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Abstract

We introduce the quantum action-dependent channel. The model can be viewed as a quantum analogue of the classical action-
dependent channel model. The Gel’fand-Pinsker channel has two inputs, Alice’s transmission and the input environment. The
action-dependent model allows the transmitter to affect the channel’s environment. Specifically, Alice encodes her message into
a quantum action, which in turn influences the channel’s environment through an action channel. Alice also has side information.
In the quantum model, she cannot have a copy of the environment state due to the no-cloning theorem. Instead, she shares
entanglement with this environment,as a result, her measurement can lead to a collapse of the environment state. We derive an
achievable communication rate for the transmission of messages via the quantum action-dependent channel.

I. INTRODUCTION

A fundamental problem in information theory is the characterization of reliable communication over channels affected by
random parameters, commonly referred to as channel states. Beginning with Shannon’s seminal work on channels with side
information [1], the study of channels with random parameters has revealed the crucial role of side information at the encoder
or decoder. Gel’fand and Pinsker established the capacity for channels with non-causal state information at the encoder [2].
Costa’s “writing on dirty paper” result [3] further extended it to Gaussian channels. These works laid the foundation for a rich
literature on random-parameter models in both point-to-point and multi-user settings [4–7].

In the random-parameter paradigm, the parameters are typically drawn from nature and cannot be controlled by the
communicating parties [2]. The parameters influence the channel by altering its transition law. In the classical setting, the
channel is described in terms of a probability function PY |X,S(·|x, s), where X represents Alice’s transmission and Y is Bob’s
observation at the channel output. The random parameter S has a specified distribution and its variation can significantly affect
the channel output. For this reason, side information, i.e., the knowledge of S, has a profound effect on capacity.

Weissman [8] introduced the action-dependent channel. In this model, the encoder first selects an action sequence, which
in turn, generates the channel parameters in a noisy fashion. The overall channel input then depends on both the message and
the induced parameters. This two-stage procedure captures a broad class of practical problems, such as memories with defects,
magnetic recording with rewriting, and other scenarios in which the transmitter can probe or partially control the channel
before communication, as was demonstrated in [9]. For example, a two-stage coding strategy can steer a defective memory
to improve reliability: first, the transmitter writes to the memory and immediately tries to read it back to learn about defects.
Then, the transmitter rewrites the defective bits based on that information. The flexibility of this model led to its extension
in several directions. For instance, the concept of probing capacity was introduced to quantify the maximum rate at which
the channel state can be learned through actions [10], and other works incorporated cost constraints on these actions [11].
The framework has also proven valuable in multi-user communication, with generalizations to broadcast channels [12, 13] and
multiple-access channels [14]. Furthermore, its implications for security have been explored in the context of wiretap channels
[15, 16] and other secure communication settings [17], where the action channel acts as a broadcast channel influenced by the
transmitter’s actions.

The ongoing development of quantum information theory is foundational for engineering next-generation communication and
computation systems [18–20]. By leveraging the principles of quantum mechanics, this field aims to overcome the limitations
of classical technologies. This quantum framework also unlocks entirely new phenomena with no classical parallel, such
as entanglement, i.e., the strongest resource of quantum correlation, as well as the no-cloning theorem, which forbids the
perfect duplication of unknown quantum information, motivating a deeper study of fundamental communication limits. Action
dependence is relevant in quantum communication as well. For example, a quantum measurement by the encoder on the
transmission system could result in a state collapse of the channel input environment.

Quantum environment-dependent channels are crucial for studying scenarios that involve not only the transmission of a
message, but also parameter estimation, a central task in fields such as quantum metrology. These types of quantum Gel’fand-
Pinsker channels have been studied, both with and without entanglement assistance [21] (see also [22]). The security implications
have also been explored in the quantum setting through wiretap channels [23] and covert communication [24]. Other variations
include scenarios in which the decoder performs parameter estimation [25]. The action-dependent framework has not yet been
studied in the quantum literature thus far.

In this paper, we introduce the quantum action-dependent channel. Our action dependence model modifies the environment-
dependent paradigm by allowing the transmitter’s actions to influence a quantum environment; this environment then generates
the channel’s governing parameters, giving the message direct influence over the communication conditions. Specifically, an
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Fig. 1. Coding over a quantum action-dependent channel.

encoder (Alice) first encodes a classical message M into an action sequence Gn, which is fed into a quantum action channel
T ⊗n
G→SS0

. This channel produces side information Sn
0 , for Alice, and an environment system Sn. Alice then encodes the message

and the side information into her transmission An, which is sent through the quantum communication channel N⊗n
SA→B . The

receiver (Bob) obtains the output sequence Bn, and performs a measurement in order to estimate Alice’s message.
The framework is the quantum counterpart of the classical action-dependent channel introduced by Weissman [8]. However,

the generalization is nontrivial due to fundamental quantum principles such as the no-cloning theorem. While a classical channel
parameter can be perfectly copied and then sent back to the transmitter, an unknown quantum state cannot. Consequently, the
side information is modeled as entanglement shared between two distinct systems, S and S0, where S represents the environment
affecting the channel, and S0 is the side information available to Alice.

