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Abstract

We study the quantum action-dependent channel. The model can be viewed as a quantum analog of the classical action-
dependent channel model. In this setting, the communication channel has two inputs: Alice’s transmission and the input
environment. The action-dependent mechanism enables the transmitter to influence the channel’s environment through an action
channel. Specifically, Alice encodes her message into a quantum action, which subsequently affects the environment state. For
example, a quantum measurement at the encoder can induce a state collapse of the environment. In addition, Alice has access to side
information. Unlike the classical model, she cannot have a copy of the environment state due to the no-cloning theorem. Instead,
she shares entanglement with this environment. We establish an achievable communication rate for reliable message transmission
via the quantum action-dependent channel, thereby extending the classical action-dependent framework to the quantum domain.

I. INTRODUCTION

A fundamental problem in information theory is the characterization of reliable communication over channels affected by
random parameters, often referred to as channel states [1–8]. Beginning with Shannon’s seminal work on channels with side
information [9], the study of channels with random parameters has revealed the crucial role of side information at the encoder
or decoder. Gel’fand and Pinsker [10] established the capacity for channels with non-causal side information at the encoder.
Costa’s “writing on dirty paper” result [11] further extended it to Gaussian channels. These works lay the foundation for a
rich literature on random-parameter models in both point-to-point and multi-user settings [12–15].

In the random-parameter paradigm, the parameters are typically drawn from nature and cannot be controlled by the
communicating parties [16]. The parameters influence the channel by altering its transition law. In the classical setting, the
channel is described in terms of a probability function PY |X,S(·|x, s), where X represents Alice’s transmission and Y is Bob’s
observation at the channel output. The random parameter S has a specified distribution and its variation can significantly affect
the channel output. For this reason, side information, i.e., the knowledge of S, has a profound effect on capacity.

Weissman [17] introduced the action-dependent channel. In this model, the encoder first selects an action sequence, which in
turn, generates the channel parameters in a noisy fashion. The overall channel input then depends on both the message and the
induced parameters. This two-stage procedure captures a broad class of practical problems, such as memories with defects [18],
magnetic recording with rewriting [19], and other scenarios in which the transmitter can probe or partially control the channel
before communication, as was demonstrated in [20]. For example, a two-stage coding strategy can steer a defective memory
to improve reliability: first, the transmitter writes to the memory and immediately tries to read it back to learn about defects.
Then, the transmitter rewrites the defective bits based on that information. The flexibility of this model led to its extension
in several directions. For instance, the concept of probing capacity was introduced to quantify the maximum rate at which
the channel state can be learned through actions [21], and other works incorporated cost constraints on these actions [22].
The framework has also proven valuable in multi-user communication, with generalizations to broadcast channels [23, 24] and
multiple-access channels [25]. Furthermore, its implications for security have been explored in the context of wiretap channels
[26, 27] and other secure communication settings [28], where the action channel acts as a broadcast channel influenced by the
transmitter’s actions.

The ongoing development of quantum information theory is foundational for engineering next-generation communication
and computation systems [29–33]. By leveraging the principles of quantum mechanics, this field aims to overcome the
limitations of classical technologies. Quantum technology also unlocks entirely new phenomena with no classical parallel,
such as entanglement, i.e., the strongest resource of quantum correlation, as well as the no-cloning theorem, which forbids the
perfect duplication of quantum information, motivating a deeper study of fundamental communication limits. Action dependence
is relevant in quantum communication as well. For example, a quantum measurement by the encoder on the transmission system
could result in a state collapse of the channel input environment.

Quantum environment-dependent channels are crucial in scenarios that involve not only the transmission of a message,
but also parameter estimation, a central task in fields such as quantum metrology. These types of quantum Gel’fand-Pinsker
channels have been studied, both with and without entanglement assistance [34] (see also [35]). The security implications have
also been explored in the quantum setting through wiretap channels [36] and covert communication [37]. Other variations
include scenarios in which the decoder performs parameter estimation [38]. The action-dependent framework has not yet been
studied in the quantum literature thus far.

In this paper, we study the quantum action-dependent channel. Our action dependence model modifies the standard
environment-dependent paradigm by allowing the transmitter’s actions to influence a quantum environment, which in turn
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Fig. 1. Coding over a quantum action-dependent channel. Here Alice acts as the Action encoder, encoding the message M into an action sequence Gn, and
the main encoder, encoding the message and side information Sn

0 into the channel input An. The action sequence Gn is fed into the action channel T ⊗n
G→SS0

,
which produces the environment state Sn and side-information Sn

0 for Alice. The quantum communication channel N⊗n
SA→B takes the environment state Sn

and input An, producing the output Bn, which is measured by Bob to decode the message.

governs the channel transformation. Specifically, an encoder (Alice) first encodes a classical message M into an action sequence
Gn, which is fed into a quantum action channel T ⊗n

G→SS0
. Figure 1. The action channel produces side information Sn

0 , for
Alice, and an environment system Sn. Alice then encodes the message and the side information into her transmission An,
which is sent through the quantum communication channel N⊗n

SA→B . The receiver (Bob) obtains the output sequence Bn, and
performs a measurement in order to estimate Alice’s message.

Our framework can be viewed as the quantum counterpart of the classical action-dependent channel introduced by Weissman
[17]. However, the generalization is nontrivial due to fundamental quantum principles such as the no-cloning theorem. While
a classical channel parameter can be perfectly copied and then sent back to the transmitter, an unknown quantum state cannot.
Thereby, side information is modeled through quantum entanglement shared between two distinct systems, S and S0, where
S represents the environment affecting the channel, and S0 is the side information available to Alice.

We derive an achievable rate using quantum one-shot information-theoretic methods. These techniques establish non-
asymptotic performance bounds by directly analyzing the error probability for a finite number of channel uses, rather than
relying on asymptotic arguments. The introduction of action dependence makes our analysis more challenging than in previous
environment-dependent channel models [36, 38]. In previous settings, the channel environment and side information are set by
an outside source. Whereas here, the transmitter’s action induces the shared entangled state. Consequently, our analysis must
account for this additional layer of control. The formula of our capacity bound thus includes optimization over not only the
input state, but also the a quantum ensemble for the sender’s action.

