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Abstract

Quantum coordination is considered in networks with classical and quantum links. We begin with networks with classical
links, and characterize the generation of separable and classical-quantum correlations in three primary models: 1) a two-node
network with limited common randomness (CR), 2) a no-communication network, and 3) a broadcast network, which consists of
a single sender and two receivers. We establish the optimal tradeoff between the classical communication and CR rates in each
setting, thus characterizing the minimal resources for simulating classical-quantum correlations.

Next, we consider coordination in networks with quantum links. We study the following models: 1) a cascade network
with limited entanglement, 2) a broadcast network, and 3) a multiple-access network with two senders and a single receiver.
We establish the optimal tradeoff between quantum communication and entanglement rates in each setting, characterizing the
minimal resources for entanglement coordination. The examples demonstrate that coordination of entanglement and coordination
of separable correlations behave differently. At last, we show the implications of our results on nonlocal games with quantum
strategies.

Index Terms

Quantum communication, coordination, reverse Shannon theorem, entanglement distribution.

I. INTRODUCTION

State distribution and coordination are important in quantum communication [1], computation [2], and cryptography [3].
The quantum coordination problem can be described as follows. Consider a network that consists of N nodes, where Node
i can perform an encoding operation Ei on a quantum system Ai, and its state should be in a certain correlation with the
rest of the network nodes. The objective is to simulate a specific joint state ωA1,A2,...,AN

. Node i can send qubits to node
j via a quantum channel at a limited rate Qi,j . The nodes may also share limited entanglement resources, prior to their
communication. The optimal performance is characterized by the quantum communication rates Qi,j that are necessary and
sufficient for simulating the desired quantum correlation. Alternatively, the nodes may send bits using classical communication
links at a limited rate Ri,j . Instances of the network coordination problem include channel/source simulation [4–9], state
merging [10, 11], state redistribution [12, 13], entanglement dilution [14–17], randomness extraction [18, 19], source coding
[20–23], and many others.

Two-node classical coordination: In classical coordination, the goal is to simulate a joint probability distribution. In the
basic two-node network, see Figure 1, two users would like to simulate a joint distribution pXY . This can be achieved if and
only if the classical communication rate R1,2 is above Wyner’s common information [24], defined as:

C(X;Y ) ≜ min I(U ;XY ) , (1)

where the minimum is taken over all auxiliary variables U that satisfy the Markov relation X U Y , and I(U ;XY ) is
the mutual information between U and (X,Y ). One may also consider the case where the nodes share classical correlation
resources, a priori, in the form of common randomness. Given a sufficient amount of pre-shared common randomness, the
desired distribution can be simulated if and only if R1,2 ≥ I(X;Y ) [25, 26].
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Two-node quantum coordination: In the quantum setting, see Figure 2, the goal is to simulate a joint state. A bipartite
state ωAB can be simulated if and only if the quantum communication rate is above the von Neumann entropy [15], i.e.,
Q1,2 ≥ H(ωB), with H(ρ) = −Tr(ρ log(ρ)), where ωB is the reduced state of ωAB . Now, suppose that the nodes share
entanglement resources, prior to their communication. Based on the quantum reverse Shannon theorem [27], given sufficient
entanglement, the desired state can be simulated if and only if the quantum communication rate satisfies Q1,2 ≥ 1

2I(A;B)ω ,
where I(A;B)ω is the quantum mutual information.

Multi-node quantum coordination: In this work, we consider quantum coordination in networks with either classical links
or quantum links. The models of coordination in multi-user networks with classical links are motivated by quantum-enhanced
Internet of Things (IoT) networks in which the communication links are classical [28–31], and the study of coordination in
models including quantum links is motivated by applications such as the quantum Internet and quantum repeaters [32]. In
each network, we determine the optimal coordination rates, characterizing the minimal resources required in order to simulate
a joint quantum state among multiple parties. We further discuss the implications of our results on nonlocal quantum games.
In particular, coordination in the broadcast network in Figure 7 can be viewed as a sequential game, where a coordinator (the
sender) provides the players (the receivers) with quantum resources. In the course of the game, the referee sends questions,
Xn and Y n, to each player, and they respond with Bn and Cn. In order to win the game with a certain probability, the
communication rates must satisfy the constraints with respect to an appropriate correlation.

Our work is divided into two parts, focusing on classical links and quantum links.

A. Classical Links

We first consider quantum coordination in three multi-user networks with classical communication links, where Node i
sends classical bits to Node j at a limited rate Ri,j . While classical links cannot generate entanglement, we may consider the
simulation of classical-quantum (c-q) and separable states in multi-user networks, where shared random bits are available to
the network users at a limited rate. This resource is referred to as common randomness (CR).

We study three networks with classical links. Our results are summarized below.
1) Two-Node Network: Consider a two-user network as in Figure 3. Alice and Bob aim to simulate a c-q state ω⊗n

XB . Before
communication begins, Alice and Bob share CR in a limited bit rate R0. Then, Alice sends classical bits at a rate R1,2 to
Bob. We characterize the optimal tradeoff between the required rate of description and the amount of CR used. Specifically, a
rate pair (R0, R1,2) is called achievable if there exists a sequence of coordination codes such that the encoded state ρXnBn is
εn-close to ω⊗n

XB , where εn tends to zero as n → ∞. We show that coordination can be achieved iff the rate pair (R0, R1,2)
satisfies

R1,2 ≥ I(X;U)σ , (2)
R0 +R1,2 ≥ I(XB;U)σ , (3)

for some c-q extension σXUB of the form

σXUB =
∑

(x,u)∈X×U

pX,U (x, u) |x⟩⟨x|X ⊗ |u⟩⟨u|U ⊗ θuB . (4)
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2) No-Communication Network: Our second model is a no-communication network, see Figure 4, where three users, Alice,
Bob, and Charlie would like to simulate a separable state ωABC , given CR at a rate R0, and no communication. We show that
the optimal CR rate is R0 = inf I(U ;ABC)σ , where the infimum is over the set of all extensions

σUABC =
∑
u∈U

pU (u) |u⟩⟨u|U ⊗ θuA ⊗ θuB ⊗ θuC (5)

such that σABC = ωABC . Note that A,B and C are uncorrelated when conditioned on U .
3) Broadcast Network: In the broadcast network in Figure 5, a single sender and two receivers wish to simulate a classical-

quantum-quantum state ωXBC . We establish that the state ωXBC can be simulated in the broadcast network in Figure 5 iff
the rate pair (R0, R1,2) satisfies

R1,2 ≥ I(X;U)σ , (6)
R0 +R1,2 ≥ I(XBC;U)σ , (7)

for an extension σXUBC that satisfies a Markov property.

B. Quantum Links

In the second part of our work, we consider coordination with quantum links, where Node i sends qubits to Node j at a
limited rate Qi,j . We study three multi-user networks of this form.

1) Cascade Network: We begin with the cascade network in Figure 6. Alice, Bob, and Charlie wish to simulate a joint
quantum state ωABC . Let |ωABCR⟩ be a purification of the desired state. Before communication begins, each party shares
entanglement with their nearest neighbor, at a limited rate. Now, Alice sends qubits to Bob at a rate Q1,2, and thereafter, Bob
sends qubits to Charlie at a rate Q2,3. We show that ωABC can be simulated iff the rate tuple (Q1,2, E1,2, Q2,3, E2,3) satisfies

Q1,2 ≥ 1

2
I(BC;R)ω , (8)

Q1,2 + E1,2 ≥ H(BC)ω , (9)

Q2,3 ≥ 1

2
I(C;RA)ω , (10)

Q2,3 + E2,3 ≥ H(C)ω , (11)

where Ei,j is the entanglement rate between Node i and Node j and |ωABCR⟩ is a purification of ωABC .
We provide two examples showing how the capacity behavior changes when simulating a mixture versus a tripartite entangled

state (see Figure 13).
2) Quantum Broadcast Network: Next, we study the quantum broadcast network shown in Figure 7. Consider a network

with a single sender, Alice, and two receivers, Bob and Charlie, where the latter are provided with classical sequences of
information Xn and Y n. We show that the state ωXYABC can be simulated iff the rate pair (Q1,2, Q1,3) satisfies:

Q1,2 ≥ H(B|X)ω , (12)
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Q1,3 ≥ H(C|Y )ω, (13)

where ωXYABC is the desired joint state.
3) Multiple-Access Network: The third quantum-link setting is the multiple-access network shown in Figure 8. In this setting

we have two transmitters, Alice and Bob, and one receiver, Charlie. We observe that since there is no cooperation between
the transmitters, a joint state ωABC can only be simulated if it is isometrically equivalent to a state of the form ωAC1

⊗ωBC2
.

We show that the state ωABC can be simulated iff the rate pair (Q1,3, Q2,3) satisfies:

Q1,3 ≥ H(C1)ω , (14)
Q2,3 ≥ H(C2)ω (15)

We further discuss the implications of our results on nonlocal quantum games. In particular, coordination in the broadcast
network in Figure 7 can be viewed as a sequential game, where a coordinator (the sender) provides the players (the receivers)
with quantum resources. In the course of the game, the referee sends questions, Xn and Y n, to each player, and they respond
with Bn and Cn. In order to win the game with a certain probability, the communication rates must satisfy the constraints
with respect to an appropriate correlation.

In the analysis, we use different techniques for different networks, including quantum resolvability results [33–35], random
coding, the state redistribution theorem [12], and the Schumacher compression protocol. In the broadcast network with quantum
links, we assume that Alice does not have prior correlation with Bob and Charlie’s resources Xn and Y n. Therefore, the standard
techniques of state redistribution [12] or quantum source coding with side information [36] are not suitable for our purposes.
Instead, we generalize the method of classical binning [37] to handle the quantum case.

The paper is organized as follows. In Section II, we introduce the notation conventions. In Section III, we consider
coordination of c-q and separable correlations in networks that consist of classical links. We present the coding definitions
and results for the two-node network, the no-communication network, and the broadcast network in Subsections III-A, III-B,
and III-C, respectively. In Section IV, we consider entanglement coordination in networks that consist of quantum links. We
address the cascade, broadcast, and multiple-access networks, in Subsections IV-A, IV-B, and IV-C, respectively. In Section V,
we discuss the implications of our results on quantum nonlocal games. The analysis for the three networks with classical
links is given in Sections VI, VII, VIII, and for the three networks with quantum links in Sections IX, X, XI. Section XII is
dedicated to summary and discussion.

