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Abstract—Secure communication is considered with unreliable
entanglement assistance, due to one of two reasons: Interception
or loss. We consider two corresponding models. In the first
model, Eve may intercept the entanglement resource. In the
second model, Eve is passive, and the resource may dissipate
to the environment beyond her reach. The operational principle
of communication with unreliable entanglement assistance is to
adapt the transmission rate to the availability of entanglement
assistance, without resorting to feedback and repetition. For
the passive model, we derive a multi-letter secrecy capacity
formula for general channels, subject to a maximal error criterion
and semantic security. For the interception model, we derive
achievable rates, and a multi-letter formula for the special class
of degraded channels. As an example, we consider the erasure
channel and the amplitude damping channel. In the erasure
channel, time division is optimal and we derive single-letter
formulas for both models. In the amplitude damping channel,
under interception, time division is not necessarily possible, and
the boundary of our achievable region is disconnected. In the
passive model, our rate region outperforms time division.

Index Terms—Quantum communication, secrecy capacity,
wiretap channel, entanglement assistance, semantic security.

I. INTRODUCTION

Security poses a pivotal challenge in modern communi-
cations [1]. QKD protocols are designed to generate a key
for subsequent encryption [2]. Physical layer security comple-
ments the cryptographic approach, and leverages the inherent
disturbance of the physical channel to ensure security without
relying on a key [3–6]. A quantum wiretap channel is modeled
as a linear map NA→BE , where the sender, Alice, transmits A,
a receiver, Bob, obtains B, and a malicious third-party, Eve,
holds E. The goal is for Alice to reliably send a message to
Bob, while Eve gets negligible information.

Entanglement resources are useful in many applications,
including physical-layer security [7, 8], and can significantly
increase throughput [9, 10]. Unfortunately, it is a fragile
resource [11]. In order to generate entanglement assistance
in optical communication, the transmitter first prepares an
entangled pair locally, and then transmits half of it [12].
Since photons are easily lost to the environment [13], current
implementations incorporate a back channel to notify the
transmitter in case of a failure, with numerous repetitions.
This approach has clear disadvantages and may even result in
system collapse. However, ensuring resilience and reliability
is critical for developing future communication networks [14].

Parts of this work will be presented in the International Symposium on
Information Theory (ISIT 2024) and were submitted to the Information Theory
Workshop (ITW 2024).

Communication with unreliable entanglement assistance
was recently introduced in [15] as a setup where a back
channel and repetition are not required. Instead, the rate is
adapted to the availability of entanglement assistance. The
principle of operation ensures reliability by design. Uncertain
cooperation was originally studied in classical multi-user in-
formation theory [16], motivated by the engineering aspects
of modern networks. The quantum model involves a point-to-
point quantum channel and unreliable correlations [15, 17].

The secrecy capacity of a quantum wiretap channel has been
investigated in various settings [18–20]. Cai et al. [21] and
Devetak [22] considered the unassisted setting. Qi et al. [9]
considered secure communication with entanglement assis-
tance. In principle, pre-shared entanglement can be utilized
to generate a joint key. However, Qi et al. [9] assume that
Eve can also access Bob’s resource. While this assumption
may seem to contradict the no-cloning theorem, we provide
an operational meaning below.

Here, we consider two security settings of a quantum wire-
tap channel with unreliable entanglement assistance. Before
communication begins, the legitimate parties try to generate
entanglement assistance. To this end, Alice prepares an entan-
gled pair locally and transmits one particle. The particle may
fail to reach Bob due to one of two reasons:

1) Interception: While the particle travels from the transmitter,
Eve tries to steal it.

2) Loss: The particle is lost to the environment. Yet, Eve is
passive and does not gain access to the resource.

In the optimistic case, Alice and Bob generate entanglement
successfully prior to the transmission of information. Hence,
Bob can decode the information while using the entangled
resource, which is not available to Eve. However, in the
pessimistic case, Bob must decode without it. Nonetheless,
secrecy needs to be maintained, whether Bob, Eve, or a neutral
environment hold the entangled resource.

Consider the following approach. Alice encodes two mes-
sages at rates R and R′, unaware of whether Bob holds the
entanglement resource or not. Whereas, Bob and Eve know
whether the resource is in their possession. In practice, this
is realized through heralded entanglement generation [15, Re-
mark 2]. If the entangled resource is not available to Bob, then
he decodes the first message alone; hence, the transmission
rate is R. Whereas, given entanglement assistance, Bob de-
codes both messages, hence the overall rate is R+R′. The rate
R is thus associated with information that is guaranteed to be
sent, while R′ with the excess information that entanglement



assistance provides. In this manner, we adapt the transmission
rate to the availability of entanglement assistance.

We establish an achievable rate region for communication
with unreliable entanglement assistance under interception,
and a multi-letter capacity formula under passive eavesdropper,
both subject to a maximal error criterion and semantic security.
In addition, we derive a multi-letter capacity formula also
for the interception model for the class of degraded wiretap
channels. To demonstrate our results, we consider the erasure
channel and the amplitude damping channel. For the erasure
channel, we show that time-division is optimal and we derive
single-letter formulas for both models. For the amplitude
damping channel, in the interception model, we encounter
a phenomenon that is somewhat rare in network information
theory [23]: Time sharing is impossible and the boundary of
our achievable region is disconnected. In the passive model,
our achievable region outperforms time division.

The paper is organized as follows. In Section II, we provide
definitions and description for both models. In Section III, we
give a brief review of related work. Our results are presented
in Sections IV-VI. The achievability proof for the inner bound
is given in Section VII, and the proof for the regularized
characterization in Section VIII. Section IX is dedicated to
summary and discussion.

II. NOTATIONS AND CODING DEFINITIONS

A. Basic Definitions

We use the following notation conventions: Calligraphic
letters X ,Y,Z, . . . denote finite sets. Uppercase letters
X,Y, Z, . . . represent random variables, while lowercase
x, y, z, . . . stand for their values. We use xj = (x1, x2, . . . , xj)
for a sequence of letters from the alphabet X , and [i : j] for
the index set {i, i+ 1, . . . , j} where j > i.