The rest of the paper is organized as follows. In Section II, we introduce the notation and definitions used throughout
the paper. In Section III, we formally define the quantum action-dependent channel model and then present our main result,
an achievable rate for this channel, in Section IV. In Section V, we describe the one-shot coding scheme used to prove the
achievability result. The detailed proof is provided in Section VI, with key lemmas proved in Appendices C–A.

II. NOTATION AND BASIC DEFINITIONS

We use a standard notation in quantum information theory. Quantum systems are denoted by uppercase letters (e.g., A,B)
and their corresponding finite-dimensional Hilbert spaces by HA,HB . The set of density operators on HA is D(HA). Quantum
states (density operators) are denoted by Greek letters, e.g., ρ, σ. A POVM is a set of positive semi-definite operators {Dm}
that satisfy

∑
mDm = 1, where 1 denotes the identity operator. If the quantum state before the measurement is ρ, then the

probability of an outcome m is Pr(m) = Tr(Dmρ).
A quantum channel NA→B is a completely positive trace-preserving (CPTP) map. We write idA for the identity channel on

system A. Here, we consider a quantum channel NSA→B , where A, S, and B are associated with the transmitter (Alice), the
channel environment (“channel state"), and the receiver (Bob). The channel can be represented through its Stinespring dilation,
in terms of an isometry VSA→BE that couples the output system to an auxiliary environment E. Namely,

NSA→B(ρSA) = TrE
[
V ρSAV

†] . (1)

We assume that the channel is memoryless. That is, if an input sequence (Sn, An) ≡ (S1, A1), . . . , (Sn, An) is transmitted
through the channel, then the input state ρSnAn undergoes the tensor-product map N⊗n

SA→B . We will see that in the action-
dependent model, the channel environment Sn is affected by the encoding operation. See Section V.

For a quantum state ρ ∈ D(H), the von Neumann entropy is

H(ρ) = −Tr(ρ log ρ). (2)

For a bipartite state ρAB ∈ D(HA ⊗HB), the quantum mutual information is defined as:

I(A;B)ρ = H(ρA) +H(ρB)−H(ρAB), (3)
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Fig. 2. Effect of pinching on a quantum state. Left: Matrix representation of B. Off-diagonal blocks (regions labeled C and C†) indicate non-commutativity
with A. Right: After applying the pinching map EA, the modified state EA(B) is block-diagonal in the eigenbasis of A (off-diagonal blocks are zero). Now
EA(B) commutes with A, enabling a measurement comparison of their spectra.

and the conditional entropy as H(A|B)ρ = H(ρAB)−H(ρB). Unlike its classical counterpart, the quantum conditional entropy
can be negative.

The quantum relative entropy between two states ρ and σ in D(H) is defined as D(ρ∥σ) = Tr (ρ (log ρ− log σ)) if
supp(ρ) ⊆ supp(σ), and D(ρ∥σ) = +∞ otherwise. The Sandwiched Rényi Divergence [39] is defined as

D̃α (ρ∥σ) := 1

α− 1
log Tr

[
σ

1−α
2α ρσ

1−α
2α

]α
. (4)

Other key definitions are given below [40]:
1) Pinching: For a Hermitian operator A =

∑
i aiΠi with projectors Πi in its eigenspaces, the pinching map is

EA(B) :=
∑
i

ΠiBΠi. (5)

This operation has the properties of a quantum channel and projects B onto a block-diagonal structure dictated by the
eigenspaces of A (see Figure 2). One of the properties of the pinching map is that the resulting operator, EA(B), always
commutes with A, i.e., [A, EA(B)] = 0. Another key property of pinching map is the pinching inequality. Let νA be the
number of nonnegative distinct eigenvalue of A, then:

B ≤ νAEA(B). (6)

2) Fidelity: For ρ, σ ∈ D(H),

F (ρ, σ) :=
∥∥√ρ√σ∥∥

1
. (7)

3) Purified Distance: For ρ, σ ∈ D(H),

P (ρ, σ) :=
√
1− F 2(ρ, σ). (8)

These quantities provide a geometric measure of distance in the space of density matrices, as illustrated in Figure 2.

III. ACTION-DEPENDENT CODING

Before presenting our main results, we introduce a code for the transmission of messages via a quantum action-dependent
channel, where the encoder selects an action that affects the channel environment. Specifically, Alice has two roles: she encodes
both the action G and the transmission A through the channel. Her action encoder sends G through an action channel TG→SS0

that produces Alice’s side information S0 and the channel environment S.
Definition 1 (Action-Dependent Code). An (M, n) code for communication over a quantum action-dependent channel NSA→B ,
that is governed by an action channel TG→SS0

, consists of:
1) An encoder that comprises two stages:

• action encoder that prepares a quantum action state ρ(m)
Gn ∈ D(H⊗n

G ), for m ∈ {1, . . . ,M} = M.
• transmission encoder E(m)

Sn
0 →An that receives the side-information Sn

0 and prepares the channel input An.

2) A decoding measurement, i.e., a POVM {Dm}Mm=1 on the output Hilbert space H⊗n
B .

The coding scheme works as shown in Figure 1. Alice selects a uniform message m ∈ M. She first prepares the action
state ρ(m)

Gn . The action system Gn then sent through the action channel, producing

ρ
(m)
SnSn

0
= T ⊗n

G→SS0
(ρ

(m)
Gn ). (9)



4

Given the side information Sn
0 , Alice applies the transmission encoder:

ρ
(m)
SnAn = idSn ⊗ E(m)

Sn
0 →An(ρ

(m)
SnSn

0
). (10)

Both the input environment Sn and Alice’s transmission An are fed into the channel N⊗n
SA→B , hence

ρ
(m)
Bn = N⊗n

SA→B(ρ
(m)
SnAn). (11)

Bob receives Bn. He performs the measurement {Dm} to obtain an estimate of Alice’s message.
For an (M, n, ε) code, average probability of error is bounded by ε, i.e.,

p̄(n)e := 1− 1

M

∑
m∈M

Tr
[
Dm ρ

(m)
Bn

]
≤ ε. (12)

Definition 2 (Achievable Rate). A communication rate R is said to be achievable for the quantum action-dependent channel
NSA→B , with respect to the action channel TG→SS0 , if for every ε, δ > 0 and sufficiently large n, there exists a (2n(R−δ), n, ε)
code. The channel capacity CQAD is defined as the supremum of all achievable rates, where the subscript ‘QAD’ indicates the
quantum action dependence.