II. NOTATION

We use standard notation in quantum information theory, as in [38], X,Y, Z, . . . are discrete random variables on finite
alphabets X ,Y,Z, ..., respectively, The distribution of X is specified by a probability mass function (pmf) pX(x) on X . The
set of all pmfs over X is denoted by P(X ). We use xn = (xi)i∈[n] denotes for a sequence in of letters from Xn. A quantum
state of a quantum system A is described by a density operator, ρA, on the Hilbert space HA. Denote the set of all such operators
by ∆(HA). A c-q channel is a map NX→B : X → ∆(HB). A measurement is specified by a collection of operators {Dj} that
forms a POVM. positive operator-valued measure (POVM). , i.e., Dj ≥ 0 and

∑
j Dj = 1, where 1 is the identity operator.

Given a bipartite state ρAB , on HA⊗HB , the quantum mutual information is defined as I(A;B)ρ = H(ρA)+H(ρB)−H(ρAB),
where H(ρ) ≡ −Tr[ρ log(ρ)], is the von Neumann entropy, the conditional quantum entropy as H(A|B)ρ = H(ρAB)−H(ρB),
and I(A;B|C)ρ = H(A|C)ρ +H(B|C)ρ −H(A,B|C)ρ , is defined accordingly.

III. CLASSICAL LINKS — MODEL DEFINITIONS AND RESULTS

We begin with networks with classical links. We consider three coordination settings with classical communication links as
described below.



A. Two-Node Network

Consider the two-node network in Figure 9. Here, we use simpler notation, R1 ≡ R1,2, for convenience. Alice and Bob
wish to simulate a c-q state ω⊗n

XB , using the following scheme. Node 1 (Alice) receives a classical source sequence xn, drawn
by Nature according to a given PMF pX . The source sequence is encoded into an index m1 at a rate R1. Node 2 (Bob) is
quantum. Both nodes have access to a CR element m0 at a given rate R0, i.e., m0 is uniformly distributed over

[
2nR0

]
, and

it is independent of Xn.
Formally, a

(
2nR0 , 2nR1 , n

)
coordination code for the simulation of a c-q state ωXB consists of a classical encoding channel,

F : Xn × [2nR0 ] → [2nR1 ], and a c-q decoding channel DM0M1→Bn . The protocol works as follows. A classical sequence
xn ∼ pnX is generated by Nature. Given the sequence xn and the CR element m0, Alice selects a random index,

m1 ∼ F (·|xn,m0) (16)

and sends it through a noiseless link. As Bob receives the message m1 and the CR element m0, he prepares the state

ρ
(m0,m1)
Bn = DM0M1→Bn(m0,m1) . (17)

Hence, the resulting joint state is

ρ̂XnBn =
1

2nR0

∑
m0∈[2nR0 ]

∑
xn∈Xn

(
pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
m1∈[2nR1 ]

F (m1|xn,m0)ρ
(m0,m1)
Bn

)
. (18)

Definition 1. A coordination rate pair (R0, R1) is achievable for the simulation of ωXB , if for every ε, δ > 0 and sufficiently
large n, there exists a

(
2n(R0+δ), 2n(R1+δ), n

)
code that achieves∥∥ρ̂XnBn − ω⊗n

XB

∥∥
1
≤ ε . (19)

The coordination capacity region of the two-node network, R2-node(ω), with respect to the c-q state ωXB , is the closure of the
set of all achievable rate pairs.

The coordination capacity, C(0)
2-node(ω), without CR, is the supremum of rates R1 such that (0, R1) ∈ R2-node(ω). The CR-

assisted coordination capacity, C(∞)
2-node(ω), i.e., with unlimited CR, is the supremum of rates R1 such that (R0, R1) ∈ R2-node(ω)

for some R1 ≥ 0.

The optimal coordination rates for the two-node network are established below.
Consider a given c-q state ωXB that we wish to simulate. We now state our main result. Define the following set of c-q

states. Let S2-node(ω) be the set of all c-q states

σXUB =
∑

(x,u)∈
X×U

pX,U (x, u) |x⟩⟨x|X ⊗ |u⟩⟨u|U ⊗ θuB (20a)

such that

σXB = ωXB (20b)

for |U| ≤ |X |2[dim(HB)]
2 + 1. Notice that given a classical value U = u, there is no correlation between X and B.

Theorem 1. The coordination capacity region for the two-node network described in Figure 9 is given by the set

R2-node(ω) =
⋃

S2-node(ω)

{
(R0, R1) ∈ R2 : R1 ≥ I(X;U)σ ,

R0 +R1 ≥ I(XB;U)σ

}
. (21)

The proof for Theorem 1 is given in Section VI. The following corollaries immediately follow.

Corollary 2 (Quantum Common Information [8]). The coordination capacity without CR is

R
(0)
2-node(ω) = min

σXUB∈S2-node(ω)
I(XB;U)σ . (22)

Corollary 3. The CR-assisted coordination capacity, i.e., with unlimited common randomness, is given by

R
(∞)
2-node(ω) ≜ min

σXUB∈S2-node(ω)
I(X;U)σ (23)

We note that in order to achieve the CR-assisted capacity, a CR rate of R0 = I(U ;B|X)σ is sufficient. If B ≡ Y is
classical, then we may substitute U = Y , which yields the capacity R

(∞)
2-node(ω) = I(X;Y ), and it can be achieved with CR at

rate R0 = H(Y |X) [26].
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B. No-Communication Network

Consider a network that consists of three users: Alice, Bob and Charlie, holding quantum systems A, B, and C, respectively.
The users cannot communicate, but they share a CR element m0 at a rate R0, as illustrated in Figure 10. Given m0, each
user prepares a quantum state separately.

A
(
2nR0 , n

)
coordination code for the no-communication network consists of a CR set [2nR0 ], and three c-q encoding

channels, T (1)
M0→An , T (2)

M0→Bn , and T (3)
M0→Cn . As Alice, Bob, and Charlie receive a realization j of the CR element, each uses

their encoding map to prepare their respective state. prepares a quantum state, ρjAn = T (1)
M0→An(m0), ρ

j
Bn = T (2)

M0→An(m0),
and ρjCn = T (3)

M0→Cn(m0), respectively. Hence,

ρ̂AnBnCn =
1

2nR0

∑
m0∈[2nR0 ]

T (1)(m0)⊗ T (2)(m0)⊗ T (3)(m0) . (24)

Definition 2. A CR rate R0 is achievable for the simulation of ωABC , if for every ε, δ > 0 and sufficiently large n, there exists
a
(
2n(R0+δ), n

)
coordination code that achieves ∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ ε . (25)

The coordination capacity CNC(ω), for the no-communication network, is the infimum of achievable rates R0. If there are no
achievable rates, we set CNC(ω) = +∞.

The optimal coordination rates for the no-communication network are established below. Consider a given quantum state
ωABC that we wish to simulate. We now state our main result. Define the following set of c-q states. Let SNC(ω) be the set
of all c-q states

σUABC =
∑
u∈U

pU (u) |u⟩⟨u|U ⊗ θuA ⊗ θuB ⊗ θuC (26a)

such that

σABC = ωABC (26b)

Given U = u, there is no correlation between A,B and C.

Theorem 4. The coordination capacity for the no-communication network described in Figure 10 is

CNC(ω) = inf
σUABC∈SNC(ω)

I(U ;ABC)σ (27)

with the convention that an infimum over an empty set is +∞.

The proof for Theorem 4 is given in Section VII.

Remark 1. Since the CR is classical, it cannot be used in order to create entanglement. Therefore, as Alice, Bob, and Charlie
do not cooperate with one another, it is impossible to simulate entanglement. That is, we can only simulate separable states.

Remark 2. For a product state ωABC = ωA⊗ωB ⊗ωC , we may take U to be null, hence CNC(ω) = 0. That is, in the case of
a product state, the simulation does not require CR between the users. On the other hand, if ωAB is entangled, for instance,
then there is no U that can satisfy (26), thus CNC(ω) = +∞.

For a classically correlated state ωABC = 1
2 (|000⟩⟨000|+ |111⟩⟨111|), we have CNC(ω) = 1, since one bit of CR is required

in order to simulate such correlation. This rate is achieved with U ∼ Bernoulli
(
1
2

)
.
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C. Broadcast Network

Consider the broadcast network in Figure 11. A sender, Alice, and two receivers, Bob and Charlie, wish to simulate a c-q-q
state ωXBC , using the following scheme. Alice receives a classical source sequence xn ∈ Xn drawn by Nature, i.i.d. according
to a given PMF pX . Alice encodes the source sequence into an index m1 at a rate R1. The other two nodes, of Bob and
Charlie, are quantum. The three nodes have access to a CR element m0 at a rate R0. Similarly, a

(
2nR0 , 2nR1 , n

)
coordination

code consists of a classical encoding channel, F : Xn × [2nR0 ] → [2nR1 ] , and two c-q decoding channels, D(ℓ)
M0M1→Bn

ℓ
, for

ℓ ∈ {1, 2}. Given xn and the CR element m0, Alice generates m1 ∼ F (·|xn,m0), and sends it to both Bob and Charlie, who
then apply their decoding map.

The coordination capacity region of the broadcast network, RBC(ω), with respect to the c-q state ωXBC , is defined in a
similar manner as in Definition 1.

The optimal coordination rates for the broadcast network with classical links are established below.
Consider a given c-q-q state ωXBC that we wish to simulate. Define the following set of c-q-q states. Let S2-BC(ω) be the

set of all c-q states

σXUBC =
∑

(x,u)∈
X×U

pXU (x, u) |x⟩⟨x|X ⊗ |u⟩⟨u|U ⊗ θuB ⊗ ηuC (28)

such that

σXBC = ωXBC . (29)

Note that given X , B, and C are uncorrelated given U = u.

Theorem 5. The coordination capacity region of the broadcast network in Figure 11 is the set

RBC(ω) =
⋃

SBC(ω)

{
(R0, R1) ∈ R2 : R1 ≥ I(X;U)σ ,

R0 +R1 ≥ I(XBC;U)σ

}
. (30)

The proof for Theorem 5 is given in Section VIII. The following corollaries immediately follow.

Remark 3. Since Alice’s encoding is classical, she cannot distribute entanglement. Therefore, as Bob and Charlie do not
cooperate with one another, it is impossible to simulate entanglement between Bob and Charlie. That is, we can only simulate
states such that ωBC is separable, as in the no-communication model (see Remark 1).

IV. QUANTUM LINKS - MODEL DEFINITIONS AND RESULTS

We consider three coordination settings with quantum communication links, as described below. We then discuss the
implications of the results obtained for the broadcast network shown in Subsection IV-B on nonlocal games.

