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Motivation

Quantum information technology will potentially boost future 6G systems from
both communication and computing perspectives.

Progress in practice:

• Quantum key distribution for secure communication
(511 km in optical �bers, 1200 km through space)

◦ commercially available: MagiQ, IDQuantique (82k$)

◦ development: Toshiba, Airbus EuroQCI
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Motivation (Cont.)

• Quantum computation

◦ Google Sycamore 53 qubits (2019): Supremacy experiment

◦ IBM Eagle 127 qubits (2021)

◦ Computer cluster (Aliro) → requires quantum communication

Walther Meiÿner Institute 6 qubits
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Motivation: Entanglement

Entanglement resources are instrumental in a wide variety of quantum network
frameworks:

• Physical-layer security (device-independent QKD, quantum repeaters)
[Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]

• Sensor networks [Xia et al. 2021]

• Communication rate [Bennett et al. 1999] [Hao et al. 2021]

• · · ·
Unfortunately, entanglement is a fragile resource that is quickly degraded by
decoherence e�ects.
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Motivation: Entanglement (Cont.)

• In order to generate entanglement in an optical communication system, the
transmitter may prepare an entangled pair of photons locally, and then send
one of them to the receiver.

• Such generation protocols are not always successful, as photons are easily
absorbed before reaching the destination.

Uzi Pereg Unreliable Entanglement 5 / 62



Motivation: Entanglement (Cont.)

• In order to generate entanglement in an optical communication system, the
transmitter may prepare an entangled pair of photons locally, and then send
one of them to the receiver.

• Such generation protocols are not always successful, as photons are easily
absorbed before reaching the destination.

Uzi Pereg Unreliable Entanglement 5 / 62



Motivation: Entanglement (Cont.)

• Therefore, practical systems require a back channel. In the case of failure, the
protocol is to be repeated. The backward transmission may result in a delay,
which in turn leads to a further degradation of the entanglement resources.

• We propose a new principle of operation: The communication system
operates on a rate that is adapted to the status of entanglement assistance.
Hence, feedback and repetition are not required.
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Classical Channel Capacity

Classical communication

Modern communication relies on error correction codes

◦ reduce probability of decoding error

◦ coding rate R = k
n
information bits
transmission (memory: logical bits

physical bit registers )

m
(k info bits)

Enc P n
Y |X

x1x2 . . . xn y1y2 . . . yn
Dec

m̂
(k info bits)

• Channel capacity (Shannon limit)

◦ highest communication rate with Pr(error)→ 0 for n→∞

◦ simple `single-letter' formula

Uzi Pereg Unreliable Entanglement 7 / 62



Classical Channel Capacity

Classical communication

Modern communication relies on error correction codes

◦ reduce probability of decoding error

◦ coding rate R = k
n
information bits
transmission (memory: logical bits

physical bit registers )

m
(k info bits)

Enc P n
Y |X

x1x2 . . . xn y1y2 . . . yn
Dec

m̂
(k info bits)

• Channel capacity (Shannon limit)

◦ highest communication rate with Pr(error)→ 0 for n→∞

◦ simple `single-letter' formula

Uzi Pereg Unreliable Entanglement 7 / 62



Classical Channel Capacity

Classical communication

Modern communication relies on error correction codes

◦ reduce probability of decoding error

◦ coding rate R = k
n
information bits
transmission (memory: logical bits

physical bit registers )

m
(k info bits)

Enc P n
Y |X

x1x2 . . . xn y1y2 . . . yn
Dec

m̂
(k info bits)

• Channel capacity (Shannon limit)

◦ highest communication rate with Pr(error)→ 0 for n→∞

◦ simple `single-letter' formula

Uzi Pereg Unreliable Entanglement 7 / 62



Classical Channel Capacity (Cont.)

Reliability (very partial list):

• Unreliable channel

• outage capacity [Ozarow, Shamai, and Wyner 1994]

• automatic repeat request (ARQ) [Caire and Tuninetti 2001]
[Steiner and Shamai 2008]

• cognitive radio [Goldsmith et al. 2008]

• connectivity [Simeone et al. 2012] [Karasik, Simeone, and Shamai 2013]

• Unreliable cooperation [Steinberg 2014]

• cribbing encoders [Huleihel and Steinberg 2016]

• conferencing decoders [Huleihel and Steinberg 2017]
[Itzhak and Steinberg 2017] [P. and Steinberg 2020]
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Quantum Channel Capacities

Di�erent categories for capacity of quantum channels:

• Classical capacity [Holevo 1998, Schumacher and Westmoreland 1997]

◦ transmission of classical bits using a quantum channel

◦ multi-letter formula §

• Quantum capacity [Lloyd 1998, Shor 2002, Devetak 2005]

◦ transmission of qubits (= quantum bits)

◦ multi-letter formula §
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Quantum Channel Capacities (Cont.)

• Entanglement-assisted capacities [Bennett et al. 1999]

◦ Alice and Bob share entanglement resources

◦ strictly higher capacities

◦ single-letter formula ©
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Quantum Channel Capacities (Cont.)

• Classical channel

◦ Single user: entanglement resources do not help [Bennett et al. 1999]

◦ MAC: entanglement resources between two transmitters can increase
achievable rates! [Leditzky et al. 2020]

◦ Broadcast: entanglement resources between two receivers cannot increase
achievable rates [P. et al. 2021]
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Quantum Channel Capacities (Cont.)

Unique features and challenges:

• Information measures

• super additivity

• negative conditional entropy

• Super-activation of operational capacity
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Quantum Channel Capacities (Cont.)

• Correlations

• entanglement increases performance

• no-cloning theorem

• entanglement monogamy

• Proof techniques

• operator inequalities

• gentle measurement

• decoupling approach
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Other Settings: Privacy, Security, and Estimation

Quantum channel state masking

◦ Alice has access to a quantum state that should be hidden from Bob

U. Pereg, C. Deppe and H. Boche, "Quantum Channel State Masking," IEEE Transactions on

Information Theory, vol. 67, no. 4, pp. 2245-2268, April 2021; presented in ITW'20, QIP'21.