We derive an achievable rate using one-shot information-theoretic methods. These techniques establish non-asymptotic
performance bounds by directly analyzing the error probability for a finite number of channel uses, rather than relying
on asymptotic arguments. The introduction of action dependence makes this analysis more challenging than in previous
environment-dependent channel models [23, 25]. In previous settings, the shared quantum state between the transmitter and the
environment is set by an outside source. Whereas here, the transmitter’s action induces the shared entangled state. Consequently,
our analysis must account for this additional layer of control. The formula of our capacity bound thus includes optimization
over not only the input state, but also the a quantum ensemble for the sender’s action.

II. NOTATION AND BASIC DEFINITIONS

We use standard notation from quantum information theory. Quantum systems are denoted by uppercase letters (e.g., A,B)
and their corresponding finite-dimensional Hilbert spaces by HA,HB . The set of density operators on HA is D(HA). Quantum
states (density operators) are denoted by greek letter, e.g., ρ, σ. A POVM is a set of positive semi-definite operators {Dm}
that satisfy

∑
mDm = 1, where 1 denotes the identity operator. If the quantum state before the measurement is ρ, then the

probability of an outcome m is Pr(m) = Tr(Dmρ).
A quantum channel NA→B is a completely positive trace-preserving (CPTP) map. Here, we consider a quantum channel

NSA→B , where A, S, and B are associated with the transmitter (Alice), the channel environment (“channel state"), and the
receiver (Bob). The channel can be represented through its Stinespring dilation, in terms of an isometry VSA→BE that couples
the output system to an auxiliary environment E. Namely, NSA→B(ρSA) = TrE

[
V ρSAV

†]. We assume that the channel is
memoryless. That is, if an input sequence (Sn, An) ≡ (S1, A1), . . . , (Sn, An) is transmitted through the channel, then the
input state ρSnAn undergoes the tensor-product map N⊗n

SA→B . We will see that in the action-dependent model, the channel
environment Sn is affected by the encoding operation. See Section V.

For a quantum state ρ, the von Neumann entropy is H(ρ) = −Tr(ρ log ρ). For a bipartite state ρAB ∈ D(HA ⊗ HB),
the quantum mutual information is defined as I(A;B)ρ = H(ρA) + H(ρB) − H(ρAB), and the conditional entropy as
H(A|B)ρ = H(ρAB)−H(ρB). Unlike its classical counterpart, the quantum conditional entropy can be negative.

The quantum relative entropy between two states ρ and σ in D(H) is defined as D(ρ∥σ) = Tr (ρ (log ρ− log σ)) if
supp(ρ) ⊆ supp(σ), and D(ρ||σ) = +∞ otherwise. The Sandwiched Rényi Divergence [26] is defined as D̃α (ρ||σ) :=
1

α−1 log Tr
[
σ

1−α
2α ρσ

1−α
2α

]α
.

Other key definitions are given below [27]:

1) Pinching: For a Hermitian operator A =
∑

i aiΠi with projectors Πi onto its eigenspaces, the pinching map is EA(B) :=∑
i ΠiBΠi.

2) Fidelity: F (ρ, σ) :=
∥∥√ρ√σ∥∥2

1
.

3) Purified Distance: P (ρ, σ) :=
√

1− F 2(ρ, σ).
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III. ACTION-DEPENDENT CODING

Before presenting our main results, we introduce a code for the transmission of messages via a quantum action-dependent
channel, where the encoder selects an action that affects the channel environment. Specifically, Alice has two roles: she encodes
both the action G and the transmission A through the channel. Her action encoder sends G through an action channel TG→SS0

that produces Alice’s side information S0 and the channel environment S.
Definition 1 (Action-Dependent Code). An (M, n) code for communication over a quantum action-dependent channel NSA→B ,
that is governed by an action channel TG→SS0 , consists of:

1) An encoder that comprises two stages:
• action encoder that prepares a quantum action state ρ(m)

Gn ∈ D(H⊗n
G ), for m ∈ {1, . . . ,M} = M.

• transmission encoder E(m)
Sn
0 →An that receives the side-information Sn

0 and prepares the channel input An.

2) A decoding measurement, i.e., a POVM {Dm}Mm=1 on the output Hilbert space H⊗n
B .

The coding scheme works as shown in Figure 1. Alice selects a uniform message m ∈ M. She first prepares the action
state ρ(m)

Gn . The action system Gn which is then sent through the action channel, producing

ρ
(m)
SnSn

0
= T ⊗n

G→SS0
(ρ

(m)
Gn ). (1)

Given the side information Sn
0 , Alice applies the transmission encoder:

ρ
(m)
SnAn = idSn ⊗ E(m)

Sn
0 →An(ρ

(m)
SnSn

0
). (2)

Both the input environment Sn and Alice’s transmission An are fed into the channel N⊗n
SA→B , hence

ρ
(m)
Bn = N⊗n

SA→B(ρ
(m)
SnAn). (3)

Bob receives Bn. He performs the measurement {Dm} to obtain an estimate of Alice’s message.
For an (M, n, ε) code, average probability of error is bounded by ε, i.e.,

p̄(n)e := 1− 1

M

∑
m∈M

Tr
[
Dm ρ

(m)
Bn

]
≤ ε. (4)

Definition 2 (Achievable Rate). A communication rate R is said to be achievable for the quantum action-dependent channel
NSA→B , with respect to the action channel TG→SS0

, if for every ε, δ > 0 and sufficiently large n, there exists a (2n(R−δ), n, ε)
code. The channel capacity CQAD is defined as the supremum of all achievable rates, where the subscript ‘QAD’ indicates the
quantum action dependence.