A quantum state is described by a density operator ρ
on a Hilbert space H. We denote the set of all density
operators by S (H). The von Neumann entropy is defined
as H(ρ) ≡ −Tr[ρ log(ρ)]. Given a bipartite state ρAB ∈
S (HA⊗HB), the quantum mutual information is I(A;B)ρ =
H(ρA)+H(ρB)−H(ρAB). The conditional quantum entropy
is defined by H(A|B)ρ = H(ρAB)−H(ρB), and the quantum
conditional mutual information is defined accordingly.

A quantum channel LA→B : S (HA) → S (HB) is a linear
completely-positive and trace-preserving (CPTP) map.

B. Wiretap Channel

A quantum wiretap channel NA→BE : S (HA) →
S (HB ⊗HE) maps a state at the sender’s system to a joint
state of the legitimate receiver and eavesdropper’s systems.
The sender, receiver, and eavesdropper are often referred to as
Alice, Bob and Eve, respectively.

We denote the marginal channel, from Alice to Bob, by
LA→B , and the other marginal, from Alice to Eve, by LA→E .
The marginal channels are also referred to as the main channel
and the eavesdropper’s channel, respectively. The quantum
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Fig. 1. Interception illustration with an imaginary switch. As Eve may steal
the resource, there are two scenarios: (a) "Left": Bob decodes both m and
m′. (b) "Right": Bob decodes m alone.
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Fig. 2. Passive eavesdropper. The resource may get lost to the environment.

wiretap channel NA→BE is called degraded if there exists
a degrading channel PB→E such that

LA→E = PB→E ◦ LA→B . (1)

We assume that the channel is memoryless, i.e., if Alice
sends a sequence of input systems An ≡ (A1, . . . , An), then
the channel input ρAn undergoes the tensor-product mapping
N⊗n
A→BE .

C. Coding with Unreliable Assistance

Before communication begins, the legitimate parties try
to generate entanglement assistance. In the optimistic case,
Alice and Bob have entanglement resources, GnA and GnB ,
respectively (see Figure 1(a)). However, GnB is not necessarily
available to Bob, due to either interception or loss.

In the communication phase, Alice sends n inputs through
a memoryless quantum wiretap channel NA→BE , while she
is unaware of whether Bob has the entanglement resource.



Nevertheless, based on the common use of heralded entangle-
ment generation in practical systems [24], we assume that Bob
knows whether he has the assistance or not.
Definition 1. A (2nR, 2nR

′
, n) code with unreliable entangle-

ment assistance consists of the following:
• Two message sets [1 : 2nR] and [1 : 2nR

′
],

• a pure entangled state ΨGn
A,G

n
B

,
• a collection of encoding maps {F (m,m′)

Gn
A−→An}, and

• two POVMs, DBnGn
B
= {Dm,m′} and D∗

Bn = {D∗
m}.

The scheme is depicted in Figure 1. Alice holds GnA. She
chooses two messages m and m′, encodes by

ρm,m
′

AnGn
B
= (F (m,m′)

Gn
A−→An ⊗ id)(ΨGn

AG
n
B
) (2)

and transmits An. The channel output is ρm,m
′

BnEnGn
B

=

(N⊗n
A→BE ⊗ id)(ρm,m

′

AnGn
B
). Bob receives Bn. Depending on

the availability of the entanglement assistance, Bob decides
whether to decode both messages or only one. If GnB is
available, Bob performs DBnGn

B
to recover both messages.

Otherwise, Bob measures D∗
Bn and estimates m alone.

Remark 1. Our model considers two extreme scenarios, i.e.,
the entanglement resources are either entirely available to Bob
or not at all. In digital communications, this strategy aligns
with a hard decision approach [25]. Indeed, the decoder in
our setting makes a hard decision on whether the entanglement
resources are viable. This approach fundamentally differs from
noisy entanglement models that ensure reliability with respect
to the average state [26].
Remark 2. We observe that guaranteed information could have
correlation with the receiver’s entanglement resource. Indeed,
the guaranteed information m needs to be encoded in such a
manner that Bob could recover it even in the absence of the
entanglement resource, see Figure 1(b), 2. Nevertheless, Alice
encodes her resource GnA using an encoding map that depends
on both m and m′ (see (2)). As a result, the encoding operation
may induce correlation between the guaranteed information m
and the entangled resource GnB . We will see the consequences
of this observation on the rate region formula in Section IV
below, see Remarks 6 and 7.

We have two maximum error criteria: In the presence of
entanglement assistance,

Pe,max(Ψ,F ,D) = max
m,m′

[
1− Tr(Dm,m′ ρm,m

′

BnGn
B
)
]
,

and without entanglement assistance,

P ∗
e,max(Ψ,F ,D∗) = max

m

[
1− Tr(D∗

m ρ
m,m′

Bn )
]
. (3)

Notice that both include m and m′, since Alice does not know
whether the assistance is available to Bob or not.

We consider two security settings.

D. Security Under Interception
Suppose that Eve may steal the entanglement resource GnB .

In the pessimistic case, Eve intercepts the entanglement re-
source, and Bob decodes without it. In other words, Alice and
Eve share the entanglement, instead of Bob. See Figure 1(b).