A. Cascade network

Consider the cascade network with rate-limited entanglement, as depicted in Figure 12. In the Introduction section, we used
the notation Qi,j for the communication rate from Node i to Node j. Here, we simplify the notation, and write Q1 ≡ Q1,2

and Q2 ≡ Q2,3, for convenience.
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Alice, Bob, and Charlie would like to simulate a joint state ω⊗n
ABC , where ωABC ∈ ∆(HA ⊗ HB ⊗ HC). Before

communication begins, each party shares bipartite entanglement with their nearest neighbor. The bipartite state
∣∣ΨTAT ′

B

〉
indicates the entanglement resource shared between Alice and Bob, while

∣∣ΘT ′′
BTC

〉
is shared between Bob and Charlie. The

coordination protocol begins with Alice preparing the state of her output system An, as well as a “quantum description” M1.
She sends M1 to Bob. As Bob receives M1, he encodes the output Bn, along with his own quantum description, M2. Next,
Bob sends M2 to Charlie. Upon receiving M2, Charlie prepares the output state for Cn.

The transmissions M1 and M2 are limited to the quantum communication rates Q1 and Q2, while the pre-shared resources
between Alice and Bob and between Bob and Charlie are limited to the entanglement rates E1 and E2, respectively.
Definition 3. A (2nQ1 , 2nQ2 , 2nE1 , 2nE2 , n) coordination code for the cascade network in Figure 12 consists of:

• Two bipartite states
∣∣ΨTAT ′

B

〉
and

∣∣ΘT ′′
BTC

〉
on Hilbert spaces of dimension 2nE1 and 2nE2 , respectively, i.e.,

dim(HTA
) = dim(HT ′

B
) = 2nE1 , (31)

dim(HT ′′
B
) = dim(HTC

) = 2nE2 , (32)

• two Hilbert spaces, HM1 and HM2 , of dimension

dim(HMj ) = 2nQj for j ∈ {1, 2} , (33)

and
• three encoding maps,

ETA→AnM1 : ∆(HTA
) → ∆(H⊗n

A ⊗HM1) , (34)

FM1T ′
BT

′′
B→BnM2

: ∆(HM1
⊗HT ′

BT
′′
B
) → ∆(H⊗n

B ⊗HM2
) , (35)

and

DM2TC→Cn : ∆(HM2 ⊗HTC
) → ∆(H⊗n

C ) , (36)

corresponding to Alice, Bob, and Charlie, respectively.
The coordination protocol has limited communication rates Qj and entanglement rates Ej , for j ∈ {1, 2}. That is, before the

protocol begins, Alice and Bob are provided with nE1 qubit pairs, while Bob and Charlie share nE2 pairs. During the protocol,
Alice transmits nQ1 qubits to Bob, and then Bob transmits nQ2 qubits to Charlie. See Figure 12. A detailed description of
the protocol is given below.

The coordination protocol works as follows. Alice applies the encoding map ETA→AnM1
on her share TA of the entanglement

resources. This results in the output state

ρ
(1)
AnM1T ′

B
= (ETA→AnM1

⊗ idT ′
B
)(ΨTAT ′

B
) . (37)

She sends M1 to Bob. Having received M1, Bob uses it along with his share T ′
BT

′′
B of the entanglement resources to encode

the systems Bn and M2. To this end, he uses the map FM1T ′
BT

′′
B→BnM2

, hence

ρ
(2)
AnBnM2TC

= (idAn ⊗FM1T ′
BT

′′
B→BnM2

⊗ idTC
)(ρ

(1)
AnM1T ′

B
⊗ΘT ′′

B TC
) . (38)

Bob sends M2 to Charlie, who applies the encoding channel DM2TC→Cn . This results in the final joint state,

ρ̂AnBnCn = (idAnBn ⊗DM2TC→Cn)
(
ρ
(2)
AnBnM2TC

)
. (39)

The objective is that the final state ρ̂AnBnCn is arbitrarily close to the desired state ω⊗n
ABC .
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Fig. 13: Coordination capacity region in two examples.

Definition 4. A rate tuple (Q1, Q2, E1, E2) is achievable, if for every ε, δ > 0 and sufficiently large n, there exists a
(2n(Q1+δ), 2n(Q2+δ), 2n(E1+δ), 2n(E2+δ), n) coordination code satisfying∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ ε. (40)

The coordination capacity region with respect to the state ωABC is defined as the closure of the set of all achievable rate tuples.
We denote the coordination capacity region of the quantum cascade network, with quantum links and rate-limited entanglement,
by QCascade(ω).
Remark 4. Coordination in the cascade network can also be represented as as a resource inequality [39]

Q1[q → q]A→B + E1[qq]AB +Q2[q → q]B→C + E2[qq]BC ≥ ⟨ωABC⟩ (41)

where the resource units [q → q], [qq], and ⟨ωABC⟩ represent a single use of a noiseless qubit channel, an EPR pair, and the
desired state ωABC , respectively.

The optimal coordination rates for the cascade network are established below.
Theorem 6. Let |ωRABC⟩ be a purification of ωABC . The coordination capacity region for the cascade network described in
Figure 12 is given by the set

QCascade(ω) =


(Q1, E1, Q2, E2) : Q1 ≥ 1

2I(BC;R)ω ,
Q1 + E1 ≥ H(BC)ω ,

Q2 ≥ 1
2I(C;RA)ω ,

Q2 + E2 ≥ H(C)ω

 . (42)

The proof for Theorem 6 is provided in Section IX.
Corollary 7. For a pure state |ωABC⟩, The coordination capacity region for the cascade network is given by the set

QCascade(ω) =

 (Q1, E1, Q2, E2) : Q1 + E1 ≥ H(BC)ω ,
Q2 ≥ 1

2I(C;A)ω ,
Q2 + E2 ≥ H(C)ω

 . (43)

The examples below demonstrate that coordination of entanglement and coordination of separable correlations behave
differently.
Example 1 (Mixture). Let HA, HB , and HC be Hilbert spaces of dimension 3, i.e., qutrits. Consider the simulation of a mixed
state,

ωABC =
1

6
(|012⟩⟨012|+ |021⟩⟨021|+ |102⟩⟨102|+ |120⟩⟨120|+ |201⟩⟨201|+ |210⟩⟨210|) (44)

The example is analogous to [40, Example 3]. The state above is thus purified by

|ωABCR⟩ =
1

6

(
|012⟩ ⊗ |0⟩+ |021⟩ ⊗ |1⟩+ |102⟩ ⊗ |2⟩+ |120⟩ ⊗ |3⟩+ |201⟩ ⊗ |4⟩+ |210⟩ ⊗ |5⟩

)
(45)



where {|i⟩}i=0,...,5. forms an orthonormal basis for the reference system R. In this case, the coordination capacity region is
given by

QCascade(ω) =


(Q1, E1, Q2, E2) : Q1 ≥ 1.7925,

Q1 + E1 ≥ 2.5850,
Q2 ≥ 1.2925,

Q2 + E2 ≥ 1.5850.

 . (46)

The coordination capacity region QCascade(ω) is illustrated in Figure 13 (a), where the blue region shows the tradeoff between
Alice’s rates, Q1 and E1, and the green region is associated with Bob’s rates, Q2 and E2.

Suppose that E1 = E2. As can be seen in the figure, Alice is required to send qubits to Bob at a higher rate than Bob to
Charlie. This is intuitive since Alice encodes information for both Bob and Charlie, whereas Bob is only encoding Charlie’s
information.
Example 2 (Entanglement). Consider the simulation of a pure tripartite entangled state,

|ψABC⟩ =
1√
6
(|012⟩+ |021⟩+ |102⟩+ |120⟩+ |201⟩+ |210⟩) (47)

According to Corollary 7, |ψABC⟩⊗n can be simulated if and only if the rate tuple (Q1, E1, Q2, E2) belongs to the following
set,

QCascade(ψ) =

 (Q1, E1, Q2, E2) : Q1 + E1 ≥ 1.5850 ,
Q2 ≥ 0.7925 ,

Q2 + E2 ≥ 1.5850 .

 .

The coordination capacity region QCascade(ψ) is illustrated in Figure 13 (b). As before, the blue region shows the tradeoff
between Alice’s rates, Q1 and E1, and the green region is associated with Bob’s rates, Q2 and E2.

Suppose that E1 = E2. Here, as opposed to Example 1, Alice is required to send qubits to Bob at a rate that is lower
than Bob to Charlie. This occurs because of the “knowing less than nothing” phenomenon [41]. That is, in the presence of
entanglement, a subsystem can have a larger entropy compared to the joint system. The behavior in each example is completely
different.

B. Broadcast network

Consider the broadcast network in Figure 14. This network, can be useful in analyzing refereed games and the required
resources for achieving certain performances as described in section V. As before, we simplify the notation Qi,j from the
Introduction section, and write Q1 ≡ Q1,2 and Q2 ≡ Q1,3, for convenience. Consider a classical-quantum state,

ωXYABC =
∑
x∈X

∑
y∈Y

pXY (x, y) |x, y⟩⟨x, y|X,Y ⊗
∣∣∣σ(x,y)
ABC

〉〈
σ
(x,y)
ABC

∣∣∣ (48)

corresponding to a given ensemble of states
{
pXY ,

∣∣∣σ(x,y)
ABC

〉}
in ∆(HA ⊗HB ⊗HC).

Alice, Bob, and Charlie would like to simulate ωXYABC . Before communication takes place, the classical sequences Xn and
Y n are drawn from a common source p⊗nXY . The sequence Xn is given to Bob, while Y n is given to Charlie (see Figure 14).

Initially, Alice encodes her output An, along with two quantum descriptions, M1 and M2. She then transmits M1 and M2,
to Bob and Charlie, respectively, at limited qubit transmission rates, Q1 and Q2. As Bob receives the quantum description
M1, he uses it together with the classical sequence Xn to encode the output Bn. Similarly, Charlie receives M2 and Y n, and
encodes his output Cn.
Definition 5. A (2nQ1 , 2nQ2 , n) coordination code for the broadcast network with side information described in Figure 14,
consists of two Hilbert spaces, HM1 and HM2 , of dimensions

dim(HMj ) = 2nQj for j ∈ {1, 2} , (49)

and three encoding maps,

EAn→AnM1M2
: ∆(H⊗n

A ) → ∆(H⊗n
A ⊗HM1

⊗HM2
), (50)

FXnM1→Bn : Xn ⊗∆(HM1) → ∆(H⊗n
B ), (51)

and

DY nM2→Cn : Yn ⊗∆(HM2
) → ∆(H⊗n

C ). (52)

corresponding to Alice, Bob, and Charlie, respectively. In the course of the protocol, Alice transmits nQ1 qubits to Bob and
nQ2 qubits to Charlie, as illustrated in Figure 14.
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Fig. 14: Broadcast network.