IV. MAIN RESULT

We now state our main result, an achievable rate for the quantum action-dependent channel.
Theorem 1 (Achievable Rate). The following rate is achievable for the quantum action-dependent channel:

Rlow = I(V U ;B)ρ − I(V ;S|U)ρ, (5)

with respect to a classical auxiliary pair (V,U) ∼ pV U , a state collection {σu
G}, and an encoding channel Fv

S0→A, such that

σu
SS0

= TG→SS0
(σu

G), (6)
ρv,uSA = idS ⊗Fv

S0→A(σ
u
SS0

), (7)

ρV USA =
∑
u,v

pV,U (v, u) |v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ ρv,uSA, (8)

where ρuV =
∑

v∈V pV |U (v|u) |v⟩⟨v|. Hence, ρV UB = idV U ⊗ NSA→B(ρV USA). Equivalently, the capacity of the quantum
action-dependent channel NSA→B satisfies

CQAD ≥ max
pV U , σu

G , Fv
S0→A

[I(V U ;B)ρ − I(V ;S|U)ρ]. (9)

Remark 1. Previous work has considered side information when the quantum state σSS0 is fixed and dictated by the model
[23–25]. This fixed state represents the entanglement between the environment subsystem S and the side-information subsystem
S0, which is accessible to Alice. By utilizing the side information S0, Alice’s encoder can generate entanglement between
the channel input and its environment S. In this sense, we can regard Alice as being entangled with the channel, and this is
a key feature of quantum side information at the transmitter. In our model, however, the state σu

SS0
depends on the action

encoding u chosen by Alice. This added degree of freedom allows Alice to influence the channel environment S by selecting
different actions. This is analogous to the classical action-dependent channel model in [8], where the channel parameter is a
noisy version of Alice’s action.
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V. ONE-SHOT CODE CONSTRUCTION

In this section, we introduce a coding scheme for the one-shot setting, of n = 1, over the quantum action-dependent channel
(see Figure 1). Let NSA→B be a quantum action-dependent channel. Let TG→SS0

be the action channel, that generates Alice’s
side information subsystem S0 and the environment subsystem S. Consider the quantum states defined in Theorem 1: σu

SS0
is

the entangled state produced by the action channel TG→SS0
, hence, ρV USA is the channel input, and the corresponding output

is ρUV B = idUV ⊗NSA→B(ρUV SA).
We now describe the one-shot coding scheme.

A. Codebook

Let R, RS > 0 denote the coding rates corresponding to the information and action encodings. First, the action-encoding
codebook CU := {u(m)}m∈{1,...,2R} is sampled from a random set of i.i.d. codebooks CU , distributed according to pU . Then,
let CV (m) := {v(m, 1), v(m, 2), . . . , v(m, 2RS )} be 2R sub-codebooks such that v(m, ℓ) are drawn independently according
to pV |U (·|u(m)). Both are revealed to Alice and Bob. The overall codebook is C := CU ∪ {CV (m)}. We use the notation C
for a deterministic codebook and C for a random codebook.

B. Encoder

Our encoding scheme consists of two parts, action encoding and message encoding:

1) Action Encoding: For each value u, let
∣∣σu

GK0

〉
be a purification of the state σu

G, with K0 as a reference.

Given a message m, prepare
∣∣∣σu(m)

GK0

〉
, and transmit G through the action channel.

Consider a Stinespring dilation of the action channel, with an isometry TG→SS0K1
, where K1 is appended the channel

environment S and the side information S0. Upon the action encoding above, this channel acts on
∣∣∣σu(m)

GK0

〉
to produce

the joint state
∣∣∣ψu(m)

SS0K1K0

〉
: ∣∣∣ψu(m)

SS0K1K0

〉
= TG→SS0K1

⊗ 1K0

∣∣∣σu(m)
GK0

〉
. (10)

2) Message Encoding: Alice implements the encoding map Ev(m,ℓ)
S0→A on the side-information subsystem S0. Consider a

Stinespring dilation with an isometry Ev(m,ℓ)
S0→AT . This produces the channel input state∣∣∣ρv(m,ℓ),u(m)

SATK1K0

〉
= (1S ⊗ E

v(m,ℓ)
S0→AT ⊗ 1K1K0)

∣∣∣ψu(m)
SS0K1K0

〉
(11)

Overall, Alice’s state is

∣∣ϕmSATK1K0L

〉
=

1√
2RS

2RS∑
ℓ=1

∣∣∣ρv(m,ℓ),u(m)
SATK1K0

〉
⊗ |ℓ⟩ . (12)

According to Uhlmann’s Theorem [27], for every pair of purifications |ψ⟩AB and |ϕ⟩AC of ρA and σA, respectively, there
exists an isometry WC→B such that F (ρA, σA) = F (|ψ⟩⟨ψ|AB ,W (|ϕ⟩⟨ϕ|AC)W

†). Then, in our case, it follows that there
exists a set of isometries,

{Wm
S0→ATL}m∈M ∈ L (HS0

→ HA ⊗HT ⊗HL) (13)

that map from
∣∣∣ψu(m)

SS0K1K0

〉
to
∣∣ϕmSATK1K0L

〉
, or equivalently, from

∣∣∣ψu(m)
SS0K1K0

〉
to
∣∣∣ρv(m,ℓ),u(m)

SATK1K0

〉
.