Semantic security requires that Eve cannot gain any infor-
mation on Alice’s message, regardless of the message distribu-
tion. Hence, the state of Eve’s resources needs to be close to
a constant state that does not depend on Alice’s messages.
Formally, define the security level under interception, with
respect to a constant state θEnGn

B
, by

∆SI(Ψ,F , θEnGn
B
) = max

m,m′

1

2

∥∥∥ρm,m′

EnGn
B
− θEnGn

B

∥∥∥
1
. (4)

Notice that we include the entangled resource GnB in the
indistinguishability criterion due to the pessimistic case above.
Definition 2. A (2nR, 2nR

′
, n, ϵ, δ) code with unreliable en-

tanglement assistance and security under interception satisfies
max

(
Pe,max(Ψ,F , D), P ∗

e,max(Ψ,F ,D∗)
)

≤ ϵ, and there
exists θEnGn

B
such that ∆SI(Ψ,F , θEnGn

B
) ≤ δ. A rate pair

(R,R′) is called achievable if ∀ ϵ, δ > 0 and large n, there
is a (2nR, 2nR

′
, n, ϵ, δ) code. The capacity region CSI-EA*(N )

with unreliable entanglement assistance and security under
interception is the closure of the set of all such pairs.
Remark 3. A straightforward method to leverage entanglement
assistance is to generate a shared key, and then encode the
information using the one-time pad protocol. However, this
strategy poses a security risk in our case. If Eve intercepts the
entanglement resource, then she will get a hold of Alice’s key,
resulting in a failure and a breach of security.
Remark 4. Eve’s interception has severe consequences on
entanglement-assisted communication. For example, suppose
that Alice uses the superdense coding protocol to encode two
classical bits, and then transmits her qubit via a quantum era-
sure channel. Consider the event that Bob receives an erasure,
hence Eve receives the transmitted qubit. Nevertheless, without
the entanglement resource, there is no leakage, because each
qubit by itself has no correlation with Alice’s messages. On
the other hand, if Eve has both qubits, then she can use the
superdense decoder in order to recover Alice’s bits.

E. Passive Eavesdropper

The passive model assumes that Eve does not gain access
to the resource GnB . In the pessimistic case, the entanglement
resource is lost to the environment, and neither Bob nor Eve
can benefit from it. See Figure 2. The security level is now

∆PE(Ψ,F , θEn) = max
m,m′

1

2

∥∥∥ρm,m′

En − θEn

∥∥∥
1

(5)

(cf. (4)). The security requirement for the passive model can
thus be viewed as a relaxation of the one we had in the
interception model. The capacity region CPE-EA*(N ) is defined
accordingly.

III. PREVIOUS WORK

We provide a brief review of known results with and
without secrecy, and with different levels of entanglement
assistance. We denote the corresponding capacities as in
Figure 3. Specifically, we denote the non-secure capacities,
without entanglement assistance, with reliable entanglement
assistance, and with unreliable entanglement assistance, by



Unsecure Interception

No assistance C0(L) CS(N )

Reliable Assistance CEA(L) CSI-EA(N )

Unreliable Assistance CEA*(L) CSI-EA*(N )

Fig. 3. Notation of channel capacities with and without secrecy, and with different levels of entanglement assistance. The first column corresponds to
communication without a secrecy requirement, and the second column comprises secrecy capacities under interception.

C0(L), CEA(N ), and CEA*(L), respectively. Similarly, we
denote the secrecy capacities with interception by CS(N ),
CSI-EA(N ), and CSI-EA*(N ), respectively.

A. Unsecure Communication

At first, we consider communication over a quantum chan-
nel LA→B , without a secrecy requirement. We review the
capacity results without assistance, with reliable entanglement
assistance, and with unreliable entanglement assistance.

1) No Assistance: Suppose that Alice and Bob do not share
entanglement a priori. The Holevo information of the channel
is defined as

χ(L) ≡ max
pX(x),|ψx

A⟩
I(X;B)ω , (6)

where the maximization is over the ensemble of quantum input
states {pX(x), |ψxA⟩}x∈X , and

ωXB ≡
∑
x∈X

pX(x) |x⟩⟨x| ⊗ L(|ψxA⟩⟨ψxA|) (7)

with |X | ≤ dim(HA)
2.

Theorem 1 (see [27, 28]). The capacity of a quantum channel
LA→B without secrecy and without assistance satisfies

C(L) = lim
n→∞

1

n
χ(N⊗n) . (8)

2) Reliable Assistance: Consider entanglement-assisted
communication, where it is assumed that the entanglement
assistance is reliable with certainty. Let

IEA(L) = max
|ϕGA⟩

I(G;B)ω , (9)

where the maximum is over all bipartite states |ϕGA⟩, and

ωGB = (id ⊗ L)(|ϕGA⟩⟨ϕGA|) , (10)

with dim(HG) ≤ dim(HA). The system G in (10) can be
interpreted as Bob’s entanglement resource.

Theorem 2 (see [29]). The capacity of a quantum channel
LA→B without secrecy and with (reliable) entanglement as-
sistance is given by

CEA(N ) = IEA(L) . (11)

3) Unreliable Assistance: We move to communication with
unreliable entanglement assistance [15], as presented in Sub-
section II-C, but without a secrecy requirement. Recall that
Alice sends two messages, a guaranteed message at rate R
and excess message at rate R′, hence the performance is
characterized by rate regions. Define

REA*(L) =⋃
pX ,φG1G2

,F(x)

{
(R,R′) : R ≤ I(X;B)ω

R′ ≤ I(G2;B|X)ω

}
, (12)

where the union is over all auxiliary variables X ∼ pX ,
bipartite states φG1G2

, and encoding channels F (x)
G1→A, with

ωXG2A =
∑
x∈X

pX(x) |x⟩⟨x| ⊗ (id ⊗F (x)
G1→A)(φG2G1) (13)

and

ωXG2B = (id ⊗ LA→B)(ωXG2A) . (14)

Theorem 3 (see [15]). The capacity region of a quantum chan-
nel LA→B with unreliable entanglement assistance satisfies

CEA*(L) =
∞⋃
n=1

1

n
REA*(L⊗n) . (15)

B. Secure Communication

Consider a quantum wiretap channel NA→BE . Here, we
review the fundamental secrecy capacity results, without as-
sistance and with reliable entanglement assistance. Secure
communication with unreliable entanglement assistance will
be addressed in the results section.

1) No Assistance: Suppose that Alice and Bob do not share
entanglement a priori. The private information of the quantum
wiretap channel is defined by

IS(N ) ≡ max
pX(x),ωx

A

[I(X;B)ω − I(X;E)ω] , (16)

where the maximization is over the ensemble of quantum input
states {pX(x), ωxA}x∈X , and

ωXBE ≡
∑
x∈X

pX(x) |x⟩⟨x| ⊗ NA→BE(ω
x
A) , (17)

with |X | ≤ dim(HA)
2 + 1.