IV. MAIN RESULT

We now state our main result, an achievable rate for the quantum action-dependent channel.
Theorem 1 (Achievable Rate). The following rate is achievable for the quantum action-dependent channel:

Rlow = I(V U ;B)ρ − I(V ;S|U)ρ, (13)

with respect to a classical auxiliary pair (V,U) ∼ pV U , a state collection {σu
G}, and an encoding channel Fv

S0→A, such that

σu
SS0

= TG→SS0
(σu

G), (14)
ρv,uSA = idS ⊗Fv

S0→A(σ
u
SS0

), (15)

ρV USA =
∑
u,v

pV,U (v, u) |v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ ρv,uSA, (16)

where ρuV =
∑

v∈V pV |U (v|u) |v⟩⟨v|. Hence, ρV UB = idV U ⊗ NSA→B(ρV USA). Equivalently, the capacity of the quantum
action-dependent channel NSA→B satisfies

CQAD ≥ max
pV U , σu

G , Fv
S0→A

[I(V U ;B)ρ − I(V ;S|U)ρ]. (17)

Remark 1. Previous work has considered side information when the quantum state σSS0 is fixed and dictated by the model
[36–38]. This fixed state represents the entanglement between the environment subsystem S and the side-information subsystem
S0, which is accessible to Alice. By utilizing the side information S0, Alice’s encoder can generate entanglement between the
channel input and its environment S. In this sense, we can regard Alice as being entangled with the channel, and this is a key
feature of quantum side information at the transmitter. In our model, however, the state σu

SS0
depends on the action encoding

u chosen by Alice. This added degree of freedom allows Alice to influence the channel environment S by selecting different
actions. This is analogous to the classical action-dependent channel model in [17], where the channel parameter is a noisy
version of Alice’s action.

V. ONE-SHOT CODE CONSTRUCTION

In this section, we introduce a coding scheme for the one-shot setting, of n = 1, over the quantum action-dependent channel
(see Figure 1). Let NSA→B be a quantum action-dependent channel. Let TG→SS0 be the action channel, that generates Alice’s
side information subsystem S0 and the environment subsystem S. Consider the quantum states defined in Theorem 1: σu

SS0
is

the entangled state produced by the action channel TG→SS0
, hence, ρV USA is the channel input, and the corresponding output

is ρUV B = idUV ⊗NSA→B(ρUV SA).
We now describe the one-shot coding scheme.

A. Codebook

Let R, RS > 0 denote the coding rates corresponding to the information and action encodings. First, the action-encoding
codebook CU := {u(m)}m∈{1,...,2R} is sampled from a random set of i.i.d. codebooks CU , distributed according to pU . Then, let
{CV (m)}{m=1,...,2R} be 2R subcodebooks, such that CV (m) := {v(m, 1), v(m, 2), . . . , v(m, 2RS )}, and {v(m, ℓ)}l∈{1,...,2RS }
are drawn independently according to pV |U (·|u(m)). Both are revealed to Alice and Bob. The overall codebook is C :=
CU ∪ {CV (m)}. We use the notation C for a deterministic codebook and C for a random codebook.
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B. Encoder
Our encoding scheme consists of two parts, action encoding and message encoding:

1) Action Encoding: For each value u, let
∣∣σu

GK0

〉
be a purification of the state σu

G, with K0 as a reference.

Given a message m, prepare
∣∣∣σu(m)

GK0

〉
, and transmit G through the action channel.

Consider a Stinespring dilation of the action channel, with an isometry TG→SS0K1
, where K1 is appended the channel

environment S and the side information S0. Upon the action encoding above, this channel acts on
∣∣∣σu(m)

GK0

〉
to produce

the joint state
∣∣∣ψu(m)

SS0K1K0

〉
: ∣∣∣ψu(m)

SS0K1K0

〉
= TG→SS0K1 ⊗ 1K0

∣∣∣σu(m)
GK0

〉
. (18)

2) Message Encoding: Alice implements the encoding map Ev(m,ℓ)
S0→A on the side-information subsystem S0. Consider a

Stinespring dilation with an isometry Ev(m,ℓ)
S0→AT . This produces the channel input state∣∣∣ρv(m,ℓ),u(m)

SATK1K0

〉
= (1S ⊗ E

v(m,ℓ)
S0→AT ⊗ 1K1K0

)
∣∣∣ψu(m)

SS0K1K0

〉
(19)

Overall, Alice’s state is ∣∣ϕmSATK1K0L

〉
=

1√
2RS

2RS∑
ℓ=1

∣∣∣ρv(m,ℓ),u(m)
SATK1K0

〉
⊗ |ℓ⟩ . (20)

According to Uhlmann’s Theorem [40], for every pair of purifications |ψ⟩AB and |ϕ⟩AC of ρA and σA, respectively, there
exists an isometry WC→B such that F (ρA, σA) = F (|ψ⟩⟨ψ|AB ,W (|ϕ⟩⟨ϕ|AC)W

†). Then, in our case, it follows that there
exists a set of isometries,

{Wm
S0→ATL}m∈M ∈ L (HS0

→ HA ⊗HT ⊗HL) (21)

that map from
∣∣∣ψu(m)

SS0K1K0

〉
to
∣∣ϕmSATK1K0L

〉
, or equivalently, from

∣∣∣ψu(m)
SS0K1K0

〉
to
∣∣∣ρv(m,ℓ),u(m)

SATK1K0

〉
.

Using the short notation W̃m = 1S ⊗Wm
S0→ATL ⊗ 1K1K0 ,

P
(
ϕmSATK1K0L, W̃

m(ψ
u(m)
SS0K1K0

)W̃ †m
)
= P

(
1

2RS

∑
ℓ∈L

ρ
v(m,ℓ),u(m)
S , σ

u(m)
S

)
. (22)

Given a message m, Alice applies the isometry Wm
S0→ATL on

∣∣∣ψu(m)
SS0K1K0

〉
and transmits A over the action-dependent

channel.