Remark 5. In the quantum world, broadcasting a quantum state among multiple receivers is impossible by the no-cloning
theorem. However, in the broadcast network in Figure 14, Alice sends two different “quantum messages” M1 and M2 to Bob
and Charlie, respectively. Roughly speaking, Alice is broadcasting correlation. Since Alice prepares both quantum descriptions,
M1 and M2, she can create correlation and generate tripartite entanglement between her, Bob, and Charlie.

The coordination protocol is described below. Alice applies her encoding map and prepares

ρ
(1)
AnM1M2

= EAn→AnM1M2
(ω⊗n
A ) . (53)

She sends M1 and M2 to Bob and Charlie, respectively. Once Bob receives M1 and the classical assistance, Xn, he applies
his encoding map FXnM1→Bn . Similarly, Charlie receives M2 and Y n, and applies DY nM2→Cn . Their encoding operations
result in the following extended state:

ρ̂XnY nAnBnCn =
∑

xn∈Xn

∑
yn∈Yn

p⊗nXY (x
n, yn) |xn, yn⟩⟨xn, yn|XnY n ⊗

(idAn ⊗FXnM1→Bn ⊗DY nM2→Cn)
(
|xn, yn⟩⟨xn, yn|X̄nȲ n ⊗ ρ

(1)
AnM1M2

)
, (54)

where X̄nȲ n are classical registers that store a copy of the (classical) sequences XnY n, respectively. The goal is to encode
such that the final state ρ̂XnY nAnBnCn is arbitrarily close to the desired state ω⊗n

XY ABC .
Definition 6. A rate pair (Q1, Q2) is achievable, if for every ε, δ > 0 and sufficiently large n, there exists a
(2n(Q1+δ), 2n(Q2+δ), n) coordination code satisfying∥∥ρ̂XnY nAnBnCn − ω⊗n

XY ABC

∥∥
1
≤ ε. (55)

The coordination capacity region of the broadcast network, QBC(ω), with respect to the state ωXYABC , is the closure of the
set of all achievable rate pairs.
Remark 6. Notice that Alice has no access to Xn nor Y n. Therefore, coordination can only be achieved for states ωXYABC
such that there is no correlation between A and XY , on their own. That is, the reduced state ωXYA must have a product form,

ωXYA = ωXY ⊗ ωA . (56)

Since Alice does not share prior correlation with Bob and Charlie’s resources Xn and Y n, standard techniques, such as
state redistribution [12] and quantum source coding with side information [36], are not suitable for our purposes. Instead, we
introduce a quantum version of binning.

The optimal coordination rates for the broadcast network are established below.
Theorem 8. The coordination capacity region for the broadcast network described in Figure 14 is given by the set

QBC(ω) =

{
(Q1, Q2) ∈ R2 : Q1 ≥ H(B|X)ω ,

Q2 ≥ H(C|Y )ω

}
. (57)

The proof for Theorem 8 is provided in Section X. The implications of this result on quantum nonlocal games are discussed
in Section V.
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C. Multiple access network

Consider the multiple-access network in Figure 15. Alice, Bob, and Charlie would like to simulate a pure state |ωABC⟩⊗n,
where |ωABC⟩ ∈ HA⊗HB ⊗HC . We simplify the notation and write Q1 ≡ Q1,3 and Q2 ≡ Q2,3. At first, Alice prepares the
state of the quantum systems An and M1, and Bob prepares the states of the quantum systems Bn and M2. Alice and Bob
send M1 and M2 to Charlie. Charlie then uses M1 and M2 to encode the system Cn. As in the previous settings, M1 and
M2 are referred to as quantum descriptions, which are limited to the qubit transmission rates, Q1 and Q2, respectively.
Definition 7. A (2ℓ1 , 2ℓ2 , n) coordination code for the multiple-access network described in Figure 15, consists of two Hilbert
spaces, HM1

and HM2
, of dimensions

dim(HMj
) = 2ℓj for j ∈ {1, 2} , (58)

and three encoding maps,

EAn→AnM1
: ∆(H⊗n

A ) → ∆(H⊗n
A ⊗HM1

) , (59)

FBn→BnM2 : ∆(H⊗n
B ) → ∆(H⊗n

B ⊗HM2) (60)

and

DM1M2→Cn : ∆(HM1
⊗HM2

) → ∆(H⊗n
C ) , (61)

corresponding Alice, Bob, and Charlie, respectively.
In the multiple-access network, Alice sends nQ1 qubits to Charlie, while Bob sends nQ2 qubits to Charlie. Specifically,

Alice and Bob apply the encoding maps, preparing ρ(1)AnM1
⊗ ρ

(2)
BnM2

, where

ρ
(1)
AnM1

= EAn→AnM1(ω
⊗n
A ) , ρ

(2)
BnM2

= FBn→BnM2(ω
⊗n
B ) . (62)

As Charlie receives M1 and M2, he applies his encoding map, which yields the final state,

ρ̂AnBnCn = (idAnBn ⊗DM1M2→Cn) (ρ
(1)
AnM1

⊗ ρ
(2)
BnM2

) . (63)

The ultimate goal of the coordination protocol is that the final state of ρ̂AnBnCn , is arbitrarily close to the desired state ω⊗n
ABC .

Remark 7. Notice that since Charlie only acts on M1 and M2 which are encoded separately without coordination, we have
ρ̂AnBn = ρ

(1)
An ⊗ρ(2)Bn . Therefore, it is only possible to simulate states ωABC such that ωAB = ωA⊗ωB . Since all purifications

are isometrically equivalent [38, Theorem 5.1.1] there exists an isometry VC→C1C2
such that

(1⊗ VC→C1C2
) |ωABC⟩ = |ϕAC1

⟩ ⊗ |χBC2
⟩ (64)

where |ϕAC1⟩ and |χBC2⟩ are purifications of ωA and ωB , respectively. If ωABC cannot be decomposed as in (64), then
coordination is impossible in the multiple-access network.
Definition 8. A rate pair (Q1, Q2) is achievable, if for every ε, δ > 0 and a sufficiently large n, there exists a
(2n(Q1+δ), 2n(Q2+δ), n) coordination code satisfying∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ ε . (65)



The coordination capacity region of the multiple access network, QMAC(ω), with respect to the state ωABC , is the closure of
the set of all achievable rate pairs.
Remark 8. The resource inequality for coordination in the multiple-access network is

Q1[q → q]A→C +Q2[q → q]B→C ≥ ⟨ωABC⟩ (66)

(see resource definitions in Remark 4).
The optimal coordination rates for the multiple-access network are provided below.

Theorem 9. Let |ωABC⟩ be a pure state as in (64). The coordination capacity region for the multiple access network described
in Figure 15 is given by the set

QMAC(ω) =

{
(Q1, Q2) ∈ R2 : Q1 ≥ H(A)ω ,

Q2 ≥ H(B)ω

}
. (67)

The proof for Theorem 9 is provided in Section XI.

V. NONLOCAL GAMES

The broadcast network model presented in Figure 14 represents refereed games that have a quantum advantage. Such games
are often referred to as nonlocal games [42]. The quantum advantage can be attributed to the quantum coordination between
the users, before the beginning of the game.

First, we discuss the single-shot cooperative game, and then move on to sequential games with an asymptotic payoff. Consider
Figure 14. Here, we assume that B and C are classical, while A is void. Here, Alice is a coordinator that generates correlation
between the players, Bob and Charlie. In the sequential game, we denote the number of rounds by n.

Single shot game: The game involves a single round, hence n = 1. A referee provides two queries X and Y , drawn
at random, one for Bob and the other for Charlie, respectively. The players, Bob and Charlie, provide responses, B and C,
respectively. The players win the game (together) if the tuple (X,Y,B,C) satisfies a particular condition, W . A well known
example is the CHSH game [43], where X,Y,B,C ∈ {0, 1}, and the winning condition is

X ∧ Y = B ⊕ C . (68)

Using classical correlations, the game can be won with probability of at most 0.75.
If the players, Bob and Charlie, share a bipartite state ρM1M2 , then they can generate a quantum correlation,

PBC|XY (b, c|xy) = Tr
[(
F

(x)
b ⊗D(y)

c

)
ρM1M2

]
(69)

by performing local measurements {F (x)
b } and {D(y)

c }, respectively. Such correlations can improve the players’ performance.
In particular, in the CHSH game, if the coordinator, Alice, provides the players with an EPR pair,

|ΦM1M2
⟩ = 1√

2
(|00⟩+ |11⟩) (70)

then their chance of winning improves to cos2
(
π
8

)
≈ 0.8535. As Alice sends one qubit to each player, (Q1, Q2) = (1, 1) is

optimal.
In pseudo-telepathy games, quantum strategies guarantee winning with probability 1. One example is the magic square game

[44], where (X,Y ) are the coordinates of a cell in the square, and the players win the game if they can provide 3 bits each
that satisfy a parity condition. In this case, the game can be won with Q1 = Q2 = 2 qubits for each player. Slofstra and Vidick
[45] presented a game where coordination of a correlation that could win with probability (1− e−T ) requires Qj ∝ T qubits
for each user.

Sequential game: In the sequential version, the players repeat the game n times, and they can thus use a coordination
code in order to play the game. In particular, Alice generates the entire correlation between the players a priori, before the
sequential game begins. As the figure of merit, one may either consider the average chance of winning, or say, the minimal
probability of winning. Let S (γ) denote the set of correlations PBC|XY that win the game with probability γ. Based on our
results, each iteration of the game can be won with probability γ if and only if Alice can send qubits to Bob and Charlie at
rates Q1 and Q2 that satisfy the constraints in Theorem 8 with respect to some correlation PBC|XY ∈ S (γ).

VI. TWO NODE ANALYSIS (CLASSICAL LINKS)
Consider the two node network in Figure 9. Our proof for Theorem 1 is based on quantum resolvability [33–35].

Theorem 10 (see [33–35]). Consider an ensemble, {pX , ρxA}x∈X , and a random codebook that consists of 2nR independent
sequence, Xn(m), m ∈ [2nR], each is i.i.d. ∼ pX . If R > I(X;A)ρ, then for every δ > 0 and sufficiently large n,

E

∥∥∥∥∥∥ρ⊗nA − 1

2nR

2nR∑
m=1

ρ
Xn(m)
An

∥∥∥∥∥∥
1

 ≤ δ , (71)

where ρx
n

An ≡⊗n
k=1 ρ

xk

A , and the expectation is over all realizations of the random codebook.