Using the short notation W̃m = 1S ⊗Wm
S0→ATL ⊗ 1K1K0 ,

P
(
ϕmSATK1K0L, W̃

m(ψ
u(m)
SS0K1K0

)W̃ †m
)
= P

(
1

2RS

∑
ℓ∈L

ρ
v(m,ℓ),u(m)
S , σ

u(m)
S

)
. (14)

Given a message m, Alice applies the isometry Wm
S0→ATL on

∣∣∣ψu(m)
SS0K1K0

〉
and transmits A over the action-dependent

channel.
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C. Decoding

We would like to design a POVM measurement {Dm} on the system B that distinguishes between the states {ρ(m)
B }m∈M

with high probability. Let E1 be the pinching map associated with ρV U ⊗ ρB such that: ρV U ⊗ ρB =
∑

λ λΠλ is the spectral
decomposition of ρV U ⊗ ρB . The pinching map E1 is defined as: E1(ρ) =

∑
λ ΠλρΠλ, where {Πλ} are the orthogonal

projectors onto the eigenspace of ρV U ⊗ ρB . We define ν1 as the number of distinct nonnegative eigenvalues of ρV U ⊗ ρB .
Now E1(ρV UB) is block-diagonal in the eigenbasis of ρV U ⊗ ρB , thus it commutes with ρV U ⊗ ρB . The pinching of ρV UB

with respect to ρV U ⊗ ρB is defined as:

E1(ρV UB) =

ν1∑
λ=1

Πλ

(∑
v,u

pV U (v, u) |v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ ρv,uB

)
Πλ (15)

For two Hermitian matrices A and B, we define the projection {A ≥ B} as
∑

λ≥0 λPλ , where the spectral decomposition
of A−B is given as

∑
λ λPλ. In this notation, Pλ is the projection to the eigenspace corresponding to the eigenvalue λ. Then,

let

ΠV UB = {E1 (ρV UB) ≥ 2R+RSρV U ⊗ ρB}. (16)

For every m ∈ M, ℓ ∈ L, we define:

γ(m, ℓ) =TrV U [ΠV UB (|v(m, ℓ)⟩⟨v(m, ℓ)| ⊗ |u(m)⟩⟨u(m)| ⊗ 1B)] . (17)

Our set of POVM operators are then normalized as

β(m, ℓ) =

∑
m′,ℓ′

γ(m′, ℓ′)

− 1
2

γ(m, ℓ)

∑
m′,ℓ′

γ(m′, ℓ′)

− 1
2

(18)

for (m, ℓ) ∈ M× L.
We are now ready to state our one-shot result.

Proposition 2 (One-shot error probability). Let α ∈
(
0, 12

)
. Then, the average error probability is bounded by:

EC[p̄
(1)
e ] ≤ 12 · να1 2α[R+RS−D̃1−α(ρV UB ||ρV U⊗ρB)] +

2

α ln 2

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S) (19)

with

ρV−U−S =
∑
u

pU (u) |u⟩⟨u| ⊗ ρuV ⊗ ρuS (20)

where ν1 is the number of distinct eigenvalues of ρV U ⊗ ρB , and ν2 is the maximum number of distinct eigenvalues of
{ρu(m)

S }∀m∈M.

The proof of Proposition 2 is given in Appendix A.

VI. PROOF OF THEOREM 1

We consider the average error probability as the number of channel uses n goes to infinity. Let dV UB be the dimension of
HV ⊗HU ⊗HB , and dS be the dimension of HS . As shown in [28, Lemma 3.9], we can bound ν1 and ν2 as follows:

ν1 ≤ (n+ 1)
dV UB−1

,

ν2 ≤ (n+ 1)
dS−1

. (21)

Based on Proposition 2 for n uses of the channel, there exists a (deterministic) codebook C such that:

p̄(n)e ≤12 (n+ 1)
α(dV UB−1)

2α[n(R+RS)−D̃1−α(ρ⊗n
V UB ||ρ⊗n

V U⊗ρ⊗n
B )]

+
2

α ln 2

(n+ 1)α(dS−1)

2αnRS
2αD̃1+α(ρ⊗n

V US∥ρ⊗n
V −U−S). (22)

Hence, the error probability tends to zero as n→ ∞, provided that

R+RS <
1

n
D̃1−α

(
ρ⊗n
V UB ||ρ

⊗n
V U ⊗ ρ⊗n

B

)
− α(dV UB − 1)

1

n
log (n+ 1) , (23)

and

RS >
1

n
D̃1+α

(
ρ⊗n
V US ||ρ

⊗n
V−U−S

)
+
α(dS − 1)

n
log (n+ 1) . (24)
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In the limit of n→ ∞ and α→ 0, the bounds reduce to [27]