Theorem 4 (see [21, 22]). The secrecy capacity of a quantum
wiretap channel NA→BE without assistance is given by

CS(N ) = lim
n→∞

1

n
IS(N⊗n) (18)

Furthermore, if the channel is degraded, then

CS(N ) = IS(N ) . (19)

A single-letter formula for the secrecy capacity remains an
open problem for a general quantum wiretap channel. The
secrecy capacity and the private information are both known
to be super additive [30, 31].

2) Reliable Assistance: Qi et al. [9] consider secure com-
munication under the assumption that the entanglement as-
sistance is reliable and available to Bob, and yet, Eve could
access the same resource. Define

ISI-EA(N ) = max
φAG

[I(G;B)ω − I(G;E)ω] , (20)

where the maximum is over all bipartite states φAG, and

ωGBE ≡ (id ⊗NA→BE)(φGA) . (21)

Theorem 5 (see [9]). The secrecy capacity of a quantum wire-
tap channel NA→BE with (reliable) entanglement assistance
is bounded by

CSI-EA(N ) ≥ ISI-EA(N ) . (22)

Furthermore, if the channel is degraded, then

CSI-EA(N ) = ISI-EA(N ) . (23)

A single-letter formula for the entanglement-assisted se-
crecy capacity is an open problem as well.
Remark 5. Qi et al. [9] assume that Eve can also access
Bob’s resource. While this assumption may seem to contradict
the no-cloning theorem, our interception model provides an
operational meaning to their setting.

IV. RESULTS – INTERCEPTION

We consider communication with unreliable entanglement
assistance and semantic security. Recall that Alice does not
know whether the entanglement resource has reached Bob’s
location, hence she encodes two messages, at rates R and
R′ (see the code definition in Section II-C). If entanglement
assistance is available to Bob, he recovers both messages. Yet,
in the interception model, if Eve has stolen the resource, then
he recovers the first message alone. Nonetheless, we require
the information to be secret from Eve in both scenarios (see
security requirement in Section II-D).

A. Inner Bound

First, we establish an achievable secrecy rate region. Let
NA→BE be a quantum wiretap channel. Define

RSI-EA*(N ) ≡
⋃

pX ,φG1G2
,F(x){

(R,R′) : R ≤ [I(X;B)ω − I(X;EG2)ω]+
R′ ≤ [I(G2;B|X)ω − I(G2;E|X)ω]+

}
(24)

where [x]+ ≡ max(x, 0). The union is over all auxiliary
variables X ∼ pX , bipartite states φG1G2 , and encoding
channels F (x)

G1→A, hence

ωXG2A ≡
∑
x∈X

pX(x) |x⟩⟨x| ⊗ (id ⊗F (x)
G1→A)(φG2G1) ,

(25)
ωXG2BE ≡ (id ⊗ id ⊗NA→BE)(ωXG2A) , (26)

Remark 6. While the setting resembles layered secrecy broad-
cast models [32, 33], the analysis is much more involved, and
the formulas have a different form. Specifically, instead of the
mutual information term I(X;E)ω in the private information
formula, we now have I(X;EG2)ω that includes the receiver’s
entanglement resource, cf. (16) and (24).

Remark 7. Based on the model description, it may seem at a
first glance as if X should not be correlated with G2, since the
guaranteed information needs to be recovered in the absence
of the entanglement resource. However, as pointed out in Re-
mark 2, Alice’s encoding may induce correlation between the
guaranteed information and the receiver’s resource. Similarly,
in the rate region formula, the application of the encoding
channel F (x)

G1→A could create correlation between X and G2

(see (25)).

Our main result is given in the theorem below.

Theorem 6. The region RSI-EA*(N ) is achievable with un-
reliable entanglement assistance and semantic security under
interception. That is, the capacity region is bounded by

CSI-EA*(N ) ⊇ RSI-EA*(N ) (27)

The proof of Theorem 6 is given in Section VII. We modify
the quantum superposition coding (SPC) scheme in [15] by
inserting local randomness elements that are used in the
encoding, one for each message, in order to confuse Eve. In the
analysis, we use the quantum covering lemma [34] in a non-
standard manner. In addition, our proof modifies the methods
of Cai [35, 36], originally applied to multiple-access channels
(without secrecy), using random message permutations.

Remark 8. In the coding scheme described in Section II-C,
we specified that Bob applies one of two distinct POVMs,
depending on who holds the entanglement resource — Bob
or Eve. If Bob has entanglement assistance, then he performs
DBnGn

B
= {Dm,m′} to decode both m and m′. Otherwise, if

Eve has sabotaged his assistance, Bob performs D∗
Bn = {D∗

m}
to decode m alone. Nonetheless, the quantum SPC scheme
[15] employs a sequential decoder. On the first stage, Bob per-
forms a measurement to obtain an estimate for the guaranteed
message m. Then, Bob moves on to the second stage. In the
presence of the entanglement resource, Bob performs a second
measurement to estimate the excess message m′, and in the
absence of his resource, he aborts. The gentle measurement
lemma [37, 38] guarantees that there is no collapse after
the first measurement, i.e., the output state remains nearly
unchanged.



Unsecure Interception Passive Eavesdropper

No assistance C0(L) CS(N ) CS(N )

Reliable Assistance CEA(L) CSI-EA(N ) CPE-EA(N )

Unreliable Assistance CEA*(L) CSI-EA*(N ) CPE-EA*(N )

Fig. 4. Notation of channel capacities without secrecy, with interception and with passive eavesdropper, with different levels of entanglement assistance.

B. Regularized Capacity Formula

For the class of degraded channels, we establish a multi-
letter capacity formula.
Theorem 7. Let NA→BE be a degraded quantum wiretap
channel. The capacity region with unreliable entanglement
assistance and semantic security under interception satisfies

CSI(N ) =

∞⋃
n=1

1

n
RSI(N⊗n) (28)

The proof of Theorem 7 is given in Section VIII.