U. Pereg, C. Deppe and H. Boche, "Classical state masking over a quantum channel," submitted

to Physical Review A, October 2021; accepted to IZS'22.

Layered secrecy, key assistance, and key agreement for bosonic broadcast networks

U. Pereg, R. Ferrara and M. R. Bloch, ITW'21.

Parameter estimation

◦ Watermarking with a quantum embedding

U. Pereg, IEEE Transactions on Information Theory, vol. 68, no. 1, pp. 359-383, January 2022.
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Other Settings: Cooperation and Reliability

Quantum repeaters
U. Pereg, C. Deppe and H. Boche, "Quantum Broadcast Channels with Cooperating Decoders:
An Information-Theoretic Perspective on Quantum Repeaters,"

Journal of Mathematical Physics, 62, 062204, June 2021.

Cribbing measurement
U. Pereg, C. Deppe and H. Boche, "The Quantum Multiple-Access Channels with Cribbing
Encoders," submitted to IEEE Transactions on Information Theory, November 2021,

arXiv:2111.15589 [quant-ph]

Unreliable entanglement
U. Pereg, C. Deppe and H. Boche, "Communication Communication with Unreliable
Entanglement Assistance," submitted to Nature Communications, December 2021.

arXiv:2112.09227 [quant-ph]
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Outline

Background: Quantum Information Theory

The Fundamental Problem

Coding

Main Results
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Quantum Theory

Quantum mechanics is arguably the most successful theory in physics.

Postulates

1 a physical system is associated with a Hilbert space

◦ the physical state is completely speci�ed by a wavefunction

2 unitary evolution (Schrödinger equation)

3 composite system

4 measurement
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Pure States

A pure quantum state |ψ〉 is a normalized vector in the Hilbert space HA.

Qubit

For a quantum bit (qubit),

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)

|ψ〉 =

(
α
β

)
= α|0〉+ β|1〉
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Pure States (Cont.)

Qubit (Cont.)

|ψ〉 = α|0〉+ β|1〉 , with |α|2 + |β|2 = 1

For α, β ∈ R :

Bloch sphere

from the book �Quantum Computation and Quantum Information",
M. A. Nielsen and I. L. Chuang (2000).
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Pure States (Cont.)

A pure bi-partite state |ψAB〉 is a normalized vector in the product Hilbert space
HA ⊗HB .

Two qubits

For two qubits, |ψAB〉 = |i〉 ⊗ |j〉, or

|ψAB〉 =
∑

i,j=0,1

αij |i〉 ⊗ |j〉 , with
∑
|αij |2 = 1

Entanglement

Systems A and B are entangled if |ψAB〉 6= |ψA〉 ⊗ |ψB〉

For example, |ΦAB〉 = 1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B).
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Elementary Operations

Qubit Gate Circuit Matrix

Pauli X
(Bit flip, NOT)

ΣX
ΣX =

[
0 1
1 0

]

|a⟩ → |a ⊕ 1⟩

Pauli Y
(Bit&Phase flip)

ΣY
ΣY =

[
0 −i
i 0

]
= iΣXΣZ

|a⟩ → i(−1)a |a ⊕ 1⟩

Pauli Z
(Phase flip)

ΣZ
ΣZ =

[
1 0
0 −1

]

|a⟩ → (−1)a |a⟩
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Elementary Operations (Cont.)

Hadamard H H = 1√
2

[
1 1
1 −1

]

|a⟩ → 1√
2(|0⟩ + (−1)a |1⟩)

CNOT
(Controlled X)




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




|a⟩ ⊗ |b⟩ → |a⟩ ⊗ |a ⊕ b⟩
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Quantum States, Measurement

The (mixed) state ρA of a quantum system A is an Hermitian, positive
semide�nite, unit-trace density matrix over HA.

Spectral Decomposition

There exists a random variable X ∼ pX such that

ρA =
∑
x∈X

pX (x)|ψx〉〈ψx |

where |ψx〉 form an orthonormal basis, 〈ψx | = (|ψx〉)†.

Measurement

A POVM (= positive-operator valued measure) is a set of positive semi-de�nite operators {Dx}
such that

∑
x Dx = 1. Born rule: the probability of the measurement outcome x

is Pr{outcome = x} = Tr(DxρA).
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Quantum Entropy and Mutual Information

Entropy

Given ρA, de�ne

H(A)ρ ≡ −Tr(ρA log ρA)

= −
∑
x∈X

pX (x) log pX (x)

H(A|B)ρ ≡ H(AB)ρ − H(B)ρ
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Maximally Entangled Qubits

|ΦAB〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

H(AB)Φ = 0

ρAB = |ΦAB〉〈ΦAB |

ρA = TrB(ρAB) = 1
21 =

(
1
2 0
0 1

2

)
H(A)Φ = H(B)Φ = 1

Thus,
H(A|B)Φ = −1
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Quantum Entropy and Mutual Information (Cont.)

Information Measures
• Mutual information I (A;B)ρ = H(A)ρ + H(B)ρ − H(AB)ρ

• Coherent information I (A〉B)ρ = −H(A|B)ρ.

For example, for |ΦAB〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉),

I (A;B)Φ= 2

I (A〉B)Φ = 1
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Quantum Entropy and Mutual Information (Cont.)