RS > I(V ;S|U)ρ +
δ

3
, (25)

R+RS < I(V U ;B)ρ −
δ

3
. (26)

Where δ > 0 is arbitrarily small. We deduce that the error probability tends to zero for

R < I(V U ;B)ρ − I(V ;S|U)ρ − δ. (27)

APPENDIX A
PROOF OF PROPOSITION 2

Let ΘB(m) be the state Bob receives:

ΘB(m) = TrTK1K0L

[
NSA→B

(
W̃m(ψ

u(m)
SS0K1K0

)W̃ †m
)]

(28)

given that the message m was transmitted. Furthermore, let Θ̂B(m) be the average state that Bob receives, when averaged
over the sub-codebook of CV (m):

Θ̂B(m) =
1

2RS

∑
ℓ∈L

ρ
v(m,ℓ),u(m)
B . (29)

By the symmetry of encoding and decoding, we may assume without loss of generality that Alice sent m = 1. Consider the
pinching-based decoder {β(m, ℓ)}(m,ℓ)∈M×L that has been constructed in Subsection V-C. We now bound the average error
probability as follows:

EC[p̄
(1)
e ] = Pr

(
M̂ ̸= 1 |M = 1

)
(a)
= EC

Tr
 ∑

m′ ̸=1,ℓ

β(m′, ℓ)

ΘB(1)


(b)

≤ 2EC

Tr
 ∑

m′ ̸=1,ℓ

β(m′, ℓ)

 Θ̂B(1)

+ 2EC


∣∣∣∣∣∣∣
√√√√√Tr

 ∑
m′ ̸=1,ℓ

β(m′, ℓ)

ΘB(1)



−

√√√√√Tr

 ∑
m′ ̸=1,ℓ

β(m′, ℓ)

 Θ̂B(1)


∣∣∣∣∣∣∣
2


(c)

≤ 2EC

Tr
 ∑

m′ ̸=1,ℓ

β(m′, ℓ)

 Θ̂B(1)

+ 2EC

[
P
(
ΘB(1), Θ̂B(1)

)2]
(30)

where (a) follows since the error events are disjoint, (b) is obtained by rewriting the left-hand side term as A =(√
B +

√
A−

√
B
)2

and then applying the inequality for non-commutative x and y: (x+ y)2 ≤ 2(x2 + y2). (c) is obtained
by
∑

m′ ̸=1,ℓ β(m
′, ℓ) ≤ 1, and for any two quantum states ρ, σ ∈ D(H) and an operator 0 ≤ ∆ ≤ 1 we have the following

inequality:
∣∣∣√Tr[∆σ]−

√
Tr[∆ρ]

∣∣∣ ≤ P (σ, ρ) [23, Fact 7].
The first term on the right-hand side of (30) can be written as∑

m′ ̸=1,ℓ

EC

[
Tr
[
(β(m′, ℓ)) Θ̂B(1)

]]
=

1

RS

∑
ℓ′

∑
m′ ̸=1,ℓ

EC

[
Tr
[
(β(m′, ℓ)) ρ

v(1,ℓ′),u(1)
B

]]
=

∑
m′ ̸=1,ℓ

EC

[
Tr
[
(β(m′, ℓ)) ρ

v(1,1),u(1)
B

]]
≤ EC

[
Tr
[
(1− β(1, 1)) ρ

v(1,1),u(1)
B

]]
≤ 2EC

[
Tr
[
(1− γ(1, 1)) ρ

v(1,1),u(1)
B

]]
+ 4

∑
(m′,ℓ)̸=(1,1)

EC

[
Tr
[
(γ(m′, ℓ)) ρ

v(1,1),u(1)
B

]]
,

(31)



6

where the last inequality is based on the Hayashi-Nagaoka operator inequality [29]: let 0 ≤ S ≤ 1, T be positive semi-definite
operators on a Hilbert space H. then

1− (S + T )
− 1

2 S (S + T )
− 1

2 ≤ 2 (1− S) + 4T. (32)

In our case, we have S = γ(1, 1) and T =
∑

(m′,ℓ) ̸=(1,1) γ(m
′, ℓ). The next steps follow similar lines as in [23, 24]. We obtain

an upper bound on each term on the right-hand side of (31) by using the following lemmas.

Lemma 3. For every α ∈
(
0, 12

)
, and R,RS > 0 we have:

Tr[(1−ΠV UB) ρV UB ] ≤να1 2α[R+RS−D̃1−α(ρV UB ||ρV U⊗ρB)] (33)

2R+RS Tr [ΠV UB (ρV U ⊗ ρB)] ≤να1 2α[R+RS−D̃1−α(ρV UB ||ρV U⊗ρB)] (34)

The proof of Lemma 3 is given in Appendix B.