A. Achievability proof

Assume (R0, R1) is in the interior of R2-node(ω). We need to construct a code that consists of an encoding channel
F (m1|xn,m0) and a c-q decoding channel DM0M1→Bn , such that the error requirement in (19) holds.

By the definition of S2-node(ω), there exists a c-q state

σUXB =
∑
u∈U

pU (u) |u⟩⟨u|U ⊗ σuXB (72)

such that

σuXB =
∑
x∈X

pX|U (x|u) |x⟩⟨x|X ⊗ θuB , u ∈ U (73)

σXB =ωXB , (74)
R1 ≥ I (X;U)σ , R0 +R1 ≥ I (XB;U)σ . (75)

Classical codebook generation: Select a random codebook C = {un(m0,m1)} by drawing 2n(R0+R1) i.i.d. sequences
according to the distribution pnU (un) =

∏n
k=1 pU (uk). Reveal the codebook to Alice and Bob.

Let (m0,m1) be a pair of random indices, uniformly distributed over [2nR0 ]× [2nR1 ]. Define the following PMF

P̃XnM0M1
(xn,m0,m1) ≡

1

2n(R0+R1)
pnX|U (xn|un (m0,m1)) . (76)

Encoder: We define the encoding channel F as the conditional distribution above, i.e., F = P̃M1|XnM0
.

Decoder: As Bob receives m1 from Alice, and the random element m0, he prepares the output state DM0M1→Bn(m0,m1) =

θ
un(m0,m1)
Bn .

Error analysis: Let δ > 0. The encoder sends m1 ∼ F (·|xn,m0). Given M0 = m0, by the classical resolvability theorem,
Cuff [26] has shown that R1 ≥ I (X;U)σ guarantees

E
∥∥∥P̃M0Xn − pM0

× pnX

∥∥∥
1
≤ δ (77)

for sufficiently large n, where P̃M0Xn is as in (76). Recall that P̃M0Xn is random, since the codebook C is random. Hence,
the expectation is over all realizations of C . The resulting state is

ρ̂XnBn =
1

2nR0

∑
m0,xn

(
pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
m1∈[2nR1 ]

P̃M1|XnM0
(m1|xn,m0)θ

un(m0,m1)
Bn

)
(78)

According to (77), the probability distributions P̃M0,Xn and pM0
× pnX are close on average. Then, let

τ̂XnBn ≡
∑
m0,xn

P̃M0Xn(m0x
n) |xn⟩⟨xn|Xn ⊗

∑
m1∈[2nR1 ]

P̃M1|XnM0
(m1|xn,m0)θ

un(m0,m1)
Bn . (79)

By (77), it follows that

E ∥τ̂XnBn − ρ̂XnBn∥1 ≤ δ . (80)

Observe that

τ̂XnBn =
∑

m0,m1,xn

P̃M0M1Xn(m0,m1, x
n) |xn⟩⟨xn|Xn ⊗ θ

un(m0,m1)
Bn

=
1

2n(R0+R1)

∑
m0,m1,xn

pnX|U (x
n|un(m0,m1)) |xn⟩⟨xn|Xn ⊗ θ

un(m0,m1)
Bn

=
1

2n(R0+R1)

∑
m0,m1

σ
un(m0,m1)
XnBn (81)

where the second equality is due to the definition of P̃ in (76), and the last line follows from (73).
Thus, according to the quantum resolvability theorem, Theorem 10, when applied to the joint system XB, for R0 +R1 ≥

I (XB;U)σ , we have

E
∥∥σ⊗n

XB − τ̂XnBn

∥∥
1
≤ δ (82)

for sufficiently large n. Therefore, by the triangle inequality,

E
∥∥ω⊗n

XB − ρ̂XnBn

∥∥
1
≤ E

∥∥ω⊗n
XB − τ̂XnBn

∥∥
1
+ E∥τ̂XnBn − ρ̂XnBn∥1

≤ 2δ (83)

by (74), (80) and (82).



B. Converse proof

Let (R0, R1) be an achievable rate pair. Then, there exists a sequence
(
2nR0 , 2nR1 , n

)
of coordination codes such that the

joint quantum state ρ̂XnBn satisfies ∥∥ω⊗n
XB − ρ̂XnBn

∥∥
1
≤ εn (84)

where εn tends to zero as n→ ∞.
Fix an index i ∈ {1, . . . , n}. By trace monotonicity [38], taking the partial trace over Xj , Bj , j ̸= i, maintains the inequality.

Thus,

∥ωXB − ρ̂XiBi∥1 ≤ εn . (85)

Then, by the AFW inequality [46], ∣∣∣H (XnBn)ρ̂ − nH (XB)ω

∣∣∣ ≤ nβn , (86)

and ∣∣∣H (XiBi)ρ̂ −H (XB)ω

∣∣∣ ≤ βn , (87)

for i ∈ [n], where βn tends to zero as n→ ∞. Therefore,∣∣∣∣∣H (XnBn)ρ̂ −
n∑
i=1

H (XiBi)ρ̂

∣∣∣∣∣ ≤ ∣∣∣H (XnBn)ρ̂ − nH (XB)ω

∣∣∣+ ∣∣∣∣∣nH (XB)ω −
n∑
i=1

H (XiBi)ρ̂

∣∣∣∣∣
≤
∣∣∣H (XnBn)ρ̂ − nH (XB)ω

∣∣∣+ n∑
i=1

∣∣∣H (XB)ω −H (XiBi)ρ̂

∣∣∣
≤ 2nβn . (88)

Now, we have

n(R0 +R1) ≥ H(M0M1) (89)
≥ I(XnBn;M0M1)ρ̂ (90)

since the conditional entropy is nonnegative for classical and c-q states, and the CR element M0 is statistically independent
of the source Xn. Furthermore, by entropy sub-additivity [38],

I(XnBn;M0M1)ρ̂ ≥ H(XnBn)ρ̂ −
n∑
i=1

H(XiBi|M0M1)ρ̂

≥
n∑
i=1

I(XiBi;M0M1)ρ̂ − 2nβn (91)

where the last inequality follows from (88). Defining a time-sharing variable I ∼ Unif[n], this can be written as

R0 +R1 + 2βn ≥ I(XIBI ;M0M1|I)ρ̂ (92)

with respect to the extended state:

ρ̂IM0M1XIBI
=

1

n

n∑
i=1

|i⟩⟨i| ⊗ ρ̂M0M1XiBi
. (93)

Observe that by (85) and the triangle inequality,

∥ωXB − ρ̂XIBI
∥1 =

∥∥∥∥∥ωXB − 1

n

n∑
i=1

ρ̂XiBi

∥∥∥∥∥
1

≤ εn . (94)

Thus, by the AFW inequality,

I(XIBI ; I)ρ̂ = H(XIBI)ρ̂ −
1

n

n∑
i=1

H(XiBi)ρ̂

≤ γn , (95)



where γn tends to zero. Together with (92), it follows that

R0 +R1 + 2βn + γn ≥ I(XIBI ;M0M1I)ρ̂ (96)

By similar arguments,

R1 + 2βn + γn ≥ I(XI ;M0M1I) (97)

To complete the converse proof, we identify U , X , and B with (M0,M1, I), XI , and BI , respectively. Observe that given
(m0,m1, i), the joint state of XI and BI is

(∑
xi∈X pXi|M0M1

(xi|m0,m1) |xi⟩⟨xi|XI

)
⊗ ρ

(m0,m1)
Bi

, where pXn|M0M1
is the a

posteriori probability distribution. Thus, there X and B are uncorrelated when conditioned on U , as required.
The bound on |U| follows by applying the Caratheodory theorem to the real-valued parameteric representation of density

matrices, as in [47, App. B].

VII. NO-COMMUNICATION ANALYSIS

Consider the no-communication network in Figure 10, of a quantum state ωABC . To prove Theorem 4, we use similar tools.
The achievability proof is straightforward, and it is thus omitted.

Then, consider the converse part. Assume that R0 is achievable. Therefore, there exists a sequence of (2nR0 , n) of coordination
codes such that for sufficiently large values of n,∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ εn , (98)

where εn → 0 as n→ ∞.
Applying the chain rule,

nR0 ≥ H(M0) (99)
≥ I(AnBnCn;M0)ρ̂ (100)

=

n∑
i=1

I(AiBiCi;M0|Ai−1Bi−1Ci−1)ρ̂ (101)

For every i ∈ [n], by trace monotonicity [38], ∥∥ω⊗i
ABC − ρ̂AiBiCi

∥∥
1
≤ εn . (102)

Then, by the AFW inequality [46] [38, Ex. 11.10.2],∣∣I(AiBiCi;Ai−1Bi−1Ci−1)ρ̂ − I(AiBiCi;A
i−1Bi−1Ci−1)ω⊗i

∣∣ ≤ βn , (103)

where βn tends to zero as n→ ∞. That is,

I(AiBiCi;A
i−1Bi−1Ci−1)ρ̂ ≤ βn (104)

since AiBiCi and (AjBjCj)j<i are in a product state ω ⊗ ω⊗(k−1). Hence, by (101),

nR0 ≥
n∑
i=1

I(AiBiCi;M0A
i−1Bi−1Ci−1)ρ̂ − nβn

≥
n∑
i=1

I(AiBiCi;M0)ρ̂ − nβn

≥ n

(
inf

σUABC∈SNC(ω)
I(U ;ABC)σ − 2βn

)
(105)

taking U ≡M0, as the encoders are uncorrelated given M0.

VIII. BROADCAST ANALYSIS (CLASSICAL LINKS)

Consider coordination in broadcast network, as in Figure 11 in the main text, of a classical-quantum-quantum state ωXBC .
To prove the capacity theorem, Theorem 5, we use similar tools as in Section VI.



A. Achievability proof

Assume (R0, R1) is in the interior of RBC(ω). We need to construct a code that consists of an encoding channel
F (m1|xn,m0) and a two c-q decoding channels DM0M1→Bn and DM0M1→Cn ,such that∥∥∥ω⊗n

XB − 1

2nR0

∑
m0∈[2nR0 ]

∑
xn∈Xn

pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
m1∈[2nR1 ]

F (m1|xn,m0)DM0M1→Bn(m1,m0)⊗DM0M1→Cn(m1,m0)
∥∥∥
1
≤ ε . (106)

According to the definition of SBC(ω) (see Subsection III-C), there exists a c-q state σXUBC that can be written as

σXUBC =
∑

(x,u)∈X×U

pX,U (x, u) |x⟩⟨x|X ⊗ |u⟩⟨u|U ⊗ θuB ⊗ ηuC (107)

and satisfy

σXBC = ωXBC (108)

We will also consider conditioning on U = u, and denote

σuXBC =
∑
x∈X

pX|U (x|u) |x⟩⟨x|X ⊗ θuB ⊗ ηuC . (109)

Classical codebook generation: Select a random codebook CBC = {un(m0,m1)} by drawing 2n(R0+R1) i.i.d. sequences
according to the distribution pnU . Reveal the codebook.