V. RESULTS – PASSIVE EAVESDROPPER

Here, we consider the model of a passive eavesdropper,
where Eve cannot intercept the assistance. The entangled
resource is unreliable as it may get lost to the environment. We
denote the secrecy capacities without assistance, with reliable
assistance, and with unreliable assistance with passive eaves-
dropper, by CS(N ), CPE-EA(N ), and CPE-EA*(N ), respectively,
as shown in the right column in Figure 4.

Define

RPE-EA*(N ) ≡
⋃

pX ,φG1G2
,F(x){

(R,R′) : R ≤ [I(X;B)ω − I(X;E)ω]+
R′ ≤ I(G2;B|X)ω

}
(29)

where ωXG2BE is as in (26). Our main result for the passive
model is given below.
Theorem 8. The region RPE-EA*(N ) is achievable with unreli-
able entanglement assistance and a passive eavesdropper. That
is, the capacity region is bounded by

CPE-EA*(N ) ⊇ RPE-EA*(N ) . (30)

Furthermore, the capacity region with unreliable entanglement
assistance and a passive eavesdropper satisfies

CPE-EA*(N ) =

∞⋃
n=1

1

n
RPE-EA*(N⊗n) (31)

Notice that here we have a regularized formula for a
general wiretap channel, and not just degraded channels (cf.
Theorem 7 and Theorem 8).

The analysis follows similar steps as for Theorem 6, in
Sections VII-VIII, with the following differences. Since the
assistance remains secure from the eavesdropper in the passive
model, Alice and Bob can use the entanglement resources in
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Fig. 5. Achievable rate regions for the amplitude damping channel with
unreliable entanglement assistance and semantic security, for γ = 0.3

order to secure a shared secret key. Hence, we can achieve
perfect secrecy for the excess message m′ through one-time
pad encryption. The assumption that the wiretap channel is
degraded is not needed in the derivation of the multi-letter
formula, as the bound on R′ does not involve Eve’s output E.
The details are omitted.
Remark 9. Consider the first row in Figure 4. Without any
assistance, there is no meaning to the distinction between the
interception and passive models. Therefore, we denote both
secrecy capacities as CS(N ). See the middle and last columns
in the third rows. The basic results on CS(N ) were briefly
reviewed in III-B1.
Remark 10. We now consider the second row in Figure 4.If
entanglement assistance is guaranteed, then security with a
passive eavesdropper is straightforward in the sense that the
entanglement between Alice and Bob can be used in order to
secure a shared secret key and apply the one-time pad protocol
to achieve perfect secrecy. Thus, the secrecy capacity is the
same as if there is no security requirement, i.e., CPE-EA(N ) =
CEA(N ).

VI. EXAMPLES

A. Amplitude Damping Channel

Consider the amplitude damping channel, specified by the
input-output relation: LA→B(ρ) = K0ρK

†
0 + K1ρK

†
1 , with



K0 = |0⟩⟨0| + √
1− γ |1⟩⟨1| and K1 =

√
γ |0⟩⟨1|, with

γ ∈
[
0, 12

]
. The amplitude damping channel has a Stine-

spring representation, such that the complementary channel,
from Alice to Eve, is an amplitude damping channel as
well, with a parameter (1 − γ) [39, Sec. II-A]. The am-
plitude damping channel is degraded. The classical secrecy
capacity of the channel, without assistance, is the same
as its quantum capacity, and it is given by CS(N ) =
maxq∈[0,1] h2((1− γ)q)− h2(γq) (see [39, Eq.(36)]). The
entanglement-assisted capacity, without secrecy, is given by
CEA(L) = maxp∈[0,1] h2(p) + h2((1− γ)p)− h2(γp) (see
[39, Eq. (38)]), and it can be achieved with a state of the
form |ϕG1G2

⟩ = √
1− p |0⟩ ⊗ |0⟩+√

p |1⟩ ⊗ |1⟩.
We numerically compute achievable regions for each

setting, using the following ensemble. Define |uβ⟩ =√
1− β |0⟩ |0⟩ +

√
β |ϕR′⟩, and set |ϕG1G2

⟩ = 1
∥uβ∥ |uβ⟩,

pX = (1− q, q), and F (x)(ρ) = ΣxXρΣ
x
X , x ∈ {0, 1}, where

ΣX is the Pauli bit-flip operator. We note that β = 0 yields the
optimal choice without assistance, whereas β = 1 is optimal
when entanglement assistance is available reliably.

The resulting achievable regions, for the interception and
passive models, are indicated by the solid lines in Figure 5,
in blue and red, respectively. For comparison, the dashed
lines indicate the regions that are achieved through a classical
mixture of optimal strategies, for communication with and
without entanglement assistance. In the interception model,
time division is impossible because the use of entanglement
can lead to a leakage of guaranteed information. As can
be seen in Figure 5, the point (R,R′) = (0, 0.648) is
disconnected from the set of boundary points for which R > 0.
In the passive model, on the other hand, we see that our coding
scheme outperforms time division.

B. Erasure Channel

Consider the qubit erasure channel, specified by
LA→B(ρ) = (1 − ϵ)ρ + ϵ |e⟩⟨e|, ϵ ∈

[
0, 12

]
, where |e⟩

is an erasure state that is orthogonal to the qubit space. The
channel has the following isometric extension,

NA→BE(ρ) = V ρV † (32)

where the isometry V : HA → HB ⊗ HE is given by V =√
1− ϵ1A→B ⊗|e⟩E +

√
ϵ1A→E ⊗|e⟩B . The erasure channel

is degraded as well.
Theorem 9. Time division is optimal for the qubit erasure
channel with unreliable entanglement assistance and security
under interception, i.e,

CSI-EA*(N ) =⋃
0≤λ≤1

{
(R,R′) : R ≤ (1− λ)(1− 2ϵ)

R′ ≤ 2λ(1− 2ϵ)

}
. (33)

Proof. Achievability follows by a classical mixture of the
optimal strategies, with and without entanglement assistance.
That is, set |ϕG1G2

⟩ to be an EPR state, pX = (1− λ, λ), and
F (x)(ρ) as in the previous example. To show the converse

part, let (R,R′) ∈ 1
nRSI-EA*(N⊗n), and let Z be an erasure

flag. Since there are isometries mapping Bn and En to BnZ
and EnZ, respectively, we have