Lemma 4 (see [23, Lemma 7]). Let ρV US = Tr [ρV USA] be a classical-quantum state. Furthermore, let C =
{v(1), . . . v(2RS ), u} be a collection of random variables such that for every i ∈ {1, . . . , 2RS}, (v(i), u) ∼ pV U , (v(i), v(i

′)) ∼
pV (i),U · pV (i′),U , We consider the following state:

τCS ≜
1

2RS

∑
ℓ∈L

ρ
v(m,ℓ),u(ℓ)
S . (35)

Then, for α ∈ (0, 1), there exists a constant ν2 ≥ 0 such that:

EC

[
D̃1+α(τ

C
S∥ρuS)

]
≤ 1

α ln 2

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S) (36)

Where ρV−U−S ≜
∑

u pU (u)|u⟩⟨u|U ⊗ ρV |u ⊗ ρS|u, ν2 is the maximum number of distinct eigenvalues of the states {ρS|u}u.

In the next step, we will bound each of the terms in (31), starting with the first one on the left:

2EC

[
Tr
[
(1− γ(1, 1)) ρ

v(1,1),u(1)
B

]]
(a)
= 2EC

[
Tr
[
(1− TrV U [ΠV UB(|v(1, 1)⟩⟨v(1, 1)| ⊗ |u(1)⟩⟨u(1)| ⊗ 1B)]) ρ

v(1,1),u(1)
B

]]
= 2EC

[
Tr
[
(1− TrV U [ΠV UB(|v(1, 1)⟩⟨v(1, 1)| ⊗ |u(1)⟩⟨u(1)| ⊗ 1B)])

(
idV U ⊗ ρ

v(1,1),u(1)
B

)]]
(b)
= 2EC

[
Tr
[
(1−ΠV UB(|v(1, 1)⟩⟨v(1, 1)| ⊗ |u(1)⟩⟨u(1)| ⊗ 1B))

(
idV U ⊗ ρ

v(1,1),u(1)
B

)]]
= 2

[
Tr
[
(1−ΠV UB)EC

(
|v(1, 1)⟩⟨v(1, 1)| ⊗ |u(1)⟩⟨u(1)| ⊗ ρ

v(1,1),u(1)
B

)]]
= 2

[
Tr

[
(1−ΠV UB)

(∑
v,u

pV U (v, u) |v⟩⟨v| ⊗ |u⟩⟨u| ⊗ ρv,uB

)]]
(c)
= 2Tr[(1−ΠV UB) ρV UB ]

(d)

≤ 2 · να1 2α[R+RS−D̃1−α(ρV UB ||ρV U⊗ρB)]. (37)

Where
• (a) is obtained by the definition of γ(1, 1) as in (17),
• (b) is obtained from the linearity of the trace,
• (c) is obtained by taking the expectation with respect to the random codebook C,
• (d) is obtained by Lemma 3.
As for the second term in (31):

4
∑

(m′,ℓ)̸=(1,1)

EC

[
Tr
[
(γ(m′, ℓ)) ρ

v(1,1),u(1)
B

]]
(a)
= 4

∑
(m′,ℓ) ̸=(1,1)

EC

[
Tr
[
(TrV U [ΠV UB(|v(m′, ℓ)⟩⟨v(m′, ℓ)| ⊗ |u(m′)⟩⟨u(m′)| ⊗ 1B)]) ρ

v(1,1),u(1)
B

]]
= 4

∑
(m′,ℓ)̸=(1,1)

EC

[
Tr
[(

ΠV UB(|v(m′, ℓ)⟩⟨v(m′, ℓ)| ⊗ |u(m′)⟩⟨u(m′)| ⊗ ρ
v(1,1),u(1)
B

)]]
(b)
= 4

∑
(m′,ℓ)̸=(1,1)

Tr
[
EC

[(
ΠV UB(|v(m′, ℓ)⟩⟨v(m′, ℓ)| ⊗ |u(m′)⟩⟨u(m′)| ⊗ ρ

v(1,1),u(1)
B

)]]
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= 4
∑

(m′,ℓ)̸=(1,1)

Tr ΠV UB

 ∑
v,v′,u,u′

Pr (v(1, 1) = v, v(m′, ℓ) = v′, u(1) = u, u(m′) = u′) |v′⟩⟨v′| ⊗ |u′⟩⟨u′| ⊗ ρv,uB


= 4

∑
(m′,ℓ)̸=(1,1)

Tr

ΠV UB

 ∑
v,v′,u,u′

pV U (v, u)pV U (v
′, u′) |v′⟩⟨v′| ⊗ |u′⟩⟨u′| ⊗ ρv,uB


= 4

∑
(m′,ℓ)̸=(1,1)

Tr

ΠV UB

∑
v′,u′

pV U (v
′, u′) |v′⟩⟨v′| ⊗ |u′⟩⟨u′|

⊗

(∑
v,u

pV U (v, u)ρ
v,u
B

)
(c)
= 4

∑
(m′,ℓ) ̸=(1,1)

Tr [ΠV UB (ρV U ⊗ ρB)]

(d)

≤ 4 · 2R+RS Tr [ΠV UB (ρV U ⊗ ρB)]

(e)

≤ 4 · να1 2α[R+RS−D̃1−α(ρV UB ||ρV U⊗ρB)]. (38)

where
• (a) is obtained by the definition of γ(m, ℓ) as in as in (17),
• (b) is obtained from the linearity of the trace and EC ,
• (c) is obtained by taking the expectation with respect to the random codebook C,
• (d) is obtained due to the fact that (v(m, ℓ), u(m)) is independent of (v(m′, ℓ′), u(m′)), for (m, ℓ) ̸= (m′, ℓ′),
• (e) is obtained by Lemma 3.