Encoder: Define the encoding channel as F = P̃M1|XnM0
, where P̃XnM0M1

be a joint distribution as in (76).
Decoders: As Bob and Charlie receive m1 from Alice, and the random element m0, they prepare the following output

states,

D(1)
M0M1→Bn(m0,m1) = θ

un(m0,m1)
B , (110)

D(2)
M0M1→Cn(m0,m1) = η

un(m0,m1)
C . (111)

Error analysis: Let δ > 0. The encoder sends m1 ∼ F (·|xn,m0). As in Subsection VI-A, given m0, if R1 ≥ I (X;U),
then

E
∥∥∥P̃M0Xn − pM0

× pnX

∥∥∥
1
≤ δ (112)

for sufficiently large n. As P̃M0Xn depends on the random codebook CBC, the expectation is over all realizations of CBC. The
resulting state is

ρ̂XnBnCn

=
1

2nR0

∑
m0∈[2nR0 ]

∑
xn∈Xn

(
pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
m1∈[2nR1 ]

F (m1|xn,m0)DM0M1→Bn(m0,m1)⊗DM0M1→Cn(m0,m1)
)

=
1

2nR0

∑
m0,xn

(
pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
m1∈[2nR1 ]

P̃M1|XnM0
(m1|xn,m0)θ

un(m0,m1)
B ⊗ η

un(m0,m1)
C

)
. (113)

According to (112), the probability distributions P̃M0Xn and pM0
× pnX are close on average. Then, let

τ̂XnBnCn ≡
∑
m0,xn

P̃M0Xn(m0, x
n) |xn⟩⟨xn|Xn ⊗

∑
m1∈[2nR1 ]

P̃M1|XnM0
(m1|xn,m0)θ

un(m0,m1)
B ⊗ η

un(m0,m1)
C . (114)

Then, it follows that

E ∥τ̂XnBnCn − ρ̂XnBnCn∥1 ≤ δ , (115)

by (112). Observe that

τ̂XnBnCn =
∑

m0,m1,xn

P̃M0M1Xn(m0,m1, x
n) |xn⟩⟨xn|Xn ⊗ θ

un(m0,m1)
B ⊗ η

un(m0,m1)
C

=
1

2n(R0+R1)

∑
m0,m1,xn

pnX|U (x
n|un(m0,m1)) |xn⟩⟨xn|Xn ⊗ θ

un(m0,m1)
B ⊗ η

un(m0,m1)
C

=
1

2n(R0+R1)

∑
m0,m1

σ
un(m0,m1)
XnBnCn , (116)



where the second equality is due to the definition of P̃ in (76), and the last line follows from (109).
Thus, according to the quantum resolvability theorem 10, when applied to the joint system XBC, we have

E
∥∥σ⊗n

XBnCn − τ̂XnBnCn

∥∥
1
≤ δ (117)

for sufficiently large n. Therefore, by the triangle inequality,

E
∥∥ω⊗n

XBC − ρ̂XnBnCn

∥∥
1
≤ E

∥∥ω⊗n
XBnCn − τ̂XnBnCn

∥∥
1
+ E∥τ̂XnBnCn − ρ̂XnBnCn∥1

≤ 2δ (118)

by (108), (115) and (117).

B. Converse proof

Let (R0, R1) be an achievable coordination rate pair for the simulation of a c-q-q state ωXBC in the broadcast setting. Then,
there exists a sequence of

(
2nR0 , 2nR1 , n

)
coordination codes such that the joint quantum state ρ̂XnBnCn satisfies∥∥ω⊗n

XBnCn − ρ̂XnBnCn

∥∥
1
≤ εn , (119)

where εn tends to zero as n→ ∞. Fix an index i ∈ {1, . . . , n}. By trace monotonicity [38], taking the partial trace over Xj ,
Bj , Cj , for j ̸= i, maintains the inequality, thus Thus,

∥ωXBC − ρ̂XiBiCi
∥1 ≤ εn . (120)

Then, by the AFW inequality [46], ∣∣∣H (XnBnCn)ρ̂ − nH (XBC)ω

∣∣∣ ≤ nβn , (121)

and ∣∣∣H (XiBiCi)ρ̂ −H (XBC)ω

∣∣∣ ≤ βn , (122)

for i ∈ [n], where βn tends to zero as n→ ∞. Therefore,

∣∣∣∣∣H (XnBnCn)ρ̂ −
n∑
i=1

H (XiBiCi)ρ̂

∣∣∣∣∣ ≤ 2nβn . (123)

Now, we also have

n(R0 +R1) ≥ H(IJ)

≥ I(XnBnCn; IJ)ρ̂ , (124)

since the conditional entropy is nonnegative for classical and c-q-q states, and the CR element J is statistically independent
of the source Xn. Furthermore, by entropy sub-additivity [38],

I(XnBnCn;M0M1)ρ̂ ≥ H(XnBnCn)ρ̂ −
n∑
i=1

H(XiBiCi|M0M1)ρ̂

≥
n∑
i=1

I(XiBiCi;M0M1)ρ̂ − 2nβn (125)

where the last inequality follows from (123).
Defining a time-sharing variable I ∼ Unif[n], this can be written as

R0 +R1 + 2βn ≥ I(XIBICI ;M0M1|I)ρ̂ (126)

with respect to the extended state

ρ̂IM0M1XIBICI
=

1

n

n∑
i=1

|i⟩⟨i| ⊗ ρ̂M0M1XiBiCi
. (127)

Observe that

∥ωXBC − ρ̂XIBICI
∥1 =

∥∥∥∥∥ωXBC − 1

n

n∑
i=1

ρ̂XiBiCi

∥∥∥∥∥
1

≤ εn (128)



by the triangle inequality (see (120)). Thus, by the AFW inequality,

I(XIBICI ; I)ρ̂ = H(XIBICI)ρ̂ −
1

n

n∑
i=1

H(XiBiCi)ρ̂

≤ γn , (129)

where γn tends to zero as n→ ∞. Together with (125), it implies

R0 +R1 + 2βn + γn ≥ I(XIBICI ;M0M1I)ρ̂ . (130)

By similar arguments,

R1 + 2βn + γn ≥ I(XI ;M0M1) . (131)

To complete the converse proof, we identify U , X , and BC with (M0,M1, I), XI , and BICI , respectively. Observe that
given (m0,m1, i), the joint state of XI , BI and CI is(∑

xi∈X
pXi|M0M1

(xi|m0,m1) |xi⟩⟨xi|XI

)
⊗ ρ

(m0,m1)
BI

⊗ ρ
(m0,m1)
CI

, (132)

where pXn|M0M1
is the a posteriori probability distribution. Thus, there is no correlation between X , B, and C when conditioned

on U , as required.

IX. CASCADE NETWORK ANALYSIS (QUANTUM LINKS)

We prove the rate characterization in Theorem 6. Consider the cascade network in Figure 12.

A. Achievability proof

The proof for the direct part exploits the state redistribution result by Yard and Devetak in [12]. We first describe the state
redistribution problem. Consider two parties, Alice and Bob. Let their systems be described by the joint state ψABG, where A
and B belong to Alice, and G belongs to Bob. Let the state |ψABGR⟩ be a purification of ψABG. Alice and Bob would like
to redistribute the state ψABG such that B is transferred from Alice to Bob. Alice can send quantum description systems at
rate Q and they share maximally entangled pairs of qubits at a rate E.

Theorem 11 (State Redistribution [12]). The optimal rates for state redistribution of |ψAGBR⟩ with rate-limited entanglement
are

Q ≥ 1

2
I(B;R|G)ψ , (133)

Q+ E ≥ H(B|G)ψ . (134)

We go back to the coordination setting for the cascade network (see Figure 12). Alice, Bob, and Charlie would like to
simulate the joint state ω⊗n

ABC . Let |ωABCR⟩ be a purification. Suppose that Alice prepares the desired state |ωAB̄C̄R̄⟩⊗n
locally in her lab, where B̄n, C̄n, and R̄n are her ancillas. Let ε > 0 be arbitrarily small. By the state redistribution theorem,
Theorem 11, Alice can transmit B̄nC̄n to Bob at communication rate Q1 and entanglement rate E1, provided that

Q1 ≥ 1

2
I(B̄C̄; R̄)ω =

1

2
I(BC;R)ω , (135)

Q1 + E1 ≥ H(B̄C̄)ω = H(BC)ω (136)

(see [12]). That is, there exist a bipartite state ΨTAT ′
B

and encoding maps, E(1)

B̄nC̄nTA→M1
and F (1)

M1T ′
B→BnC̃n

, such that∥∥∥τ (1)
R̄nAnBnC̃n

− ω⊗n
RABC

∥∥∥
1
≤ ε, (137)

for sufficiently large n, where

τ
(1)

R̄nAnBnC̃n
=
[
idR̄nAn ⊗F (1)

M1T ′
B→BnC̃n

◦
(
E(1)

B̄nC̄nTA→M1
⊗ idT ′

B

)] (
ω⊗n
RABC ⊗ΨTAT ′

B

)
. (138)

Similarly, C̄n can be compressed and transmitted with rates

Q2 ≥ 1

2
I(C̄;AR̄)ω =

1

2
I(C;AR)ω , (139)

Q2 + E2 ≥ H(C̄)ω = H(C)ω , (140)



by Theorem 11. Namely, there exists a bipartite state ΘT ′′
BTC

and encoding maps, F (2)

C̄nT ′′
B→M2

and D(2)
M2TC→Cn , such that∥∥∥τ (2)R̄nAnBnCn − ω⊗n

R̄ABC

∥∥∥
1
≤ ε, (141)

where

τ
(2)

R̄nAnBnCn =
[(

idR̄nAnB̄n ⊗D(2)
M2TC→Cn

)
◦
(
F (2)

C̄nT ′′
B→M2

⊗ idTC

)] (
ω⊗n
R̄AB̄C̄

⊗ΘT ′′
BTC

)
. (142)

The coding operations for the cascade network are described below.
Encoding:

A) Alice prepares |ωAB̄C̄R̄⟩⊗n locally. She applies idR̄nAn ⊗ E(1)

B̄nC̄nTA→M1
, and sends M1 to Bob.