R ≤ 1

n
(I(X;Bn)ω − I(X;EnGn2 )ω)

=
1

n
(I(X;Bn|Z)ω − I(X;EnGn2 |Z)ω)

=
1

n
((1− ϵ)I(X;An)ω − ϵI(X;AnGn2 )ω)

≤ 1

n
(1− 2ϵ)I(X;An)ω

≤ (1− 2ϵ)

(
1− 1

n
H(An|X)ω

)
(34)

and similarly,

R′ ≤ 1

n
(1− 2ϵ)I(Gn2 ;A

n|X)ω

≤ 1

n
(1− 2ϵ)2H(An|X)ω (35)

since I(A;B)ρ ≤ 2H(A)ρ in general. The converse part
follows by defining λ ≡ 1

nH(An|X)ω .
Following the same arguments, we obtain a similar result

in the passive model.

Corollary 10. Time division is optimal for the qubit erasure
channel with unreliable entanglement assistance and a passive
eavesdropper, i.e,

CPE-EA*(N ) =⋃
0≤λ≤1

{
(R,R′) : R ≤ (1− λ)(1− 2ϵ)

R′ ≤ 2λ(1− ϵ)

}
. (36)

VII. PROOF OF THEOREM 6

Consider secure communication with unreliable entangle-
ment assistance under interception. We show that every se-
crecy rate pair (R,R′) in the interior of RSI(N ) is achievable.
Suppose Alice wishes to send a pair of messages, (m,m′) ∈
[1 : 2nR]× [1 : 2nR

′
]. In the optimistic case, entanglement is

successfully generated prior to the transmission of information,
hence Bob can decode while using the entangled resource,
which is not available to Eve. However, in the pessimistic
case in this model, Eve intercepts the resource, in which case,
Bob must decode without it. The coding scheme modifies the
quantum SPC construction from [15]. Here, we insert local
randomness elements, which will be denoted in the analysis as
k, k′, and are used in the encoding of each message in order
to confuse Eve. Our secrecy analysis relies on the quantum
covering lemma [34], as stated below. The quantum covering
lemma can be viewed as a direct consequence of quantum
channel resolvability [40, Appendix B], [41]. For semantic
security, our proof modifies the methods of Cai [35, 36], orig-
inally applied to multiple-access channels (without secrecy),
using random message permutations.

Lemma 11 (see [34]). let {pX(x), σx}x∈X be an ensemble,
with a mean state σ ≡ ∑

x∈X pX(x)σx. Furthermore, suppose



that there is a code projector Π and codeword projectors
{Πx}x∈X , that satisfy for every ϵ > 0:

Tr{Πσx} ≥ 1− ϵ, Tr{Πxσx} ≥ 1− ϵ (37)

Tr{Π} ≤ D, ΠxσxΠx ≤ 1

d
Πx (38)

where 0 < d < D. Consider a random codebook that C ≡
{X(k)}k∈K that consists of |K| independent and identically
distributed codewords, ∼ pX . Then,

Pr

{∥∥∥∥∥ 1

|K|
∑
k∈K

σX(k) − σ

∥∥∥∥∥
1

> ϵ+ 4
√
ϵ+ 24 4

√
ϵ

}

≤ 1− 2D exp

{
− ϵ3

4 ln 2

|K|d
D

}
. (39)

Before we state the proof, we make the following observa-
tions. First, we note that pure states |ϕG1G2

⟩ are sufficient to
exhaust the union in the rate region formula in (24), since G1

can be extended to include a purifying reference system. In
addition, we can restrict the proof to isometric encoding maps,
F

(x)
G1→A for x ∈ X , by similar arguments as in [15]. To see this,

consider using a collection of encoding channels, F (x)
G1→A′ for

x ∈ X , for transmission via N̂A′→BE . Every quantum channel
F (x)
G1→A′ has a Stinespring representation, with an isometry

F
(x)
G1→A′A0

. Since it is an encoding map, we may think of A0

as Alice’s ancilla. Then, let A ≡ (A′, A0) be the augmented
channel input. We are effectively coding over the channel
NA→BE , where NA→BE(ρA′A0

) = N̂A′→BE(TrA0
(ρA′A0

)),
using the isometric map F

(x)
G1→A. From this point, we will

focus on the quantum wiretap channel NA→BE and use the
isometric encoding map F (x)

G1→A.

A. Notation

We introduce the following notation. For every x ∈ X ,
consider the input state∣∣ψxAG2

〉
= (F

(x)
G1→A ⊗ 1) |ϕG1G2

⟩ , (40)

which results in the output

ωxBEG2
= (NA→BE ⊗ id)(ψxAG2

) . (41)

Then, consider a Schmidt decomposition,∣∣ψxAG2

〉
=

∑
y∈Y

√
pY |X(y|x)

∣∣ξy|x〉⊗ ∣∣∣ξ′

y|x

〉
(42)

where pY |X is a conditional probability distribution. We will
often use the notation

∣∣ψxn〉
=

⊗n
i=1 |ψxi⟩.

Next, let us define a unitary operator that will be useful
in the definition of our encoder. Denote the Heisenberg-Weyl
operators, on a qudit of dimension d, by

Σ(a, b) = ΣaXΣbZ , for a, b ∈ {0, . . . , d− 1} , (43)

where ΣX =
∑d−1
k=0 |k + 1 mod d⟩ ⟨k| and ΣZ =∑d−1

k=0 exp
{

2πik
d

}
|k⟩⟨k|.

Let xn ∈ Xn be a given sequence. For every conditional
type t on Yn given xn, we will apply an operator of the form

(−1)ctΣ(at, bt) for at, bt ∈ {0, . . . , dt − 1} and ct ∈ {0, 1},
where dt is the size of the corresponding conditional type
class. Then, define the unitary

U(γ) =
⊕
t

(−1)ctΣ(at, bt) (44)

corresponding to a vector γ = ((at, bt, ct)t), where the direct
sum is over all conditional types. Furthermore, let Γxn denote
the set of all such vectors γ.

