעט נראה איב ידי על הנצפה הפלט כי שמבטיחה הקוונטית הכיסוי בטענת שימוש נעשה

,Cai של הגישה על מבוססת מקסימלית שגיאה להסתברות הדרישה הוכחת המשודרת. בהודעה

אקראיות. בפרמוטציות שימוש על ומתבססת גישות, מרובי ערוצים לניתוח במקור שפותחה

עבור אמפליטודה. מנחית וערוץ מחיקה ערוץ שימושיים: תקשורת לערוצי דוגמאות שתי בחנו בנוסף,

קצה, אסטרטגיות שתי בין זמן חלוקת על המבוססת קידוד אסטרטגיית כי הראינו המחיקה, ערוץ

עבור והן הירוט מודל עבור הן אופטימלית, היא ,R’ הקצב את או R הקצב את למקסימום המביאות

אסטרטגיות שכבות על המבוסס קידוד אמפליטודה, מנחית ערוץ עבור זאת, לעומת הפסיבי. המודל

בר הקצבים תחום של השפה וכי הירוט, במודל אפשרית בהכרח אינה זמן שחלוקת מראה הקצה

רציפה. אינה ההשגה
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תקציר

קלאסי מידע העברת חוקרים אנו אמינה. בלתי שזירות בסיוע סודית בתקשורת עוסקת העבודה

כי ידוע (איב). מצותתת בנוכחות (בוב) המקלט לבין (אליס) המשדר בין רועש קוונטי ערוץ דרך

שיש מניחים שזירות, סיוע של במודל ניכרת. במידה התקשורת קצב את להגדיל יכול שזירות סיוע

זמן פרקי לנצל הוא הרעיון השידור. תחילת לפני קוונטית שזורים לחלקיקים גישה ובוב לאליס

במשאבים להשתמש נרצה המידע, כשמגיע כן, ואחרי שזירות, משאבי ליצור כדי במערכת "שקטים"

סיוע רעש, חסר אידאלי ערוץ של במקרה בפרט, יותר. גבוה בקצב המידע את לשלוח כדי אלו

בפני תקשורת מאפשר שלא סטטי משאב מהווה ששזירות לציין ראוי השידור. קצב את מכפיל שזירות

לאליס שזמינים אקראיים מביטים המורכב מפתח כלומר משותפת, אקראיות למשאב בדומה עצמו,

מרוחקים. צדדים שני בין אמינה שזירות לייצר קשה מעשיות במערכות זאת, עם השידור. לפני ובוב

אופטיים סיבים של אידאליות מחוסר כתוצאה למשל פוטונים, אובדן הוא ביותר המשמעותי האתגר

לווייני. אופטי בשידור באטמוספרה בליעה או

הזה, באופן משוב. בערוץ שימוש היא השזירות יצירת במהלך באובדן לטיפול הסטנדרטית הגישה

על חוזרת אליס אז לא, ואם המשוב. ערוץ באמצעות השזירות משאב את קיבל אם לאליס מודיע בוב

המערכת של לקריסה לגרום ועלולה ישימה בהכרח לא זו גישה השזור. המשאב את ושולחת התהליך

הסתגלות מציע אמין בלתי שזירות סיוע של המושג מנגד, שזירות. ליצור אפשרות אין שבהם בתנאים

.R’ בקצב עודפת הודעה - ו ,R בקצב מובטחת הודעה – הודעות שתי שולחת אליס פרואקטיבית:

את קיבל הוא אם רק העודפת ההודעה ואת תמיד, המובטחת ההודעה את יפענח בוב כי היא הדרישה

שזירות, סיוע ללא R בפועל: השזירות לדינמיקת מותאם בוב של הפענוח קצב כך, השזור. המשאב

שזירות. סיוע יש כאשר (R+R’)-ו

המתאימים מודלים בשני אמינה בלתי שזירות בסיוע סודית תקשורת של בביצועים עוסקת זו עבודה

שונים: אבטחה לתרחישי

לבוב. הגעתו את למנוע ובכך השזור, המשאב את ליירט עלול האויב - הירוט מודל . 1

לסביבה להיאבד עלול המשאב אך השזירות, למשאב גישה לו ואין פסיבי האויב - הפסיבי המודל . 2

ניטרלית.

של המבט מנקודת קצה מקרי לשני המתייחסת Hard Decision בגישת נוקט מהמודלים אחד כל

לדעת מבלי מקודדת שאליס היא ההנחה לא. בכלל או בשלמותו זמין השזור המשאב המפענח:

זוהי השזירות. משאב את קיבל מביניהם מי יודעים ואיב בוב ואילו השזירות, משאב הגיע לאן

heralded entanglement של בתהליך מעשי באופן ממומש שזירות שיצור מפני פרקטית, הנחה
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ומחשבים. חשמל להנדסת בפקולטה פרג, עוזי פרופסור של בהנחייתו בוצע המחקר

ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה שבחיבור התוצאות

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של התזה מחקר תקופת במהלך

Meir Lederman and Uzi Pereg. Secure communication with unreliable entanglement assis-
tance. In Proc. IEEE Int. Symp. Inf. Theory (ISIT 2024), pages 1017–1022, . 2024
Meir Lederman and Uzi Pereg. Semantic security with unreliable entanglement assistance:
Interception and loss. In Proc. IEEE Inf. Theory Workshop (ITW 2024), pages 693–698,
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תודות

לאורך והליווי התמיכה ההכוונה, על פרג, עוזי פרופ' שלי, למנחה הכנה תודתי את להביע ברצוני

הדרך. לאורך והעידוד התמיכה על ולחבריי למשפחתי הלב מעומק מודה אני כן, כמו העבודה. כל

והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף כולל המחקר, כי מצהיר/ה זה חיבור מחבר/ת

המידה אמות לפי המבוצע מדעי ממחקר כמצופה ישרה, בצורה כולו נעשה וכו', קודמים למחקרים

ישרה בצורה נעשה זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו האקדמי. העולם של האתיות

מידה. אמות אותן לפי ומלאה,

זה. מחקר מימון על לטכניון מסורה תודה הכרת
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