Quantum correlations

• Bell experiment: Entanglement leads to correlations that exceed classical
predictions

◦ EPR's hidden-variable model (1935) is incompatible with measurements
[Aspect et al. 1982]

• Information measures:

• for classical bits, H(X ),H(X |Y ), I (X ;Y ) ∈ [0, 1]

• for quantum bits, I (A;B)ρ ∈ [0, 2]

i

j

Xi ∈ {±1}

Yj ∈ {±1}

⟨X0Y0 +X1Y0 +X1Y1 −X0Y1⟩ > 2|Ψ−⟩

Alice

Bob
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Quantum Measurement

Remark: State Collapse

In general, measurements change the state. For example,

|0〉 Pr(0) = |α|2
↗

|ψ〉 = α|0〉+ β|1〉
↘

|1〉 Pr(1) = |β|2

Zero entropy Positive entropy
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Quantum Channel

Unitary vs. Noisy Evolution
• Unitary evolution

|ψ〉 U−−−→ U|ψ〉 U†U = UU† = 1

• Noisy channel NA→B

ρA
N−−−−→ ρB ≡ TrE (UρAU

†) U ≡ UN
A→BE

U†U = 1A
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Quantum Channel (Cont.)

A quantum channel NA→B is a completely-positive trace-preserving map

ρA
N−−−−→ ρB
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Outline

Background: Quantum Information Theory

The Fundamental Problem

Coding

Main Results
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Fundamental Problem: Noiseless Channel

Classical Bit-Pipe

The capacity of a classical noiseless bit channel is

1
classical bit

transmission

Holevo Bound

The classical capacity of a noiseless qubit channel is

1
classical bit

transmission
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Fundamental Problem: Noiseless Channel + Assistance

Theorem

The classical common-randomness (CR) capacity of a noiseless bit-pipe is

1
classical bit

transmission

Holevo Bound

The classical capacity of a noiseless qubit channel is

1
classical bit

transmission
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Fundamental Problem: Noiseless Channel + Assistance

Theorem

The classical common-randomness (CR) capacity of a noiseless bit-pipe is

1
classical bit

transmission

Theorem

The classical entanglement-assisted (EA) capacity of a noiseless qubit channel is

2
classical bits

transmission

Uzi Pereg Unreliable Entanglement 32 / 62



Fundamental Problem: Noiseless Channel + EA

Superdense Coding

Encoder

Decoder

x2

x1

|Φ⟩
ΣZ

A
id

B H x̂1

x̂2
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Fundamental Problem: Noiseless Channel + EA (Cont.)

Superdense Coding

Encoder

Decoder

x2

x1

|Φ⟩
ΣZ

A
id

B H x̂1

x̂2
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Fundamental Problem: Noiseless Channel + EA (Cont.)

We consider transmission with unreliable EA:
The entangled resource may fail to reach Bob.

Extreme Strategies

1 Uncoded communication

◦ Guaranteed rate: R = 1

◦ Excess rate: R ′ = 0

2 Alice: Employ superdense encoder.

Bob: If EA is present, employ superdense decoder.

If EA is absent, abort.

◦ Guaranteed rate: R = 0

◦ Excess rate: R ′ = 2
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Fundamental Problem: Noiseless Channel + EA (Cont.)

Time Division

1st sub-block:

I Alice sends (1− λ)n uncoded bits.

I Bob measures (1− λ)n qubits without assistance.

2nd sub-block:

I Alice employs superdense encoding λn times.

I If EA is present, Bob decodes 2 · λn bits by superdense decoding.

I If EA is absent, Bob ignores λn qubits.
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Fundamental Problem: Noiseless Channel + EA (Cont.)

Rates

◦ Guaranteed rate: R = 1− λ
◦ Excess rate: R ′ = 2λ

? Can we do better?
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Main Contributions

• New principle of operation: communication over quantum channels with
unreliable entanglement assistance.

• Classical information:
Alice sends classical messages to Bob

• Quantum information:
Alice teleports a quantum state to Bob

• Time division, between entanglement-assisted and unassisted coding
schemes, is optimal for a noiseless channel, but strictly sub-optimal for the
depolarizing channel.
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Classical Coding

DF N⊗n BnAn
m,m′

|ΨGAGB
⟩

GA GB

m̂, m̂′

Communication Scheme (1)

Alice chooses two messages, m and m′.
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Classical Coding

DF N⊗n BnAn
m,m′

|ΨGAGB
⟩

GA GB

m̂, m̂′

Communication Scheme (2)

Input: Alice prepares ρm,m
′

An = Fm,m′(ΨGA
), and transmits An.

Output: Bob receives Bn.
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Classical Coding

DF N⊗n BnAn
m,m′

|ΨGAGB
⟩

GA GB

m̂, m̂′

Decoding with Entanglement Assistance

If EA is present, Bob performs a measurement D to estimate m,m′.
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Classical Coding

D∗F N⊗n BnAn
m,m′

|ΨGAGB
⟩

GA

ˆ̂m

Decoding without Assistance

If EA is absent, Bob performs a measurement D∗ to estimate m alone.
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Classical Coding (Cont.)

Error Probabilities

P
(n)
e|m,m′ = 1− Tr

[
Dm,m′(N⊗nA→B ⊗ id)(Fm,m′ ⊗ id)(ΨGA,GB

)
]

P
∗(n)
e|m,m′ = 1− Tr

[
D∗mN⊗nA→B Fm,m′(ΨGA

)
]
.

Capacity Region

• (R,R ′) is achievable with unreliable entanglement assistance if there exists a

sequence of (2nR , 2nR
′
, n) codes such that P

(n)
e|m,m′ , P

∗(n)
e|m,m′ → 0 as n→∞.

• The classical capacity region CEA∗(N ) is the set of achievable rate pairs.
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Quantum Coding

Quantum Coding
• Alice has a product state θM ⊗ ξM̄ over Hilbert spaces of dimension

|HM | = 2nQ and |HM̄ | = 2n(Q+Q′)

• She encodes by applying FGAMM̄→An to ΨGA
⊗ θM ⊗ ξM̄ , and transmits An.

• Bob receives ρBn

• If EA is present, he applies DBnGB→M̃ .
If EA is absent, he applies D∗

Bn→M̂
.