B. Code Construction

We now describe the construction of a secrecy code with
unreliable entanglement assistance. Let |ϕG1G2⟩⊗n be the
assistance that Alice and Bob would like to share. We also
let R0 and R′

0 denote the rates of the Alice’s local random
elements, where 0 < R0 < R and 0 < R′

0 < R′.

1) Classical Codebook Generation: Select 2n(R+R0) se-
quences independently at random,{

xn(m, k)
}
m∈[1:2nR] , k∈[1:2nR0 ]

(45)

each i.i.d. ∼ pX . Then, for every m and k, select 2n(R
′+R′

0)

conditionally independent sequences at random,{
γ(m′, k′|xn(m, k)

}
m′∈[1:2nR′ ] , k′∈[1:2nR′

0 ]
(46)

each uniformly distributed over Γxn(m,k). The codebooks are
publicly revealed, to Alice, Bob, and Eve.

2) Encoding: Alice chooses a message pair (m,m′). To en-
sure secrecy, Alice further selects local randomness elements,
k and k′, chosen uniformly at random, from [1 : 2nR0 ] and
[1 : 2nR

′
0 ], respectively. To encode the first message m, she

applies the encoding map

F
(xn)
Gn

1 →An =

n⊗
i=1

F
(xi)
G1→A , with xn ≡ xn(m, k) , (47)

on her share of the entangled state |ϕG1G2
⟩⊗n. The resulting

input state is
∣∣∣ψxn

AnGn
2

〉
(see (40)).

To encode the excess message m′, she applies the unitary
U(γ), with γ ≡ γ(m′, k′|xn). This yields the input state∣∣∣χγ,xn

AnGn
2

〉
= (U(γ)⊗ 1)

∣∣∣ψxn

AnGn
2

〉
. (48)

Alice transmits An through n uses of the wiretap channel
NA→BE . The output is

ργ,x
n

BnEnGn
2
= (N⊗n

A→BE ⊗ id)(χγ,x
n

AnGn
2
) . (49)

3) Decoding: Bob has two decoding strategies. If Bob
holds the entangled resource Gn2 , then he decodes both mes-
sages, m and m′. However, if Eve has stolen Gn2 , then Bob
decodes the message m alone. Specifically, Bob decodes in
two steps. First, he performs a measurement, using a POVM
{Λm,k}, which will be described later, in order to estimate the
message m. If he has access to the entanglement resource Gn2 ,
then he continues to decode the message m′ using a second
POVM {Υm′,k′}, which will also be described later.



C. Error Analysis

We now analyze the probability for erroneous decoding by
Bob, for the guaranteed message and the excess message. Let
α > 0 be arbitrarily small. Using the schmidt decomposition
in (42), we have∣∣∣ψxn

AnGn
2

〉
=

∑
yn∈Yn

√
PY n|xn(yn|xn)

∣∣ξyn|xn

〉
⊗

∣∣∣ξ′

yn|xn

〉
for xn ∈ Xn. Following similar arguments as in [15], we can
also write this as∣∣∣ψxn

AnGn
2

〉
=

∑
t

√
p(t|xn) |Φt⟩ (50)

where the sum is over all conditional types on Yn given xn,
with p(t|xn) denoting the probability that a random sequence
Y n ∼ pnY |X(·|xn) belongs to the conditional type class of t,

and |Φt⟩ =
∑
yn∈Tn(t|xn)

∣∣ξyn|xn

〉
⊗
∣∣∣ξ′

yn|xn

〉
is a maximally

entangled state on the product of typical subspaces (see [15,
Eq. (71)]). Using the ricochet property (U⊗id) |ΦAB⟩ = (id⊗
UT ) |ΦAB⟩, we can then reflect the unitary operation to the
entangled resource at the receiver along with the environment:∣∣∣χγ,xn

AnGn
2

〉
= (1⊗ UT (γ))

∣∣∣ψxn

AnGn
2

〉
. (51)

Thus, we can write the output state as follows:

ργ,x
n

BnEnGn
2
= (N⊗n

A→BE ⊗ id)(χγ,x
n

AnGn
2
)

= (N⊗n
A→BE ⊗ id)((1⊗ UT (γ))ψx

n

AnGn
2
(1⊗ U∗(γ)))

= (1⊗ UT (γ))
[
(N⊗n

A→BE ⊗ id)(ψx
n

AnGn
2
)
]
(1⊗ U∗(γ))

= (1⊗ UT (γ))ωx
n

BnEnGn
2
(1⊗ U∗(γ)) (52)

where ωxBEG2
is as in (41).

Next, we analyze the error probability in each scenario.

1) Eve has stolen the resource: We begin with the pes-
simistic case, where Bob does not have the entangled resource
Gn2 , as it was stolen by Eve. Bob’s reduced state is given by

ργ,x
n

Bn = TrEnGn
2
((1⊗ UT (γ))ωx

n

BnEnGn
2
(1⊗ U∗(γ)))

= ωx
n

Bn (53)

The second equality follows from trace cyclicity, as U∗UT =
1. Observe that the state does not depend on γ. That is, the
reduced output state is not affected by the encoding of m′.
Therefore, based on the HSW Theorem [27, 28], there exists
a decoding POVM D∗

Bn = {Λm,k} such that

E

 1

2n(R+R′)

∑
m,m′

P ∗(n)
e (Ψ,F ,D∗|m,m′)

 ≤ α. (54)

for sufficiently large n, provided that

R+R0 < I(X;B)ω − ϵ1 . (55)

2) Bob has entanglement assistance: We move to the
optimistic case, where Eve has failed to intercept Gn2 , hence
Bob holds the entangled resource. Based on the analysis above,
Bob’s first measurement recovers the correct guaranteed mes-
sage m, with a high probability. In general, upon performing a
measurement, it may lead to a state collapse. Denote the post-
measurement state, after the first measurement, by ρ̃γ,x

n

BnGn
2

.
According to the gentle measuring lemma [37, 38], this state
is close in trace distance to the original state, before the
measurement took place, as

1

2

∥∥∥ρ̃γ,xn

BnEnGn
2
− ργ,x

n

BnEnGn
2

∥∥∥ ≤ 2−n
1
2 (I(X;B)ω−R−R0−ϵ1) ,

(56)

which tends to zero if (55) holds. Hence, we may focus our
error analysis on the original state, before the measurement:

ργ,x
n

BnGn
2
= TrEn(ργ,x

n

BnEnGn
2
)

= TrEn((1⊗ UT (γ))ωx
n

BnEnGn
2
(1⊗ U∗(γ)))

= (1⊗ UT (γ))ωx
n

BnGn
2
(1⊗ U∗(γ)) (57)

where γ ≡ γ(m′, k′|xn), and ωx
n

BnGn
2

= TrEn(ωx
n

BnEnGn
2
).