C. Decoding

We would like to design a POVM measurement {Dm} on the system B that distinguishes between the states {ρ(m)
B }m∈M

with high probability. Let E1 be the pinching map associated with ρV U ⊗ ρB such that: ρV U ⊗ ρB =
∑

λ λΠλ is the spectral
decomposition of ρV U ⊗ ρB . The pinching map E1 is defined as: E1(ρ) =

∑
λ ΠλρΠλ, where {Πλ} are the orthogonal

projectors onto the eigenspace of ρV U ⊗ ρB . We define ν1 as the number of distinct nonnegative eigenvalues of ρV U ⊗ ρB .
Now E1(ρV UB) is block-diagonal in the eigenbasis of ρV U ⊗ ρB , thus it commutes with ρV U ⊗ ρB . The pinching of ρV UB

with respect to ρV U ⊗ ρB is defined as:

E1(ρV UB) =

ν1∑
λ=1

Πλ

(∑
v,u

pV U (v, u) |v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ ρv,uB

)
Πλ (23)

For two Hermitian matrices A and B, we define the projection {A ≥ B} as
∑

λ≥0 Pλ , where the spectral decomposition of
A−B is given as

∑
λ λPλ. In this notation, Pλ is the projection to the eigenspace corresponding to the eigenvalue λ. Then,

let

ΠV UB = {E1 (ρV UB) ≥ 2R+RSρV U ⊗ ρB}. (24)

For every m ∈ M, ℓ ∈ L, we define:

γ(m, ℓ) =TrV U [ΠV UB (|v(m, ℓ)⟩⟨v(m, ℓ)| ⊗ |u(m)⟩⟨u(m)| ⊗ 1B)] . (25)

Our set of POVM operators are then normalized as

β(m, ℓ) =

∑
m′,ℓ′

γ(m′, ℓ′)

− 1
2

γ(m, ℓ)

∑
m′,ℓ′

γ(m′, ℓ′)

− 1
2

(26)

for (m, ℓ) ∈ M× L.
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D. Error Bound

We are now ready to state our one-shot result.
Proposition 2 (One-shot error probability). Let α ∈

(
0, 12

)
. Then, the average error probability is bounded by:

EC[p̄
(1)
e ] ≤ 12 · να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)] +

2

α

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S) (27)

with

ρV−U−S =
∑
u

pU (u)ρ
u
V ⊗ |u⟩⟨u| ⊗ σu

S (28)

where ν1 is the number of distinct eigenvalues of ρV U ⊗ ρB , and ν2 is the maximum number of distinct eigenvalues of
{σu(m)

S }∀m∈M.
The proof of Proposition 2 is given in Appendix C. The outline is given below.

E. Proof Outline

First, we show that

EC[p̄
(1)
e ]≤2EC

Tr

 ∑
m′ ̸=1,ℓ

β(m′, ℓ)

 Θ̂B(1)

+ 2EC

{
P
(
ΘB(1), Θ̂B(1)

)2}
(29)

where ΘB(m) Bob’s output state given that the message m was sent, and Θ̂B(m) = 1
2RS

∑
ℓ∈L ρ

v(m,ℓ),u(m)
B is the average

output state, when averaged over the subcodebook.
Intuitively, bounding the second error term requires showing the codebook average state ΘB(1) is close to the probabilistic

average state Θ̂B(1). To this end, we use the subcodebook property below:

EC

{
D̃1+α

(
1

2RS

∑
ℓ∈L

ρ
v(m,ℓ),u(m)
S ∥σu(m)

S

)}
≤ 1

α ln 2

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S) (30)

where ρV−U−S =
∑

u pU (u)ρ
u
V ⊗ |u⟩⟨u| ⊗ σu

S and α ∈ (0, 12 ). This property is shown in Appendix A.
As for the first error term on the right-hand side of (29), we use the Hayashi-Nagaoka inequality in order to show to bound

this error term by

EC

Tr

 ∑
m′ ̸=1,ℓ

β(m′, ℓ)

 Θ̂B(1)

 ≤ 2EC

{
Tr
[
(1− γ(1, 1)) ρ

v(1,1),u(1)
B

]}
+ 4

∑
(m′,ℓ)̸=(1,1)

EC

{
Tr
[
(γ(m′, ℓ)) ρ

v(1,1),u(1)
B

]}
. (31)

The bound on the first term is then obtained as a consequence of the projector properties in Appendix B:

Tr[(1−ΠV UB) ρV UB ] ≤να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)], (32)

2R+RS Tr [ΠV UB (ρV U ⊗ ρB)] ≤να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)]. (33)

VI. PROOF OF THEOREM 1

We consider the average error probability as the number of channel uses n grows to infinity. Let ε > 0. Let dV UB be the
dimension of HV ⊗HU ⊗HB , and dS be the dimension of HS . As shown in [41, Lemma 3.9], we can bound ν1 and ν2 as
follows:

ν1 ≤ (n+ 1)
dV UB−1

,

ν2 ≤ (n+ 1)
dS−1

. (34)

Based on Proposition 2 for n uses of the channel, there exists a (deterministic) codebook C such that:

p̄(n)e ≤ 12 (n+ 1)
α(dV UB−1)

2α[n(R+RS)−D̃1−α(ρ⊗n
V UB∥ρ⊗n

V U⊗ρ⊗n
B )]

+
2

α
(n+ 1)α(dS−1)2α[−nRS+D̃1+α(ρ⊗n

V US∥ρ⊗n
V −U−S)]

= 2
−n

[
−α(R+RS)− log(12)

n −α(dV UB−1)

n log(n+1)+α
n D̃1−α(ρ⊗n

V UB∥ρ⊗n
V U⊗ρ⊗n

B )
]
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+ 2
−n

[
αRS− 1

n log( 2
α )−

α(dS−1)

n log(n+1)−α
n D̃1+α(ρ⊗n

V US∥ρ⊗n
V −U−S)

]
(35)

Hence, the error probability tends to zero as n→ ∞, provided that

α(R+RS) <
α

n
D̃1−α

(
ρ⊗n
V UB∥ρ

⊗n
V U ⊗ ρ⊗n

B

)
− α(dV UB − 1)

n
log (n+ 1)− log(12)

n
, (36)

and

αRS >
α

n
D̃1+α

(
ρ⊗n
V US∥ρ

⊗n
V−U−S

)
+
α(dS − 1)

n
log (n+ 1) +

1

n
log

(
2

α

)
. (37)

In the limit of n→ ∞ and α→ 0, the bounds from (36) and (37) can be simplified. The last two terms vanish as n→ ∞.
We then apply the additivity of the sandwiched Rényi divergence, D̃α(ρ

⊗n∥σ⊗n) = nD̃α(ρ∥σ), and its convergence to the
quantum divergence as α→ 0 [39, 40]:

lim
α→0

[
lim
n→∞

1

n
D̃1−α(ρ

⊗n
V UB∥ρ

⊗n
V U ⊗ ρ⊗n

B )

]
= lim

α→0

[
D̃1−α(ρV UB∥ρV U ⊗ ρB)

]
= D(ρV UB∥ρV U ⊗ ρB)

= I(V U ;B)ρ, (38)

and similarly,

lim
α→0

[
lim
n→∞

1

n
D̃1+α(ρ

⊗n
V US∥ρ

⊗n
V−U−S)

]
= I(V ;S|U)ρ. (39)

We deduce that the error probability satisfies p̄(n)e ≤ ε provided that

R+RS < I(V U ;B)ρ −
δ

3
, (40)

RS > I(V ;S|U)ρ +
δ

3
(41)

for some δ > 0 and for sufficiently large n. Hence, a transmission rate R such that

R < I(V U ;B)ρ − I(V ;S|U)ρ − δ, (42)

is achievable.