(Q,Q ′) is an achievable rate pair if there exists a sequence of (2nQ , 2nQ
′
, n) codes

such that

‖ξM̄ −D(ρBnGB
)‖1 → 0 and ‖θM −D∗(ρBn)‖1 → 0

as n→∞.
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Related Work: Without Assistance

Let NA→B be quantum channel. De�ne the Holevo information

χ(N ) = max
pX (x),|φx

A〉
I (X ;B)ρ

with |X | ≤ |HA|2 and ρXB ≡
∑

x∈X pX (x)|x〉〈x | ⊗NA→B(φxA).
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Related Work: Without Assistance (Cont.)

HSW Theorem
(Holevo 1998, Schumacher and Westmoreland 1997)

The classical capacity of a quantum channel NA→B without assistance satis�es

C0(N ) = lim
k→∞

1

k
χ
(
N ⊗k)

If NA→B is entanglement-breaking, then CCl(N ) = χ(N ).

Fundamental question

1

k
χ
(
N ⊗k) = χ(N ) ?

Simpli�ed question (Fukuda and Wolf, 2007)

χ(N ⊗ L) = χ(N ) + χ(L) ?
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Related Work: Additivity

Super-Additivity Property (Hastings 2009)

There exist quantum channels NA1→B1 and LA2→B2 such that

χ(N ⊗ L) > χ(N ) + χ(L)

and thus, the regularization in the HSW theorem is necessary.

• N is constructed as a random mixture of unitary transformations and L is
the complex conjugate. Hastings (2009) observed that the minimum-output
entropy is sub-additive.
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Related Work: Additivity (Cont.)

Preskill (2018) referred to the current phase of quantum computation as the
Noisy Intermediate-Scale Quantum (NISQ) era. In this spirit, we consider an
encoding constraint.

Corollary (P., 2022)

The classical capacity of a quantum channel NA→B without assistance, under the
encoding constraint that the input state is a product of d-fold states, is given by

C0(N , d) =
1

d
χ
(
N ⊗d)

U. Pereg, IEEE Transactions on Information Theory, vol. 68, no. 1, pp. 359-383, January 2022.
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Related Work: Without Assistance (Cont.)

Let NA→B be quantum channel. De�ne

Ic(N ) = max
|φA1A〉

I (A1〉B)ρ

with ρA1B ≡ (id⊗NA→B)(φA1A) and |HA1 | = |HA|.

LSD Theorem (Lloyd (1997), Shor (2002), and Devetak (2005))

The quantum capacity of a quantum channel NA→B is given by

Q0(N ) = lim
k→∞

1

k
Ic
(
N ⊗k)

If there is a degraded UA→BE , then Q0(N ) = Ic(N ).
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Related Work: Without Assistance (Cont.)
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Related Work: Without Assistance (Cont.)

Super-Activation (Smith and Yard, 2008)

There exist quantum channels NA1→B1 and LA2→B2 such that

Q0(N ) = Q0(L) = 0 but Q0(N ⊗ L) > 0

• N is as an erasure channel ε = 1
2 and L is an entanglement-binding channel,

i.e. (L ⊗ id)ΦAB cannot be distilled [Horodecki et al. 1999].
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Related Work: Entanglement Assistance

Theorem (Bennett, Shor, Smolin, and Thapliyal 1999)

The entanglement-assisted classical capacity of a quantum channel NA→B is given

by

CEA(N ) = max
|φA1A〉

I (A1;B)ρ

with ρA1B ≡ (id⊗N )(φA1A).

◦ With entanglement assistance, a qubit is exchangable with two classical bits
(teleportation + superdense-coding protocols).
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The entanglement-assisted classical capacity of a quantum channel NA→B is given

by

CEA(N ) = max
|φA1A〉

I (A1;B)ρ

and the entanglement-assisted quantum capacity is given by

QEA(N ) = max
|φA1A〉

1

2
I (A1;B)ρ
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Main Results: Classical Capacity

Let NA→B be a quantum channel. De�ne

REA*(N ) =
⋃

pX , |φA0A1 〉 , F (x)

{
(R,R ′) : R ≤ I (X ;B)ρ

R ′ ≤ I (A1;B|X )ρ

}

where the union is over the distributions pX such that |X | ≤ |HA|2 + 1, the pure

states |φA0A1〉, and the quantum channels F (x)
A0→A, with

ρXA1A =
∑
x∈X

pX (x)|x〉〈x | ⊗ (id⊗F (x)
A0→A)(|φA1A0〉〈φA1A0 |) ,

ρXA1B = (id⊗NA→B)(ρXA1A) .
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Main Results: Classical Capacity (Cont.)

Theorem

The classical capacity region of a quantum channel NA→B with unreliable
entanglement assistance satis�es

CEA*(N ) =
∞⋃
k=1

1

k
REA*(N ⊗k) .
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Main Results: Classical Capacity (Cont.)

Classical �Superposition Coding"
• An auxiliary variable U is associated with the message m.

• Alice encodes the second message m′ by a random codeword ∼ pX |U .

Quantum Counterpart

• An auxiliary variable X is associated with the classical message m, which Bob
decodes whether there is entanglement assistance or not.

• The entangled state φA0A1 is non-correlated with the messages, since the
resources are pre-shared before communication takes place.

• Alice encodes the message m′ using the encoding channel F (x)
A0→A
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Main Results: Classical Capacity (Cont.)

Corollary

For a noiseless qubit channel,

CEA*(N ) =
⋃

0≤λ≤1

{
(R,R ′) : R ≤ 1− λ

R ′ ≤ 2λ

}

Proof: Achievability follows by time division. As for the converse part,

R ≤ 1

n
I (X ;Bn)ω ≤ 1− 1

n
H(Bn|X )ω

Since I (A;B)ρ ≤ 2H(B)ρ in general, we have

R ′ ≤ 1

n
I (A1;Bn|X )ω ≤

1

n
· 2H(Bn|X )ω

Set λ ≡ 1
nH(Bn|X )ω. �
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Main Results: Classical Capacity (Cont.)