B) As Bob receives M1, he applies

FM1T ′
BT

′′
B→BnM2

≡
(
idBn ⊗F (2)

C̃nT ′′
B→M2

)
◦ F (1)

M1T ′
B→BnC̃n

. (143)

C) Charlie receives M2 from Bob and applies D(2)
M2TC→Cn .

Error analysis: We trace out the reference system R and write the analysis with respect to the reduced states. The joint
state after Alice’s encoding is

ρ
(1)
AnM1T ′

B
=
[
idAn ⊗ E(1)

B̄nC̄nTA→M1
⊗ idT ′

B

]
(ω⊗n
AB̄C̄

⊗ΨTAT ′
B
) . (144)

After Bob applies his encoder, this results in

ρ
(2)
AnBnM2TC

=
[(

idAnBn ⊗F (2)

C̃nT ′′
B→M2

⊗ idTC

)
◦
(
idAn ⊗F (1)

M1T ′
B→BnC̃n

⊗ idT ′′
B TC

)]
(ρ

(1)
AnM1T ′

B
⊗ΘT ′′

B TC
)

=
(
idAnBn ⊗F (2)

C̃nT ′′
B→M2

⊗ idTC

)
(τ

(1)

AnBnC̃n
⊗ΘT ′′

B TC
) (145)

by (143), and based on the definition of τ (1) in (138). According to (137), τ (1) and ω⊗n are close in trace distance. By trace
monotonicity under quantum channels, we have∥∥∥ρ(2)AnBnM2TC

−
(
idAnBn ⊗F (2)

C̃nT ′′
B→M2

⊗ idTC

)
(ω⊗n
ABC̃

⊗ΘT ′′
B TC

)
∥∥∥
1
≤ ε. (146)

As Charlie receives M2 and encodes, the final state, at the output of the cascade network, is given by

ρ̂AnBnCn =
[
idAnBn ⊗D(2)

M2TC→Cn

]
(ρ

(2)
AnBnM2TC

) . (147)

Once more, by trace monotonicity, ∥∥∥ρ̂AnBnCn − τ
(2)
AnBnCn

∥∥∥
1
≤ ε . (148)

(see (141) and (142)). Thus, using (141), (148), and the triangle inequality, we have∥∥ρ̂AnBnCn − ω⊗n
ABC

∥∥
1
≤
∥∥∥τ (2)AnBnCn − ω⊗n

ABC

∥∥∥
1
+
∥∥∥ρ̂AnBnCn − τ

(2)
AnBnCn

∥∥∥
1

≤ 2ε . (149)

This completes the achievability proof for the cascade network.

B. Converse proof

We now prove the converse part for Theorem 6. Recall that in the cascade network, each party shares entanglement with
their nearest neighbor a priori, i.e., Alice and Bob share

∣∣ΨTAT ′
B

〉
, while Bob and Charlie share

∣∣ΘT ′′
BTC

〉
(see Figure 12 in

subsection IV-A). Alice applies an encoding map EĀnTA→AnM1
on her part, and sends the output M1 to Bob. As Bob receives

M1, he encodes using a map FM1T ′
BT

′′
B→BnM2

, and sends M2. As Charlie receives M2, he applies an encoding channel
DM2TC→Cn . Suppose that Alice prepares the state |ωRĀB̄C̄⟩⊗n locally, and then encodes as explained above. The protocol
can be described through the following relations:

ρ
(1)
RnAnM1T ′

B
= (idRn ⊗ EĀnTA→AnM1

⊗ idT ′
B
)(ω⊗n

RĀ
⊗ΨTAT ′

B
) , (150)

ρ
(2)
RnAnBnM2TC

= (idR̄nAn ⊗FM1T ′
BT

′′
B→BnM2

⊗ idTC
)(ρ

(1)
RnAnM1T ′

B
⊗ΘT ′′

B TC
) , (151)

ρ̂RnAnBnCn = (idRnAnBn ⊗DM2TC→Cn)
(
ρ
(2)
RnAnBnM2TC

)
. (152)



Alice Bob Charlie
M1

ℓ1 qubits

M2

ℓ2 qubits

An Bn Cn

TA T ′
B T ′′

B TC

|ΨTAT ′
B
⟩ |ΘT ′′

BTC
⟩

Fig. 16: At first, we treat the encoding operation of Bob and Charlie as a black box.

Let (Q1, Q2, E1, E2) be achievable rate tuple for coordination in the cascade network. Then, there exists a sequence of
codes such that ∥∥ρ̂RnAnBnCn − ω⊗n

RABC

∥∥
1
≤ εn (153)

where εn → 0 as n→ ∞. Consider Alice’s communication and entanglement rates, Q1 and E1. At this point, we may view the
entire encoding operation of Bob and Charlie as a black box whose input and output are (M1, T

′
B) and (Bn, Cn), respectively,

as illustrated in Figure 16. Now,

2n(Q1 + E1) = 2
[
log dim(HM1) + log dim(HT ′

B
)
]

≥I(M1T
′
B ;A

nRn)ρ(1) (154)

since the quantum mutual information satisfies I(A;B)ρ ≤ 2 log dim(HA) in general. Therefore, by the data processing
inequality,

I(M1T
′
B ;A

nRn)ρ(1) ≥I(BnCn;AnRn)ρ̂
≥I(BnCn;AnRn)ω⊗n − nαn

= n[I(BC;AR)ω − αn] , (155)

where αn → 0 when n → ∞. The second inequality follows from (153) and the Alicki-Fannes-Winter (AFW) inequality
[46] (entropy continuity). Since |ωRABC⟩ is pure, we have I(BC;AR)ω = 2H(BC)ω [38, Th. 11.2.1]. Therefore, combining
(154)-(155), we have

Q1 + E1 ≥ H(BC)ω − 1

2
αn . (156)

To show the bound on Q1, observe that a lower bound on the communication rate with unlimited entanglement resources
also holds with limited resources. Therefore, the bound Q1 ≥ 1

2I(BC;R)ω follows from the entanglement-assisted capacity
theorem due to Bennett et al. [25]. It is easier to see this through resource inequalities, following the arguments in [27]. If the
entanglement resources are unlimited, then the coordination code achieves

Q1 [q → q]A→BC ≥ ⟨ωRBC⟩
≡ ⟨TrA : ωRABC⟩

≥ 1

2
I(BC;R)ω [q → q]A→BC (157)

where the resource units [q → q], [qq], and ⟨ωABC⟩ represent a single use of a noiseless qubit channel, an EPR pair, and
the desired state ωABC , respectively, while the unit resource ⟨NA→B : ρ⟩ indicates a simulation of the channel output from
NA→B with respect to the input state ρ. The last inequality holds by [25, 27].

Similarly, we bound Bob’s communication and entanglement rates as follows,

2n(Q2 + E2) = 2
[
log dim(HM2) + log dim(HT ′′

B
)
]

(158)

≥I(M2TC ;A
nBnRn)ρ(2) (159)

≥I(Cn;AnBnRnT ′′
B)ρ̂ (160)

≥n[I(C;ABR)ω − βn] (161)
= n[2H(C)ω − βn] (162)



where βn → 0 when n→ ∞. As before, the last inequality follows from (153) and the AFW inequality [46]. Hence,

Q2 + E2 ≥ H(C)ω − 1

2
βn . (163)

Furthermore,

Q2 [q → q]B→C ≥ ⟨ωRAC⟩
≡ ⟨TrB : ωRABC⟩

≥ 1

2
I(C;AR)ω [q → q]B→C (164)

which implies Q2 ≥ 1
2I(C;AR)ω .

This completes the proof of Theorem 6 for the cascade network.

X. BROADCAST ANALYSIS (QUANTUM LINKS)

We prove the rate characterization in Theorem 8. Consider the broadcast network in Figure 14. We show achievability by
using a quantum version of the binning technique.

Let εi, δ > 0 be arbitrarily small. Define the average states,

σ
(x)
AB =

∑
y∈Y

pY |X(y|x)σ(x,y)
AB , (165)

σ
(y)
AC =

∑
x∈X

pX|Y (x|y)σ(x,y)
AC , (166)

and consider a spectral decomposition of the reduced states of Bob and Charlie,

σ
(x)
B =

∑
z∈Z

pZ|X(z|x) |ψx,z⟩⟨ψx,z| , (167)

σ
(y)
C =

∑
w∈W

pW |Y (w|y) |ϕy,w⟩⟨ϕy,w| , (168)

where pZ|X and pW |Y are conditional probability distributions, and {|ψx,z⟩}z, {|ϕy,w⟩}w are orthonormal bases for HB , HC ,
respectively, for every given x ∈ X and y ∈ Y . We can also assume that the different bases are orthogonal to each other by
requiring that Bob and Charlie encode on a different Hilbert space for every value of (x, y).

We use the type class definitions and notations in [38, Chap. 14]. In particular, TX
n

δ denotes the δ-typical set with respect
to pX , and TZ

n|xn

δ is the conditional δ-typical set with respect to pXZ , given xn ∈ TX
n

δ .
Classical Codebook Generation: For every sequence zn ∈ Zn, assign an index m1(z

n), uniformly at random from
[2nQ1 ]. A bin B1(m1) is defined as the subset of sequences in Zn that are assigned the same index m1, for m1 ∈ [2nQ1 ].
The codebook is revealed to all parties.

Encoding:

A) Alice prepares ω⊗n
AB̄C̄

locally, where B̄nC̄n are her ancillas, without any correlation with Xn and Y n (see Remark 6). She
applies the encoding channel E(1)

B̄n→M1
⊗ E(2)

C̄n→M2
,

E(1)

B̄n→M1
(ρ1) =

∑
xn∈Xn

p⊗nX (xn)
∑

zn∈Zn

⟨ψxn,zn | ρ1 |ψxn,zn⟩ |m1(z
n)⟩⟨m1(z

n)| , (169)

E(2)

C̄n→M2
(ρ2) =

∑
yn∈Yn

p⊗nY (yn)
∑

wn∈Wn

⟨ϕyn,wn | ρ2 |ϕyn,wn⟩ |m2(w
n)⟩⟨m2(w

n)| , (170)

for ρ1 ∈ ∆(H⊗n
B ), ρ2 ∈ ∆(H⊗n

C ), and transmits M1 and M2 to Bob and Charlie, respectively.
B) First, Bob applies the following encoding channel,

F (xn)
M1→Bn(ρM1

) =

2nQ1∑
m1=1

⟨m1| ρM1
|m1⟩

 1∣∣∣TZn|xn

δ ∩B1(m1)
∣∣∣

∑
zn∈TZn|xn

δ ∩B1(m1)

|ψxn,zn⟩⟨ψxn,zn |

 (171)

C) Charlie encodes in a similar manner.