APPENDIX A
SUBCODEBOOK AVERAGE

We begin our one-shot analysis with the subcodebook average result below (see proof outline in Subsection V-E).
Lemma 3 (see [36, Lemma 7]). Let ρV US = Tr [ρV USA] be a classical-quantum state, and α ∈ (0, 12 ). Furthermore, let
Cm = {v(m, 1), . . . v(2m,RS ), u(m)} be a collection of random variables such that the sequence v(m, 1), . . . , v(m, 2RS ) is
conditionally i.i.d. ∼ pV |U (·|u(m)), for every given u(m). We consider the following state:

τS|Cm
≜

1

2RS

∑
ℓ∈L

ρ
v(m,ℓ),u(m)
S . (43)

Then, there exists a constant ν2 ≥ 0 such that:

EC

{
D̃1+α(τS|Cm

∥σu(m)
S )

}
≤ 1

α ln 2

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S) (44)

for all m ∈ {1, . . . , 2R}, where ρV−U−S =
∑

u pU (u)ρ
u
V ⊗|u⟩⟨u|⊗σu

S , and ν2 is the maximum number of distinct eigenvalues
of the states {σS|u}u.

The lemma can be obtained as a consequence of [36, Lemma 7]. For completeness, we provide the full proof below.

Proof. For α ∈ (0, 1] and due to concavity of log(·), we obtain:

EC

{
D̃1+α(τS|Cm

∥σu(m)
S )

}
=

1

α
EC

{
αD̃1+α(τS|Cm

∥σu(m)
S )

}
=

1

α
EC

{
2
log2

(
αD̃1+α(τS|Cm∥σu(m)

S )
)}

≤ 1

α
log2

(
EC

{
2αD̃1+α(τS|Cm∥σu(m)

S )
})

. (45)
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Then, by substituting the definition of D̃1+α(·∥·): 1

EC

{
2αD̃1+α(τS|Cm∥σS|u(m))

}
= EC

{
Tr

[(
σS|u(m)

−α
2(1+α) τS|Cm

σS|u(m)

−α
2(1+α)

)1+α
]}

= EC

Tr

(σS|u(m)

−α
2(1+α)

(
1

2RS

∑
ℓ∈L

ρS|v(m,ℓ),u(m)

)
σS|u(m)

−α
2(1+α)

)1+α


= EC

{
Tr

[(
σS|u(m)

−α
2(1+α)

(
1

2RS

∑
ℓ∈L

ρS|v(m,ℓ),u(m)

)
σS|u(m)

−α
2(1+α)

)

×

(
σS|u(m)

−α
2(1+α)

(
1

2RS

∑
ℓ′∈L

ρS|v(m,ℓ′),u(m)

)
σS|u(m)

−α
2(1+α)

)α]}

=
1

2RS

∑
ℓ∈L

EC

{
Tr
[(
σS|u(m)

−α
2(1+α)

(
ρS|v(m,ℓ),u(m)

)
σS|u(m)

−α
2(1+α)

)

×

σS|u(m)

−α
2(1+α)

1

2RS

ρS|v(m,ℓ),u(m) +
∑

ℓ′ ̸=ℓ∈L

ρS|v(m,ℓ′),u(m)

σS|u(m)

−α
2(1+α)

α
≤ 1

2RS

∑
ℓ∈L

EC

{
Tr
[(
σS|u(m)

−α
2(1+α)

(
ρS|v(m,ℓ),u(m)

)
σS|u(m)

−α
2(1+α)

)
×

(
σS|u(m)

−α
2(1+α)

1

2RS

(
ρS|v(m,ℓ),u(m) +

∑
ℓ′∈L

ρS|v(m,ℓ′),u(m)

)
σS|u(m)

−α
2(1+α)

)α]}
, (46)

where the second equality is obtained by substituting τS|Cm
as in (43). Recall that the sequence v(m, ℓ′), ℓ′ ∈ {1, . . . , 2RS},

is conditionally i.i.d. ∼ pV |U (·|u(m)), for every given u(m).
Therefore,

EC

{
2αD̃1+α(τS|Cm∥σS|u(m))

}
≤ 1

2RS

∑
ℓ∈L

EC

{
Tr
[(
σS|u(m)

−α
2(1+α)

(
ρS|v(m,ℓ),u(m)

)
σS|u(m)

−α
2(1+α)

)
×
(
σS|u(m)

−α
2(1+α)

1

2RS

(
ρS|v(m,ℓ),u(m) + 2RSEV |u(m)

[
ρS|V,u(m)

])
σS|u(m)

−α
2(1+α)

)α]}
(47)

We note that the inner expectation term satisfies EV |u(m)

[
ρS|V,u(m)

]
= σS|u(m). Taking the expectation over u(m) and v(m, ℓ)

as well, we obtain

EC

{
2αD̃1+α(τS|Cm∥σS|u(m))

}
≤ EV,U

{
Tr

[(
σS|U

−α
2(1+α)

(
ρS|V,U

)
σS|U

−α
2(1+α)

)(
σS|U

−α
2(1+α)

1

2RS

(
ρS|V,U + 2RSσS|U

)
σS|U

−α
2(1+α)

)α]}
. (48)

Next, we introduce the pinching map E2 with respect to σS|u. Let ν2 denote the maximum number of distinct eigenvalues
of σS|u. Then, by the pinching inequality in (6),

EC

{
2αD̃1+α(τS|Cm∥σS|u(m))