Remark

The following tradeo� is observed:

• To maximize the unassisted rate, set an encoding channel F (x)
A0→A that

outputs the pure state |ψx
A〉 that is optimal for the Holevo information, i.e.

F (x)(ϕA1A0) = ϕA1 ⊗ ψx
A

⇒(R,R ′) = (χ(N ), 0)

I χ(N ) is achieved for an entanglement-breaking encoder.

• For R ′ to achieve the entanglement-assisted capacity, set ϕA0A1 as the
entangled state that maximizes I (A1;B)ρ. Take F (x) = idA0→A.
⇒ (R,R ′) = (0,CEA(N ))

I CEA(N ) is achieved for an entanglement-preserving encoder.
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Example: Depolarizing Channel

Qubit depolarizing channel

N (ρ) = (1− ε)ρ+ ε
1

2
, 0 ≤ ε ≤ 1

=

(
1− 3ε

4

)
ρ+

ε

4
(ΣXρΣX + ΣY ρΣY + ΣZρΣZ )
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Example: Depolarizing Channel (Cont.)

Corner Points

• [C (N ) = 1− H2

(
ε
2

)
, 0
]
is achieved with

{
pX =

(
1
2 ,

1
2

)
, {|0〉, |1〉}

}
• [0 , CEA(N ) = 1− H

(
1− 3ε

4 ,
ε
4 ,

ε
4 ,

ε
4

)]
is achieved with |ΦA0A1〉 and F (x) = idA0→A.

Classical Mixture

Let Z ∼ Bernoulli(λ). De�ne F (x,z) by F (x,0)(ρA) = |x〉〈x | and F (x,1) = id.
Plugging X̃ ≡ (X ,Z ), we obtain the time-division achievable region,

REA*(N ) ⊇
⋃

0≤λ≤1

{
(R,R ′) : R ≤ (1− λ)C (N )

R ′ ≤ λCEA(N )

}
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Example: Depolarizing Channel (Cont.)

Quantum Superposition State

De�ne

|uβ〉 ≡
√
1− β |0〉 ⊗ |0〉+

√
β |Φ〉 .

Set

|φA0A1〉 ≡
1

‖uβ‖
|uβ〉 , pX =

(
1

2
,
1

2

)
, F (x)(ρ) ≡ Σx

XρΣx
X

• For β = 0, the input state is F (x)(|0〉〈0|) = |x〉〈x |, which achieves C (N )

• For β = 1, the parameter x chooses one of two bell states, achieving CEA(N )
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Example: Depolarizing Channel (Cont.)

Figure: Achievable rate regions for the depolarizing channel with ε = 1

2
.
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Main Results: Quantum Capacity

Let NA→B be a quantum channel. De�ne

LEA*(N ) =
⋃

ϕA1A2A


(Q,Q ′) :
Q ≤ min{I (A1〉B)ρ , H(A1|A2)ρ} ,
Q + Q ′ ≤ 1

2 I (A2;B)ρ


where the union is over the states ϕAA1A2 , with ρA1A2B = (id⊗NA→B)(ϕA1A2A)
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Main Results: Quantum Capacity (Cont.)

Theorem

The quantum capacity region of a quantum channel NA→B with unreliable
entanglement assistance satis�es

QEA*(N ) =
∞⋃
k=1

1

k
LEA*(N ⊗k) .

• The proof is based on the decoupling approach: By Uhlmann's theorem, if we
can encode such that Alice and Bob's environments are in a product state,
then there exists a decoding map such that D ◦N ◦ E ≈ id.

Information-Theoretic Tools, Decoupling.
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Summary and Concluding Remarks

• We considered communication over a quantum channel NA→B , where Alice
and Bob are provided with unreliable entanglement resources.

• Inspired by Steinberg's classical cooperation model, we developed a theory for
reliability by design for entanglement-assisted point-to-point quantum
communication systems.

• The quantum capacity formula has the following interpretation: Without
assistance, A2 behaves as a channel state system. The classical capacity
formula resembles the superposition bound. A straightforward extension of
our methods yields the capacity region of the broadcast channel with
degraded message sets and one-sided entanglement assistance.

• In the future, it would be interesting to apply this methodology to other
quantum information areas that rely on entanglement resources.
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Thank you

1
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Subspace Transmission Vs. Remote Preparation

Remark

• In many communication models in the literature, it does not matter whether
the messages are chosen by the sender Alice, or given to her by an external
source.

• However, for a quantum message state, there is a fundamental distinction.
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Subspace Transmission Vs. Remote Preparation

• In remote state preparation, Alice knows the message state. In this case, our
model includes the case that M is a sub-system of M̄.

• In subspace transmission, Alice can perform any operation on the system, she
does not necessarily know its state. By the no-cloning theorem, she cannot
duplicate the state. Hence, the problem where M is a sub-system of M̄
remains open.
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Method of Types

δ-Typical Set

Aδ(pX ) ≡
{
xn ∈ X n :

∣∣∣∣N(a|xn)

n
− pX (a)

∣∣∣∣ ≤ δ · pX (a)

}

∣∣Aδ(pX )
∣∣ ≈ 2nH(X )

Pr
(
X n ∈ Aδ(pX )

)
≈ 1 for X n ∼

n∏
i=1

pX (xi )

pX n(xn) ≈ 2−nH(X ) for xn ∈ Aδ(pX )
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Method of Types (Cont.)

Conditional δ-Typical Set

Aδ(pY |X |xn) ≡
{
yn ∈ Yn : (xn, yn) ∈ Aδ(pXY )

}
with pX (a) ≡ N(a|xn)/n.