By combining the two terms in (31) we obtain the following bound:∑
m′ ̸=1,ℓ

EC

[
Tr
[
(β(m′, ℓ)) Θ̂B(1)

]]
≤ 6 · να1 2α[R+RS−D̃1−α(ρV UB ||ρV U⊗ρB)] (39)

Now we only have to deal with the second term in (30):

EC

[
P
(
ΘB(1), Θ̂B(1)

)2]
(a)
= EC

P (TrTK1K0L

[
NSA→B

(
W̃ (1)(ψ

u(1)
SS0K1K0

)W̃ †(1)
)]
,

1

2RS

∑
ℓ∈L

ρ
v(1,ℓ),u(1)
B

)2


= EC

P (TrTK1K0L

[
NSA→B

(
W̃ (1)(ψ

u(1)
SS0K1K0

)W̃ †(1)
)]
,

1

2RS

∑
ℓ∈L

TrTK1K0

[
NSA→B

(
ρ
v(1,ℓ),u(1)
SATK1K0

)])2


(b)

≤ EC

[
P
(
ϕ
(1)
SATK1K0L

, W̃ (1)(ψ
u(1)
SS0K1K0

)W̃ †(1)
)2]

(c)
= EC

P ( 1

2RS

∑
ℓ∈L

ρ
v(1,ℓ),u(1)
S , σ

u(1)
S

)2


(d)
= EC

[
P
(
τC1

S , ρ
u(1)
S

)2]
(e)

≤ EC

[
1− 2

−D̃1+α

(
τ
C1
S ,ρ

u(1)
S

)]
(f)

≤ ln 2EC

[
D̃1+α

(
τC1

S , ρ
u(1)
S

)]
(g)

≤ 1

α ln 2

να2
2αRS

2αD̃1+α(ρV US∥ρV −U−S), (40)

where
• (a) is obtained by substituting the definition of ΘB(m) and Θ̂B(m) on the right-hand side of the expression.
• (b) is obtained by the fact that monotonicity of the purified distance does not increase under quantum channel

TrTK1K0 NSA→B(·).
• (c) is obtained by (14)
• (d) is obtained by using the notation τC1

S to represent the average state 1
2RS

∑
ℓ∈L ρ

v(1,ℓ),u(1)
S , and∑

v pV |U (v|u) [TrA ρv,uSA] = TrS0
σu
SS0

.
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• (e) is obtained due to the fact that for quantum states ρA, σA ∈ D(A), F 2(ρ, σ) = 2−D1/2(ρ∥σ) ≥ 2−D1+α(ρ∥σ) [23, Fact
5].

• (f) is obtained using the mathematical inequality 1− 2−x ≤ x ln 2.
• (g) is obtained by applying Lemma 4.

The proposition 2 then follows from (39), and (40).

APPENDIX B
PROOF OF LEMMA 3

We start by achieving an upper bound for (33):

Tr[(I−ΠV UB) ρV UB ]
(a)
= Tr[E1 ((1−ΠV UB) ρV UB)]

(b)
= Tr[(1−ΠV UB) E1(ρV UB)]

= Tr
[
(1−ΠV UB) E1(ρV UB)

1−αE1(ρV UB)
α
]
, ∀α ∈

(
0,

1

2

)
(c)

≤ 2α(R+RS) Tr
[
(1−ΠV UB) E1(ρV UB)

1−α(ρV U ⊗ ρB)
α
]

(d)

≤ 2α(R+RS) Tr
[
E1(ρV UB)

1−α(ρV U ⊗ ρB)
α
]

= 2α(R+RS) Tr
[
(ρV U ⊗ ρB)

α
2 E1(ρV UB)

1−α(ρV U ⊗ ρB)
α
2

]
= 2α(R+RS) Tr

[(
(ρV U ⊗ ρB)

α
2(1−α) E1(ρV UB)(ρV U ⊗ ρB)

α
2(1−α)

)1−α
]

= 2α(R+RS) Tr
[(

(ρV U ⊗ ρB)
α

2(1−α) E1 (ρV UB) (ρV U ⊗ ρB)
α

2(1−α)

)
×
(
(ρV U ⊗ ρB)

α
2(1−α) E1 (ρV UB) (ρV U ⊗ ρB)

α
2(1−α)

)−α
]

(e)
= 2α(R+RS) Tr

[(
(ρV U ⊗ ρB)

α
2(1−α) ρV UB (ρV U ⊗ ρB)

α
2(1−α)

)
×
(
(ρV U ⊗ ρB)

α
2(1−α) E1 (ρV UB) (ρV U ⊗ ρB)

α
2(1−α)

)−α
]

(f)

≤ 2α(R+RS)να1 Tr
[(

(ρV U ⊗ ρB)
α

2(1−α) ρV UB (ρV U ⊗ ρB)
α

2(1−α)

)
×
(
(ρV U ⊗ ρB)

α
2(1−α) ρV UB (ρV U ⊗ ρB)