Error analysis: Due to the code construction, it suffices to consider the individual errors of Bob and Charlie,
1

2

∥∥∥ω⊗n
XAB −

(
FXnM1→XnBn ◦ E(1)

B̄n→M1

)
(ω⊗n
X ⊗ ω⊗n

AB̄
)
∥∥∥
1
, (172)

1

2

∥∥∥ω⊗n
Y AC −

(
DY nM2→Y nCn ◦ E(2)

C̄n→M2

)
(ω⊗n
Y ⊗ ω⊗n

AC̄
)
∥∥∥
1
, (173)

respectively, where we use the short notation E(1)

B̄n→M1
≡ idXnAn ⊗ E(1)

B̄n→M1
, and similarly for the other encoding maps.

We now focus on Bob’s error. Consider a given codebook C1 = {m1(z
n)}. Alice encodes M1 by

E(1)

B̄n→M1
(ω⊗n
AB) =

∑
x̃n∈Xn

p⊗nX (x̃n)
∑

zn∈Zn

⟨ψx̃n,zn |ω⊗n
AB |ψx̃n,zn⟩ |m1(z

n)⟩⟨m1(z
n)| , (174)

where we use the short notation |ψ⟩xn,zn ≡⊗n
i=1 |ψ⟩xi,zi

. By the weak law of large numbers, this state is ε1-close in trace
distance to

ρ
(1)
AnM1

=
∑

x̃n∈TXn

δ

p⊗nX (x̃n)
∑

zn∈TZn|x̃n

δ

⟨ψx̃n,zn |σ(x̃n)

AnB̄n |ψx̃n,zn⟩ |m1(z
n)⟩⟨m1(z

n)|

=
∑

xn∈TXn

δ

p⊗nX (xn)ρ
(1|xn)
AnM1

, (175)

for sufficiently large n, where we have defined

ρ
(1|xn)
AnM1

=
∑

zn∈TZn|xn

δ

⟨ψxn,zn |σ(xn)

AnB̄n |ψxn,zn⟩ |m1(z
n)⟩⟨m1(z

n)| . (176)

Let xn ∈ TX
n

δ . After Bob encodes Bn, we have

F (xn)
M1→Bn

(
ρ
(1|xn)
AnM1

)
=

∑
zn∈TZn|xn

δ

⟨ψxn,zn |σ(xn)

AnB̄n |ψxn,zn⟩ F (xn)
M1→Bn(|m1(z

n)⟩⟨m1(z
n)|) . (177)

By the definition of Bob’s encoding channel, F (xn)
M1→Bn , in (171),

F (xn)
M1→Bn (|m1(z

n)⟩⟨m1(z
n)|) = 1∣∣∣TZn|xn

δ ∩B1(m1(zn))
∣∣∣

∑
z̃n∈TZn|xn

δ ∩B1(m1(zn))

|ψxn,z̃⟩⟨ψxn,z̃| . (178)

Substituting in (177) yields

F (xn)
M1→Bn

(
ρ
(1|xn)
AnM1

)
=

∑
zn∈TZn|xn

δ

⟨ψxn,zn |σ(xn)

AnB̄n |ψxn,zn⟩

⊗

 1∣∣∣TZn|xn

δ ∩B1(m1(zn))
∣∣∣

∑
z̃n∈TZn|xn

δ ∩B1(m1(zn))

|ψxn,z̃n⟩⟨ψxn,z̃n |

 . (179)

Based on the classical result [48, Chapter 10.3], the random codebook C1 satisfies that

Pr
C1

(
∃z̃n ∈ T

Zn|xn

δ ∩B1(m1(z
n)) : z̃n ̸= zn

)
≤ ε2 (180)

given zn ∈ T
Zn|xn

δ , for sufficiently large n, provided that the codebook size is at least 2n(H(Z|X)+ε3), where H(Z|X) denotes
the classical conditional entropy. As |C1| = 2nQ1 , this holds if

Q1 > H(Z|X) + ε3

= H(B|X)ω + ε3 . (181)

Observe that if the summation set in (179), TZ
n|xn

δ ∩B1(m1(z
n)), consists of the sequence zn alone, then the overall state in

(179) is identical to the post-measurement state after a typical subspace measurement on Bn, with respect to the conditional
δ-typical set TZ

n|xn

δ . Based on the gentle measurement lemma [49], this state is ε4-close to σ(xn)
AB , for sufficiently large n.

Therefore, by the triangle inequality and total expectation formula,∥∥∥ω⊗n
XAB − EC1

(
FXnM1→XnBn ◦ E(1)

B̄n→M1

) (
ω⊗n
X ⊗ ω⊗n

AB̄

)∥∥∥
1

≤
∑

xn∈Xn

p⊗nX (xn) · EC1

∥∥∥σ(xn)
AnBn −

(
F (xn)
M1→Bn ◦ E(1)

B̄n→M1

)(
σ
(xn)
AnBn

)∥∥∥
1



≤ ε1 + ε2 + ε4 . (182)

By symmetry, Charlie’s error tends to zero as well, provided that Q2 ≥ H(C|Y )ω + ε5. Since the total error vanishes, when
averaged over the class of binning codebooks, it follows that there exists a deterministic codebook with the same property.
The achievability proof follows by taking n→ ∞ and then εj , δ → 0.

The converse proof follows the lines of [12], and it is thus omitted. This completes the proof of Theorem 8 for the broadcast
network.

XI. MULTIPLE-ACCESS ANALYSIS (QUANTUM LINKS)

We prove the rate characterization in Theorem 9. Consider the multiple-access network in Figure 15. As explained in
Remark 7, coordination in the multiple-access network is only possible if there exists an isometry V : HC → HC1 ⊗ HC2

such that

(1⊗ V ) |ωABC⟩ = |ϕAC1
⟩ ⊗ |χBC2

⟩ (183)

where |ϕAC1
⟩ and |χBC2

⟩ are purifications of ωA and ωB , respectively. For this reason, Theorem 9 assumes that this property
holds. Furthermore, since |ϕAC1

⟩ and |χBC2
⟩ purify ωA and ωB , respectively, we have H(C1)ϕ = H(A)ϕ = H(A)ω and

H(C2)χ = H(B)χ = H(B)ω . Thus, it suffices to show that (Q1, Q2) is achievable if and only if

Q1 ≥ H(C1)ϕ , (184)
Q2 ≥ H(C2)χ . (185)

The achievability proof follows from the Schumacher compression protocol [50] [38, chap. 18] in a straightforward manner.
Alice and Bob prepare ϕ⊗nAC1

and χ⊗n
BC2

, respectively. Then, they send Cn1 and Cn2 using the Schumacher compression protocol,
and finally, Charlie applies the isometry (V †)⊗n in order to simulate ω⊗n

ABC (see (183)). The details are omitted.
It remains to show the converse part. Recall that in the multiple-access network, Alice and Bob each applies their respective

encoding map, EAn→AnM1 and FBn→BnM2 , and send the quantum descriptions M1 and M2. Then, Charlie encodes by
DM1M2→Cn .

The protocol can be described through the following relations:

ρ
(1)
AnM1

= EAn→AnM1
(ω⊗n
A ) , ρ

(2)
BnM2

= FBn→BnM2
(ω⊗n
B ) , (186)

ρ̂AnBnCn = (idAnBn ⊗DM1M2→Cn) (ρ
(1)
AnM1

⊗ ρ
(2)
BnM2

) . (187)

Let (Q1, Q2) be an achievable rate pair for coordination in the multiple-access network in Figure 15. Then, there exists a
sequence of (2nQ1 , 2nQ2 , n) coordination codes such that∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ εn (188)

tends to zero as n→ ∞. Applying the isometry V ⊗n yields∥∥σ̂AnBnCn
1 C

n
2
− ϕ⊗nAC1

⊗ χ⊗n
BC2

∥∥
1
≤ εn , (189)

by (183), where

σ̂AnBnCn
1 C

n
2
= (1AB ⊗ V )⊗nρ̂AnBnCn(1AB ⊗ V †)⊗n . (190)

It thus follows that ∥∥σ̂AnCn
1
− ϕ⊗nAC1

∥∥
1
≤ εn (191)

and ∥∥σ̂BnCn
2
− χ⊗n

BC2

∥∥
1
≤ εn . (192)

Now, Alice’s communication rate is bounded by

2nQ1

(a)

≥ I(M1;A
n|M2)ρ(1)⊗ρ(2)

(b)
= I(M1M2;A

n)ρ(1)⊗ρ(2)

(c)

≥ I(Cn;An)ρ̂
(d)
= I(Cn1 C

n
2 ;A

n)σ̂
(e)

≥ I(Cn1 C
n
2 ;A

n)ω − nαn



(f)
= 2nH(C1)ϕ − nαn
(g)
= 2nH(A)ω − nαn , (193)

where (a) holds because M1 is of dimension 2nQ1 , (b) since I(M2;A
n)ρ(1)⊗ρ(2) = 0, (c) follows from the data processing

inequality, (d) holds since the von Neumann entropy is isometrically invariant, (e) by the AFW inequality [46] , (f) since
the mutual information is calculated with respect to the product state |ϕAC1⟩⊗n ⊗ |χBC2⟩⊗n, and (g) holds since |ϕAC1⟩ is a
purification of ωA. The bound on Bob’s communication rate follows by symmetry. This completes the proof of Theorem 9.

XII. SUMMARY AND DISCUSSION

We study coordination in three network models with classical communication links: 1) two-node network simulating a
c-q state, 2) no-communication network simulating a separable state, and 3) a broadcast network simulating a c-q-q state,
and consider coordination in additional three networks with quantum links: 1) a cascade network simulating quantum states
with limited communication and entanglement assistance, 2) a quantum linked broadcast network simulating a joint quantum
state with classical side information, and 3) a multiple-access network, generating entanglement between each sender and
the receiver. We observe that the network topology dictates the type of states that can be simulated. Our findings generalize
classical results from [26] and [40], and also quantum results from [8].

The results are relevant for various applications, where the network nodes could represent classical-quantum sensors [51],
computers performing a joint computation task [52, 53], or players in a nonlocal game [54, 55] as we illustrated in the broadcast
network with quantum links, in which we establishes the optimal rates required to achieve a certain quantum correlation to win
a game at a desired probability. This work can be viewed as a step forward in understanding coordination in a general network
that may comprise either classical or quantum resources. Another interesting direction for future work is the characterization
of network coordination in the one-shot regime.
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[28] J. Nötzel, “Entanglement-enabled communication,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 2, pp. 401–415, 2020.
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