∣∣Aδ(pY |X |xn)
∣∣ ≈ 2nH(Y |X )

Pr
(
Y n ∈ Aδ(pY |X |xn)|X n = xn

)
≈ 1 for Y n|X n = xn ∼

n∏
i=1

pY |X (yi |xi )

pY n|X n(yn|xn) ≈ 2−nH(Y |X ) for yn ∈ Aδ(pY |X |xn)
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Quantum Method of Types

Let
ρA =

∑
x∈X

pX (x)|x〉〈x | .

δ-Typical Projector

Πδ(ρA) ≡
∑

xn∈Aδ(pX )

|xn〉〈xn| |xn〉 ≡ |x1〉 ⊗ · · · ⊗ |xn〉

Tr(Πδ(ρA)) ≈ 2nH(A)ρ

Tr(Πδ(ρA)ρ⊗nA ) ≈ 1

Πδ(ρA)ρ⊗nA Πδ(ρA) ≈ 2−nH(A)ρΠδ(ρA)
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Quantum Method of Types (Cont.)

Let
ρB =

∑
x∈X

pX (x)ρxB

Conditional δ-Typical Projector

Πδ(ρB |xn) ≡
⊗
a∈X

ΠδBI(a) (ρ
a
B) I(a) ≡ {i : xi = a}

Tr(Πδ(ρB |xn)) ≈ 2nH(B|X )ρ

Tr(Πδ(ρB |xn)ρx
n

Bn) ≈ 1

Πδ(ρB |xn)ρx
n

B Πδ(ρB |xn) ≈ 2−nH(B|X )ρΠδ(ρB |xn)
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Quantum Packing Lemma

Quantum Packing Lemma [Hsieh, Devetak, and Winter 2008]

Let

ρ =
∑
x∈X

pX (x)ρx

Suppose that ∃ a code projector Π and codeword projectors Πxn , xn ∈ Aδ(pX ),
such that

Tr(Πρxn) ≥ 1− α Tr(Πxn) ≤ 2nλ

Tr(Πxnρxn) ≥ 1− α Πρ⊗nΠ � 2−nLΠ

Then, there exist codewords xn(m), m ∈ [1 : 2nR ], and a POVM {Dm}m∈[1:2nR ]

such that

Tr
(
Dmρxn(m)

)
≥ 1− 2−n[L−λ−R−εn(α)] ∀m
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Quantum Method of Types (Cont.)

Square-Root Measurement Decoder

De�ne

Υm ≡ ΠΠxn(m)Π

and

Dm =

 2nR∑
m̃=1

Υm̃

−1/2 Υm

 2nR∑
m̃=1

Υm̃

−1/2

Hayashi-Nagaoka Inequality (2003)

For every 0 � S ,T � 1,

1− (S + T )−1/2S(S + T )−1/2 � 2(1− S) + 4T

Proof
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The Decoupling Approach

Consider a quantum channel NA→B without entanglement assistance.

• Let |θMK 〉 be a puri�cation of the quantum message state.

• Suppose that |ψKBnE nJ1〉 is a puri�cation of the channel output.
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The Decoupling Approach (Cont.)

• If ψKE nJ1 is a product state, i.e. ψKE nJ1 = θK ⊗ ωE nJ1 , then it has a
puri�cation of the form |θMK 〉 ⊗ |ωE nJ1J2〉.

• Since all puri�cations are related by isometries, there exists an isometry
DBn→MJ2 such that |θMK 〉 ⊗ |ωE nJ1J2〉 = DBn→MJ2 |ψRBnE nJ1〉.

• Tracing out K , E n, J1, and J2, it follows that there exists a decoding map
DBn→M that recovers the message state, i.e. θM = DBn→M(ψBn).
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The Decoupling Approach (Cont.)

Conclusion

In order to show that there exists a reliable coding scheme, it is su�cient to
encode in such a manner that approximately decouples between Alice's reference
system and Bob's environment, i.e., such that ψKE nJ1 ≈ θK ⊗ ωE nJ1 .
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The Decoupling Approach (Cont.)

Min-Entropy
• Conditional min-entropy:

Hmin(ρAB |σB) = − log inf {λ ∈ R : ρAB � λ · (1A ⊗ σB)}
Hmin(A|B)ρ = sup

σB

Hmin(ρAB |σB) ,

In general,
− log |HB | ≤ Hmin(A|B)ρ ≤ log |HA|

• If σB = 1B

|HB | , then ρAB � λ(1A ⊗ σB) holds for λ = |HB |, hence
Hmin(ρAB |σB) ≥ − log |HB | (saturated by |ΦAB〉)

• We also have 1 = Tr(ρAB) ≤ λ|HA|Tr(σB) = λ|HA|, hence
Hmin(ρAB |σB) ≤ log |HA| (saturated by 1A

|HA| ⊗ ρB)
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The Decoupling Approach (Cont.)

Smoothed min-entropy

Hε
min(A|B)ρ = max

σAB : dF (ρAB ,σAB )≤ε
Hε

min(A|B)σ

Min-Entropy AEP [Tomamichel, Colbeck, and Renner 2008]

1

n
Hε

min(An|Bn)ρ⊗n
n→∞−−−−→ H(A|B)ρ
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The Decoupling Approach (Cont.)

Decoupling Theorem [Dupuis 2010]

Let θA1K be a quantum state, TA1→E a quantum channel, and ε > 0 arbitrary.
De�ne

ωAE = TA1→E (ΦA1A) .

Then, there exists a probability (Haar) measure on the set of all unitaries UA1 ,
such that

EUA1

∥∥∥TA1→E (UA1ρA1K )− ωE ⊗ θK
∥∥∥
1
≤ 2−

1
2 [Hεmin(A|E)ω+Hεmin(A1|K)θ ] + 8ε

Consequence

There exists UAn
1
such that

TAn
1→E n(UAn

1
ρAn

1K
) ≈ ω⊗nE ⊗ θK if − Hε

min(An
1|K )ρ < n(H(A|E )ω + ε′)
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The Decoupling Approach (Cont.)