}
≤EV,U

{
Tr

[(
σS|U

−α
2(1+α)

(
ρS|V,U

)
σS|U

−α
2(1+α)

)(
σS|U

−α
2(1+α)

1

2RS

(
ν2E2(ρS|V,U ) + 2RSσS|U

)
σS|U

−α
2(1+α)

)α]}
≤EV,U

{
Tr

[(
σS|U

−α
2(1+α)

(
ρS|V,U

)
σS|U

−α
2(1+α)

)(
σS|U

−α2

2(1+α)
1

2αRS

(
να2 Eα

2 (ρS|V,U ) + 2αRSσα
S|U

)
σS|U

−α2

2(1+α)

)]}
(49)

where the second inequality holds since the operators E2(ρS|V,U ) and σS|U commute.
By trace cyclicity, we can write the last expression as

EV,U

{
Tr
[
σS|U

α−αρS|V,U
]}

+ EV,U

{
Tr

[
σS|U

−α
2(1+α) ρS|V,U σS|U

−(α+α2)
2(1+α)

να2
2αRS

(
Eα
2 (ρS|V,U )

)
σS|U

−α2

2(1+α)

]}
1To avoid confusion, from now on, we are using the notation σS|u(m) and ρS|v(m,ℓ),u(m) to represent the states σ

u(m)
S and ρ

v(m,ℓ),u(m)
S , respectively.
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= 1 +
να2

2αRS
EV,U

{
Tr
[
ρS|V,U Eα

2 (ρS|V,U ) σS|U
−α
]}

(a)
= 1 +

να2
2αRS

EV,U

{
Tr
[
ρS|V,U E2

(
Eα
2 (ρS|V,U ) σS|U

−α
)]}

(b)
= 1 +

να2
2αRS

EV,U

{
Tr
[
E1+α
2 (ρS|V,U ) σS|U

−α
]}

(c)
= 1 +

να2
2αRS

EV,U

{
2αD̃1+α(E2(ρS|V,U )∥E2(σS|U ))

}
(d)

≤ 1 +
να2

2αRS
EV,U

{
2αD̃1+α(ρS|V,U∥σS|U)

}
(e)
= 1 +

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S), (50)

where
(a) holds since the state is invariant to another application of the pinching map,
(b) since

Tr[Eσ(ρ)ω] = Tr

[∑
λ

ΠλρΠλω

]
=
∑
λ

Tr [ΠλρΠλω] =
∑
λ

Tr [ρΠλωΠλ] = Tr [ρEσ(ω)] ,

(c) is obtained by substituting the definition of D̃1+α(·∥·), and since E2(σS|u) = σS|u.
(d) is obtained by the data processing inequality of D̃1+α(·∥·), for α ∈ (− 1

2 , 0) ∪ (0,∞) [39, 40].
(e) is obtained by taking the expectation over V,U :

EV,U

{
2αD̃1+α(ρS|V,U∥σS|U)

}
= EV,U

{
Tr

[(
σS|u

−α
2(1+α) ρS|V,UσS|U

−α
2(1+α)

)1+α
]}

= Tr

[∑
v,u

pV,U (v, u) |v⟩⟨v| ⊗ |u⟩⟨u| ⊗
(
σS|u

−α
2(1+α) ρS|v,u σS|u

−α
2(1+α)

)1+α
]

= Tr

[(
ρV−U−S

−α
2(1+α) ρV US ρV−U−S

−α
2(1+α)

)1+α
]

= 2αD̃1+α(ρV US∥ρV −U−S). (51)

We conclude that for α ∈ (0, 12 ):

EC

{
D̃1+α(τS|Cm

∥σS|u(m))
}
≤ 1

α
log2

(
1 +

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S)

)
≤ 1

α ln 2

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S), (52)

where the last line follows from log2(1 + x) ≤ x
ln 2 for x ∈ (−1,∞). This completes the proof of the subcodebook property

in Lemma 3.

APPENDIX B
PROJECTOR PROPERTIES

Our one-shot error analysis makes use of the projector properties below (see proof outline in Subsection V-E).

Lemma 4. For every α ∈
(
0, 12

)
, and R,RS > 0 we have:

Tr[(1−ΠV UB) ρV UB ] ≤να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)], (53)

2R+RS Tr [ΠV UB (ρV U ⊗ ρB)] ≤να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)]. (54)

Proof. We start by showing the upper bound in (53):

Tr[(1−ΠV UB) ρV UB ]
(a)
= Tr[E1 ((1−ΠV UB) ρV UB)]

(b)
= Tr[(1−ΠV UB) E1(ρV UB)]

= Tr
[
(1−ΠV UB) E1(ρV UB)

1−αE1(ρV UB)
α
]

(c)

≤ 2α(R+RS) Tr
[
(1−ΠV UB) E1(ρV UB)

1−α(ρV U ⊗ ρB)
α
]

≤2α(R+RS) Tr
[
E1(ρV UB)

1−α(ρV U ⊗ ρB)
α
]
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= 2α(R+RS) Tr
[(

(ρV U ⊗ ρB)
α

2(1−α) E1 (ρV UB) (ρV U ⊗ ρB)
α

2(1−α)

)
×
(
(ρV U ⊗ ρB)

α
2(1−α) E1 (ρV UB) (ρV U ⊗ ρB)

α
2(1−α)

)−α
]

(d)
= 2α(R+RS) Tr

[(
(ρV U ⊗ ρB)

α
2(1−α) ρV UB (ρV U ⊗ ρB)

α
2(1−α)

)
×
(
(ρV U ⊗ ρB)

α
2(1−α) E1 (ρV UB) (ρV U ⊗ ρB)

α
2(1−α)

)−α
]

(55)

where
(a) holds due to the trace-preserving property of pinching,
(b) follows from the definition of ΠV UB in (24),
(c) from the definition of ΠV UB and the operator monotonicity of the function f(x) = xα for α ∈ (0, 1],
(d) holds since the pinching map E1 is with respect to the product state ρV U ⊗ ρB .
Based on the pinching inequality (6), it follows that

Tr[(1−ΠV UB) ρV UB ]≤2α(R+RS)να1 Tr
[(

(ρV U ⊗ ρB)
α

2(1−α) ρV UB (ρV U ⊗ ρB)
α

2(1−α)

)
×
(
(ρV U ⊗ ρB)

α
2(1−α) ρV UB (ρV U ⊗ ρB)