α
2(1−α)

)−α
]

= 2α(R+RS)να1 Tr

[(
(ρV U ⊗ ρB)

α
2(1−α) ρV UB (ρV U ⊗ ρB)

α
2(1−α)

)1−α
]

= να1 2
α[R+RS−D̃1−α(ρV UB ||ρV U⊗ρB)]. (41)

where
• (a) is obtained due to the trace-preserving property of pinching.
• (b) is obtained from the definition of ΠV UB in (16). The projector 1−ΠV UB can be defined as:

1−ΠV UB =
∑
v∈TV

∑
u∈TU

∑
b∈TB

|v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ |b⟩⟨b|B . (42)

Then, by applying the pinching map E1(ρV UB), it follows:

E1(ρV UB) =

ν1∑
λ=1

Πλ

(∑
v,u

pV U (v, u) |v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ ρv,uB

)
Πλ

=

ν1∑
λ=1

|vλ⟩⟨vλ|V ⊗ |uλ⟩⟨uλ|U ⊗ |bλ⟩⟨bλ|B

(∑
v,u

pV U (v, u) |v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ ρv,uB

)
|vλ⟩⟨vλ|V ⊗ |uλ⟩⟨uλ|U ⊗ |bλ⟩⟨bλ|B

=

ν1∑
λ=1

pV U (v, u) |vλ⟩⟨vλ|V ⊗ |uλ⟩⟨uλ|U ⊗ |bλ⟩⟨bλ| ρv,uB |bλ⟩⟨bλ|B

=

ν1∑
λ=1

pV U (v, u) ⟨bλ| ρv,uB |bλ⟩ |vλ⟩⟨vλ|V ⊗ |uλ⟩⟨uλ|U ⊗ |bλ⟩⟨bλ|B (43)
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Thus:

E1 ((1−ΠV UB) ρV UB)

=
∑
v,u,b

|v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ |b⟩⟨b|B (1−ΠV UB) ρV UB |v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ |b⟩⟨b|B

=
∑
v,u,b

|v⟩⟨v|V ⊗ |u⟩⟨u|U |b⟩⟨b|B

( ∑
v′∈TV

∑
u′∈TU

∑
b′∈TB

|v′⟩⟨v′| ⊗ |u′⟩⟨u′| ⊗ |b′⟩⟨b′|

)
ρV UB |v⟩⟨v|V ⊗ |u⟩⟨u|U |b⟩⟨b|B

=
∑
v,u,b

|v⟩⟨v|V ⊗ |u⟩⟨u|U |b⟩⟨b|B

( ∑
v′∈TV

∑
u′∈TU

∑
b′∈TB

pV U (v, u) |v′⟩⟨v′| ⊗ |u′⟩⟨u′| ⊗ |b′⟩⟨b′| ρv
′,u′

B

)
|v⟩⟨v|V ⊗ |u⟩⟨u|U |b⟩⟨b|B

=
∑
v∈TV

∑
u∈TU

∑
b∈TB

pV U (v, u) |v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ |b⟩⟨b| ρv,uB |b⟩⟨b|B

=
∑
v∈TV

∑
u∈TU

∑
b∈TB

pV U (v, u) ⟨b| ρv,uB |b⟩ |v⟩⟨v|V ⊗ |u⟩⟨u|U ⊗ |b⟩⟨b|B

= (1−ΠV UB) E1(ρV UB) (44)

• (c) is obtained due to the definition of ΠV UB in (16), and since f(x) = xα is a matrix monotone function ∀α ∈ (0, 1]
• (d) is obtained because 1−ΠV UB ≤ 1

• (e) is obtained by by the fact that for two states ρ, σ ∈ D(H), and Eσ is the pinching map with respect to σ: Tr [ρσ] =
Tr [Eσ(ρ)σ]

• (f) is obtained by the pinching inequality. For two states ρ, σ ∈ D(H), and Eσ is the pinching map with respect to σ,
then ρ ≤ νEσ(ρ) [23, Fact 9].

Using similar steps (34), is proven:

2R+RS Tr [ΠV UB (ρV U ⊗ ρB)] = 2R+RS Tr
[
ΠV UB (ρV U ⊗ ρB)

1−α
(ρV U ⊗ ρB)

α
]

∀α ∈
(
0,

1

2

)
(a)

≤ 2R+RS2−(R+RS)(1−α) Tr
[
ΠV UBE1 (ρV UB)

1−α
(ρV U ⊗ ρB)

α
]

(b)

≤ 2α(R+RS) Tr
[
E1 (ρV UB)

1−α
(ρV U ⊗ ρB)

α
]

= 2α(R+RS) Tr

[(
(ρV U ⊗ ρB)

α
2(1−α) E1 (ρV UB) (ρV U ⊗ ρB)

α
2(1−α)

)1−α
]

(c)

≤ να1 2
α[R+RS−D̃1−α(ρV UB ||ρV U⊗ρB)]. (45)

where
• (a) is obtained due to the definition of ΠV UB in (16), and since f(x) = xα is a matrix monotone function ∀α ∈ (0, 1]
• (b) is obtained because ΠV UB ≤ 1

• (c) is obtained from the first part of the proof.
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