Uhlmann's theorem [Uhlmann 1976]

For every pair of pure states |ψAB〉 and |θAC 〉 that satisfy

‖ψA − θA‖1 ≤ ε ,

there exists an isometry FB→C such that

‖(1⊗ FB→C )ψAB − θAC‖1 ≤ 2
√
ε

Proof

Conclusion
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Achievability: Classical Capacity

Fix

• a distribution pX

• a pure entangled state |φG1G2〉 on HA0 ⊗HA0

• an isometry F
(x)
G1→A

Classical Codebook

Select 2nR independent sequences, {xn(m)}, at random ∼∏n
i=1 pX (xi ).

Denote ∣∣ψx
AG2

〉
= (F

(x)
G1→A ⊗ 1) |φG1G2〉

ρxBG2
= (NA→B ⊗ id)(ψx

AG2
)
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Achievability: Classical Capacity (Cont.)

Schmidt Decomposition

For every |ψAB〉, there exist orthonormal sets {|x〉A} and {|x〉A} such that

|ψAB〉 =
∑
x∈X

√
pX (x) |x〉A ⊗ |x〉B

for some probability distribution pX .

Let ∣∣ψx
AG2

〉
=
∑
z∈Z

√
pZ |X (z |x) |ξx,z〉 ⊗

∣∣ξ′x,z〉
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Achievability: Classical Capacity (Cont.)

Heisenberg-Weyl Operators

ΣX (D) =
D−1∑
k=0

|k ⊕ 1〉〈k |

ΣZ (D) =
D−1∑
k=0

e−2πki/D |k〉〈k |

Random Selection of Operators

For each message m′, select a random operator

U(γ) =
⊕

p∈Pn(Z|xn(m))

(−1)cp (ΣX (Dp))ap (ΣZ (Dp))bp

Dp ≡ |T (p|xn(m))|

choosing γ(m′|m) = (ap, bp, cp)p uniformly, ap, bp ∈ {0, . . . ,Dp − 1}, cp ∈ {0, 1}.
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Achievability: Classical Capacity (Cont.)

Encoder

To send the messages (m,m′) ∈ [1 : 2nR ]× [1 : 2nR
′
], apply the operators⊗n

i=1 F
(xi (m))
G1→A and U(γ(m′|m)) to |φG1G2〉⊗n, and transmit An through the

channel.

Decoder

Bob receives the systems Bn in a state σγ,x
n

BnG n
2
, and decodes as follows.

1 Measure Bn using a square-root measurement {D∗m}. Denote the outcome m̂.

2 If EA is absent, declare m̂ as the message estimate.

3 If EA is present, measure BnG n
2 jointly using a second square-root

measurement {∆m′|xn(m̂)}m′∈[1:2nR′ ]. Let m̂
′ be the outcome. Declare (m̂, m̂′).
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G1→A and U(γ(m′|m)) to |φG1G2〉⊗n, and transmit An through the

channel.

Decoder

Bob receives the systems Bn in a state σγ,x
n

BnG n
2
, and decodes as follows.

1 Measure Bn using a square-root measurement {D∗m}. Denote the outcome m̂.

2 If EA is absent, declare m̂ as the message estimate.

3 If EA is present, measure BnG n
2 jointly using a second square-root

measurement {∆m′|xn(m̂)}m′∈[1:2nR′ ]. Let m̂
′ be the outcome. Declare (m̂, m̂′).
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Achievability: Classical Capacity (Cont.)

�Ricochet Property"

(U ⊗ 1) |ΦAB〉 = (1⊗ UT ) |ΦAB〉

Using the �ricochet property" and the type-class decomposition, we show that
Alice's operations for encoding the second message m′ can be e�ectively re�ected
to Bob's side:

σm,m′

BnG n
2

=(1⊗ ΓT (m′|m))ρ
xn(m)
BnG n

2
(1⊗ Γ∗(m′|m)) .

First Decoding Step

Observe that the reduced state (without G n
2 ) is

σm,m′

Bn = ρ
xn(m)
Bn

Thus, the reduced output is not a�ected by the encoding operation U(γ(m′|m)),
and we can use the standard results on classical communication over a quantum
channel without assistance.
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Achievability: Classical Capacity (Cont.)

Thus, the �rst probability of error tends to zero as n→∞, provided that

R < I (X ;B)ρ − ε1

This can be obtained from the quantum packing lemma, with

Π ≡ Πδ(ρB) , Πxn ≡ Πδ(ρB |xn)
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Achievability: Classical Capacity (Cont.)

Second Decoding Step

Applying the quantum packing lemma with conditioning on xn(m), we have that
the second probability of error tends to zero, if

R < I (G2;B|X )ρ − ε2

This can be obtained from the quantum packing lemma, with

Π ≡ Πδ(ρB |xn(m))⊗ Πδ(ρG2 |xn(m))

Πγ ≡ (1⊗ UT (γ))Πδ(ρBG2 |xn)(1⊗ U∗(γ))

Finally, we let A0, A1 replace G1, G2, respectively.
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Achievability: Quantum Capacity

• Let |φA1A2AJ〉 be a puri�cation of ϕA1A2A.

• The corresponding channel output is

|ωA1A2BEJ〉 = UN
A→BE |φA1A2AJ〉 ,

where UN
A→BE is a Stinespring dilation, UN

A→BE (ρA) = UN ρA (UN )†.

Consider a message state |θMK 〉 ⊗ |ξM̄K̄ 〉, and suppose that Alice and Bob share
an entangled state |ΦGAGB

〉,

|HM | = |HK | = 2nQ

|HM̄ | = |HK̄ | = 2n(Q+Q′)

|HGA
| = |HGB

| = 2nRe , Re =
1

2
[H(A2)ω + H(A2|B)ω]
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Achievability: Quantum Capacity (Cont.)