α
2(1−α)

)−α
]

= να1 2
α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)]. (56)

The derivation for (54) follows similar steps:

2R+RS Tr [ΠV UB (ρV U ⊗ ρB)] = 2R+RS Tr
[
ΠV UB (ρV U ⊗ ρB)

1−α
(ρV U ⊗ ρB)

α
]

≤2R+RS2−(R+RS)(1−α) Tr
[
ΠV UBE1 (ρV UB)

1−α
(ρV U ⊗ ρB)

α
]

≤2α(R+RS) Tr
[
E1 (ρV UB)

1−α
(ρV U ⊗ ρB)

α
]

≤να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)]. (57)

APPENDIX C
PROOF OF PROPOSITION 2

Let ΘB(m) be the state Bob receives:

ΘB(m) = TrTK1K0L

[
NSA→B

(
W̃m(ψ

u(m)
SS0K1K0

)W̃ †m
)]

(58)

given that the message m was transmitted. Furthermore, let Θ̂B(m) be the average state that Bob receives, when averaged
over the subcodebook of CV (m):

Θ̂B(m) =
1

2RS

∑
ℓ∈L

ρ
v(m,ℓ),u(m)
B . (59)

By the symmetry of encoding and decoding, we may assume without loss of generality that Alice sent m = 1. Consider the
pinching-based decoder {β(m, ℓ)}(m,ℓ)∈M×L that has been constructed in Subsection V-C. We now bound the average error
probability as follows:

EC[p̄
(1)
e ] = Pr

(
M̂ ̸= 1 |M = 1

)
(a)
= EC

Tr

 ∑
m′ ̸=1,ℓ

β(m′, ℓ)

ΘB(1)


(b)

≤ 2EC

Tr

 ∑
m′ ̸=1,ℓ

β(m′, ℓ)

 Θ̂B(1)


+ 2EC


∣∣∣∣∣∣∣
√√√√√Tr

 ∑
m′ ̸=1,ℓ

β(m′, ℓ)

ΘB(1)

 −

√√√√√Tr

 ∑
m′ ̸=1,ℓ

β(m′, ℓ)

 Θ̂B(1)


∣∣∣∣∣∣∣
2

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(c)

≤ 2EC

Tr

 ∑
m′ ̸=1,ℓ

β(m′, ℓ)

 Θ̂B(1)

+ 2EC

{
P
(
ΘB(1), Θ̂B(1)

)2}
(60)

where (a) follows since the error events are disjoint, (b) holds due to the following: Note that (x − y)2 ≥ 0 implies
(x + y)2 ≤ 2(x2 + y2). Therefore, z = (

√
w +

√
z −

√
w)

2 ≤ 2w + 2|
√
z −

√
w|2. The inequality follows by taking z =

Tr
[(∑

m′ ̸=1,ℓ β(m
′, ℓ)
)
ΘB(1)

]
and w = Tr

[(∑
m′ ̸=1,ℓ β(m

′, ℓ)
)
Θ̂B(1)

]
. Then, (c) is obtained by

∑
m′ ̸=1,ℓ β(m

′, ℓ) ≤ 1

and
∣∣∣√Tr[∆σ]−

√
Tr[∆ρ]

∣∣∣ ≤ P (σ, ρ) for every pair of quantum states ρ, σ ∈ D(H) and 0 ≤ ∆ ≤ 1, based on [36, Fact 7].
Consider the first term on the right-hand side of (60):∑
m′ ̸=1,ℓ

EC

{
Tr
[
(β(m′, ℓ)) Θ̂B(1)

]}
=

1

RS

∑
ℓ′

∑
m′ ̸=1,ℓ

EC

{
Tr
[
(β(m′, ℓ)) ρ

v(1,ℓ′),u(1)
B

]}
=

∑
m′ ̸=1,ℓ

EC

{
Tr
[
(β(m′, ℓ)) ρ

v(1,1),u(1)
B

]}
≤ EC

{
Tr
[
(1− β(1, 1)) ρ

v(1,1),u(1)
B

]}
≤ EC

Tr


1−

∑
m′,ℓ

γ(m′, ℓ)

− 1
2

γ(1, 1)

∑
m′,ℓ

γ(m′, ℓ)

− 1
2

 ρ
v(1,1),u(1)
B




≤ 2EC

{
Tr
[
(1− γ(1, 1)) ρ

v(1,1),u(1)
B

]}
+ 4

∑
(m′,ℓ)̸=(1,1)

EC

{
Tr
[
(γ(m′, ℓ)) ρ

v(1,1),u(1)
B

]}
, (61)

where the last inequality is based on the Hayashi-Nagaoka operator inequality [42]: 1−(S + T )
− 1

2 S (S + T )
− 1

2 ≤ 2 (1− S)+
4T , for every 0 ≤ S ≤ 1 and T ≥ 0 on a Hilbert space H. In our case, we set S = γ(1, 1) and T =

∑
(m′,ℓ)̸=(1,1) γ(m

′, ℓ).
Our next steps follow similar considerations as in [36, 37]. Specifically, we obtain an upper bound on each term on the

right-hand side of (61) by using the properties established in Appendix A and Appendix B. We bound the first term on the
right-hand side of (61) as follows:

2EC

{
Tr
[
(1− γ(1, 1)) ρ

v(1,1),u(1)
B

]}
(a)
= 2EC

{
Tr
[
(1− TrV U [ΠV UB(|v(1, 1)⟩⟨v(1, 1)| ⊗ |u(1)⟩⟨u(1)| ⊗ 1B)]) ρ

v(1,1),u(1)
B

]}
= 2EC

{
Tr
[
(1− TrV U [ΠV UB(|v(1, 1)⟩⟨v(1, 1)| ⊗ |u(1)⟩⟨u(1)| ⊗ 1B)])

(
idV U ⊗ ρ

v(1,1),u(1)
B

)]}
(b)
= 2EC

{
Tr
[
(1−ΠV UB(|v(1, 1)⟩⟨v(1, 1)| ⊗ |u(1)⟩⟨u(1)| ⊗ 1B))

(
idV U ⊗ ρ

v(1,1),u(1)
B

)]}
= 2

[
Tr
[
(1−ΠV UB)EC

{
|v(1, 1)⟩⟨v(1, 1)| ⊗ |u(1)⟩⟨u(1)| ⊗ ρ

v(1,1),u(1)
B

}]]
= 2

[
Tr

[
(1−ΠV UB)

(∑
v,u

pV U (v, u) |v⟩⟨v| ⊗ |u⟩⟨u| ⊗ ρv,uB

)]]
(c)
= 2Tr[(1−ΠV UB) ρV UB ]

(d)

≤ 2 · να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)]. (62)

where
(a) is obtained by the definition of γ(1, 1) as in (25),
(b) follows from trace linearity,
(c) from taking the expectation with respect to the random codebook C, and
(d) from Lemma 4.

As for the second term in (61):

4
∑

(m′,ℓ)̸=(1,1)

EC

{
Tr
[
(γ(m′, ℓ)) ρ

v(1,1),u(1)
B

]}
(a)
= 4

∑
(m′,ℓ)̸=(1,1)

EC

{
Tr
[
(TrV U [ΠV UB(|v(m′, ℓ)⟩⟨v(m′, ℓ)| ⊗ |u(m′)⟩⟨u(m′)| ⊗ 1B)]) ρ

v(1,1),u(1)
B

]]
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= 4
∑

(m′,ℓ)̸=(1,1)

EC

{
Tr
[(

ΠV UB(|v(m′, ℓ)⟩⟨v(m′, ℓ)| ⊗ |u(m′)⟩⟨u(m′)| ⊗ ρ
v(1,1),u(1)
B

)]}
(b)
= 4

∑
(m′,ℓ)̸=(1,1)

Tr
[
EC

{(
ΠV UB(|v(m′, ℓ)⟩⟨v(m′, ℓ)| ⊗ |u(m′)⟩⟨u(m′)| ⊗ ρ

v(1,1),u(1)
B

)}]

= 4
∑

(m′,ℓ)̸=(1,1)

Tr ΠV UB

 ∑
v,v′,u,u′

Pr (v(1, 1) = v, v(m′, ℓ) = v′, u(1) = u, u(m′) = u′) |v′⟩⟨v′| ⊗ |u′⟩⟨u′| ⊗ ρv,uB


= 4

∑
(m′,ℓ)̸=(1,1)

Tr

ΠV UB

 ∑
v,v′,u,u′

pV U (v, u)pV U (v
′, u′) |v′⟩⟨v′| ⊗ |u′⟩⟨u′| ⊗ ρv,uB


= 4

∑
(m′,ℓ)̸=(1,1)

Tr

ΠV UB

∑
v′,u′

pV U (v
′, u′) |v′⟩⟨v′| ⊗ |u′⟩⟨u′|

⊗

(∑
v,u

pV U (v, u)ρ
v,u
B

)
(c)
= 4

∑
(m′,ℓ)̸=(1,1)

Tr [ΠV UB (ρV U ⊗ ρB)]

(d)

≤ 4 · 2R+RS Tr [ΠV UB (ρV U ⊗ ρB)]

(e)

≤ 4 · να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)]. (63)

where
(a) holds by the definition of γ(m, ℓ) in (25),
(b) by linearity,
(c) follows by taking the expectation with respect to the random codebook,
(d) is obtained due to the fact that v(m, ℓ) is conditionally independent of v(m′, ℓ′), given u(m), for (m, ℓ) ̸= (m′, ℓ′),
(e) follows from Lemma 4.
By plugging (62)-(63) into (61), we obtain the following bound on the confusion error term:∑

m′ ̸=1,ℓ

EC

{
Tr
[
(β(m′, ℓ)) Θ̂B(1)

]}
≤ 6 · να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)]. (64)

Hence, the expected error probability is bounded by

EC[p̄
(1)
e ] ≤ 12 · να1 2α[R+RS−D̃1−α(ρV UB∥ρV U⊗ρB)] + 2EC

{
P
(
ΘB(1), Θ̂B(1)

)2}
(65)

by (60).
It remains to bound the last term for α ∈ (0, 12 ):

EC

{
P
(
ΘB(1), Θ̂B(1)

)2}
(a)
= EC

P
(
TrTK1K0L

[
NSA→B

(
W̃ (1)(ψ

u(1)
SS0K1K0

)W̃ †(1)
)]
,

1

2RS

∑
ℓ∈L

ρ
v(1,ℓ),u(1)
B

)2


= EC

P
(
TrTK1K0L

[
NSA→B

(
W̃ (1)(ψ

u(1)
SS0K1K0

)W̃ †(1)
)]
,

1

2RS

∑
ℓ∈L

TrTK1K0

[
NSA→B

(
ρ
v(1,ℓ),u(1)
SATK1K0

)])2


(b)

≤ EC

{
P
(
ϕ
(1)
SATK1K0L

, W̃ (1)(ψ
u(1)
SS0K1K0

)W̃ †(1)
)2}

(c)
= EC

P
(

1

2RS

∑
ℓ∈L

ρ
v(1,ℓ),u(1)
S , σ

u(1)
S

)2


(d)
= EC

{
P
(
τS|C1

, σ
u(1)
S

)2}
= EC

{
1− F 2

(
τS|C1

, σ
u(1)
S

)]
(e)

≤ EC

{
1− 2

−D̃1+α

(
τS|C1

∥σu(1)
S

)}
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(f)

≤ ln 2EC

{
D̃1+α

(
τS|C1

∥σu(1)
S

)}
(g)

≤ 1

α

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S), (66)

where
(a) follows by substituting the definition of ΘB(m) and Θ̂B(m) in (58) and (59), respectively,
(b) from the fact that monotonicity of the purified distance, with respect to the quantum channel TrTK1K0

NSA→B(·), and
(c) from (22).
Furthermore,
(d) holds as we introduce the notation τS|C1

to represent for the average state: τS|C1
≡ 1

2RS

∑
ℓ∈L ρ

v(1,ℓ),u(1)
S , and since∑

v pV |U (v|u) [TrA ρv,uSA] = TrS0 σ
u
SS0

, and
(e) as D̃α(·∥·) is monotonically increasing in α, thus F 2(ρ, σ) = 2−D̃1/2(ρ∥σ) ≥ 2−D̃1+α(ρ∥σ) for every pair of quantum

states ρ, σ ∈ D(H) and α > − 1
2 (see [40, Corollary 4.3]).

(f) follows from the inequality 1− 2−x ≤ x ln 2, and
(g) by applying Lemma 3.

Proposition 2 then follows from (65)-(66).
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