Let V
(1)
M→An

1
and V

(2)

M̄GA→An
2
be arbitrary full-rank partial isometries. That is, each

operator has 0-1 singular values with a rank of 2nQ and 2n(Q+Q′), respectively.
Denote ∣∣∣ψ(1)

An
1K

〉
= V

(1)
M→An

1
|θMK 〉 ,∣∣∣ψ(2)

An
2GB K̄

〉
= V

(2)

M̄GA→An
2
(|ξK̄M̄〉 ⊗ |ΦGA,GB

〉) .
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Achievability: Quantum Capacity (Cont.)

Given a pair of Hilbert spaces HA and HB with orthonormal bases {|iA〉} and
{|jB〉}, respectively, de�ne the operator

opA→B(|iA〉 ⊗ |jB〉) ≡ |jB〉〈iA|

Consider the operators

ΠA2→A1AJ =
√
|HA2 |opA2→A1AJ(φA1A2AJ)

ΠA1→A2AJ =
√
|HA1 |opA1→A2AJ(φA1A2AJ)
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Achievability: Quantum Capacity (Cont.)

Given a pair of unitaries, U
(1)
An
1
and U

(2)
An
2
, de�ne the following quantum states,∣∣∣ωU(2)

An
1A

nJnK̄GB

〉
= Π⊗nA2→A1AJ

U
(2)
An
2
V

(2)

M̄GA→An
2
(|ξK̄M̄〉 ⊗ |ΦGA,GB

〉) ,∣∣∣ωU(1)

An
2A

nJnK

〉
= Π⊗nA1→A2AJ

U
(1)
An
1
V

(1)
M→An

1
|θMK 〉 .

The corresponding channel outputs are then∣∣∣ωU(2)

An
1B

nE nJnK̄GB

〉
= (UN

A→BE )⊗n
∣∣∣ωU(2)

An
1A

nJnK̄GB

〉
∣∣∣ωU(1)

An
2B

nE nJnK

〉
= (UN

A→BE )⊗n
∣∣∣ωU(1)

An
2A

nJnK

〉
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Achievability: Quantum Capacity (Cont.)

Using the decoupling theorem, we show that there exist U
(1)
An
1
and U

(2)
An
2
such that

1) TrAnJn

[
ΠU(2)

An
1→AnJnK̄GB

U
(1)
An
1
ψ

(1)
An
1K

]
≈ θK ⊗ ωU(2)

K̄GB
if

Q < H(A1|A2)ω − ε1,n
2) ωU(2)

K̄GB
≈ ξK̄ ⊗ ΦGB

if Q + Q ′ + Re < H(A2)ω − ε4,n
3) T ⊗nA1A2→ED(U

(1)
An
1
ψ

(1)
An
1K
⊗ U

(2)
An
2
ψ

(2)

An
2K̄GB

) ≈ θK ⊗ ωU(2)

E nJnK̄ if

Q < I (A1〉B)ω − ε2,n
4) T ⊗nA1A2→ED(U

(1)
An
1
ψ

(1)
An
1K
⊗ U

(2)
An
2
ψ

(2)

An
2K̄

) ≈ ξK̄ ⊗ ωU(1)

E nJnK if

Q + Q ′ − Re < I (A2〉B)ω − ε3,n

Uzi Pereg Unreliable Entanglement 62 / 62



Achievability: Quantum Capacity (Cont.)

Encoding

1), 2) ⇒ TrAnJn

[
ΠU(2)

An
1→AnJnK̄GB

U
(1)
An
1
ψ

(1)
An
1K

]
≈ θK ⊗ ξK̄ ⊗ ΦGB

Thus, by Uhlmann's theorem, ∃ an isometry FMM̄GA→AnJn such that

5)ΠU(2)

An
1→AnJnK̄GB

U
(1)
An
1
ψ

(1)
An
1K
≈ FMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB

)
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Achievability: Quantum Capacity (Cont.)

Decoding without Assistance

Applying the channel to 5), we obtain

6)T ⊗nA1A2→ED(U
(1)
An
1
ψ

(1)
An
1K
⊗ U

(2)
An
2
ψ

(2)

An
2K̄GB

) ≈
TrBn

[
(UN

A→BE )⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)
]

Hence, by 3),

TrBn

[
(UN

A→BE )⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)
]
≈ θK ⊗ ωU(2)

E nJnK̄

Then, by Uhlmann's theorem, ∃ an isometry D∗Bn→MJ1
, such that

D∗Bn→MJ1(UN
A→BE )⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB

) ≈ θMK ⊗ ω̂E nJnK̄GBJ1

Uzi Pereg Unreliable Entanglement 62 / 62



Achievability: Quantum Capacity (Cont.)

By tracing over E nJnK̄GBJ1, we deduce that there exist an encoding map
FMM̄GA→An and a decoding map D∗Bn→M , such that

(D∗Bn→MJ1 ◦N ⊗n
A→B ◦ FMM̄GA→An)(θMK ⊗ ξM̄ ⊗ ΦGA

) ≈ θMK
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Achievability: Quantum Capacity (Cont.)

Decoding with EA

By 4) and 6),

TrBnGB

[
(UN

A→BE )⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)
]
≈ ξK̄ ⊗ ωU(1)

E nJnK

Then, by Uhlmann's theorem, ∃ an isometry DBnGB→M̄G ′AG
′
BJ2

, such that

DBnGB→M̄G ′AG
′
BJ2

(UN
A→BE )⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB

) ≈
ξM̄K̄ ⊗ ΦGAGB

⊗ ω̂E nJnKJ2

Thus, FMM̄GA→An and DBGB→M̄ satisfy

DBnGB→M̄ ◦N ⊗n
A→B ◦ FMM̄GA→An(θM ⊗ ξM̄K̄ ⊗ ΦGAGB

) ≈ ξM̄K̄
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