Based on the same arguments as without secrecy [15], there
exists a POVM {Υm′,k′|xn} such that the expected error
probability is bounded by

E

 1

2n(R+R′)

∑
m,m′

Pe(Ψ,F ,D|m,m′)

 ≤ α (58)

for sufficiently large n, provided that

R′ +R′
0 < I(G2;B|X)ω − ϵ2 . (59)

D. Secrecy Analysis

We note that secrecy is required whether Eve has intercepted
Bob’s entanglement resource Gn2 or not.

Consider Eve’s joint state, including both her output and
the entanglement resource, which could be in her possession.
Similarly, as before, we express Eve’s joint state as

ργ,x
n

EnGn
2
= (1⊗ UT (γ))ωx

n

EnGn
2
(1⊗ U∗(γ)) (60)

where ωx
n

EnGn
2
= TrBn(ωx

n

BnEnGn
2
) (see (41)).

Next, we analyze the secrecy for each of Alice’s messages.
Denote

∆m′|m,k(C ) =
1

2

∥∥∥∥∥∥ 1

2nR
′
0

2nR′
0∑

k′=1

ρ
γ(m′,k′|xn),xn

EnGn
2

− ζx
n

EnGn
2

∥∥∥∥∥∥
1

,

∆∗
m(C ) =

1

2

∥∥∥∥∥∥ 1

2nR0

2nR0∑
k=1

ωx
n

EnGn
2
− ω⊗n

EG2

∥∥∥∥∥∥
1

, (61)

with xn ≡ xn(m, k), and ζx
n

EnGn
2
= 1

|Γxn |
∑
γ∈Γxn

ργ,x
n

EnGn
2

.



1) Guaranteed information indistinguishability bound: We
apply the quantum covering lemma [34], Lemma 11, with the
ensemble below,

{pXn(xn), ωx
n

EnGn
2
}xn∈Xn , (62)

and the following typical projectors, Π = Π
(n)
δ (ωEnGn

2
) and

Πxn = Π
(n)
δ (ωEnGn

2
|xn). In the Supplementary, we show that

the conditions of Lemma 11 are met for every m. Thus,

Pr
(
∆∗
m(C ) > e−

λ
2 n

)
≤ exp

{
−2n(R0−I(X;EG2)ω−ϵ4)

}
.

(63)

for sufficiently large n. The last bound tends to zero in a
double exponential rate, provided that

R0 > I(X;EG2)ω + ϵ4 . (64)

2) Excess information indistinguishability bound: Let xn ≡
xn(m, k) be fixed. Consider the uniform ensemble,{

p(γ|xn) = 1

|Γxn | , ρ
γ,xn

EnGn
2

}
γ∈Γxn

. (65)

Using the quantum covering lemma, Lemma 11 we show that
Alice’s encoding simulates the average state,

ζx
n

EnGn
2
=

1

|Γxn |
∑
γ∈Γxn

ργ,x
n

EnGn
2

(66)

using the code projectors Π = Π
(n)
δ (ωEn |xn)⊗Π

(n)
δ (ωGn

2
|xn)

and Πγ = (I ⊗ UT (γ))Π
(n)
δ (ωEnGn

2
|xn)(I ⊗ U∗(γ)).

By Lemma 11, for every m′ ∈ [1 : 2nR
′
] and sufficiently

large n,

Pr
(
∆m′|m,k(C ) > e−

µ
2 n

)
≤ exp

{
−2n(R

′
0−I(G2;E|X)ω−ϵ5)

}
(67)

which tends to zero in a double exponential rate, provided that

R′
0 > I(E;G2|X)ω + ϵ5 . (68)

E. De-randomization

We now show that there exists a deterministic codebook
under the requirements of average error probabilities and max-
imal indistinguishability. Consider the following error events,

A1 = { 1

2n(R+R′)

∑
m,m′

Pe(C |m,m′) >
√
α} , (69)

A2 = { 1

2n(R+R′)

∑
m,m′

P ∗
e (C |m,m′) >

√
α} , (70)

B = {∃(m,m′) :
1

2

∥∥∥ρm,m′

EnGn
B
− ω⊗n

EG2

∥∥∥
1
> δ} . (71)

By the union bound,

Pr(A0 ∪ A1 ∪ B) ≤ Pr(A0) + Pr(A1) + Pr(B) . (72)

By Markov’s inequality, Pr(Aj) ≤ √
α (see (54), (58)). As

for the last term, by the triangle inequality,
1

2

∥∥∥ρm,m′

EnGn
B
− ω⊗n

EG2

∥∥∥
1

=
1

2

∥∥∥∥∥∥ 1

2n(R0+R′
0)

2nR0∑
k=1

2nR′
0∑

k′=1

ρ
γ(m′,k′|xn),xn

EnGn
B

− ω⊗n
EG2

∥∥∥∥∥∥
1

≤ 1

2

∥∥∥∥∥∥ 1

2nR0

2nR0∑
k=1

 1

2nR
′
0

2nR′
0∑

k′=1

ρ
γ(m′,k′|xn),xn

EnGn
B

− ζx
n

EnGn
2

∥∥∥∥∥∥
1

+
1

2

∥∥∥∥∥∥ 1

2nR0

2nR0∑
k=1

ζx
n

EnGn
2
− ω⊗n

EG2

∥∥∥∥∥∥
1

≤ 1

2nR0

2nR0∑
k=1

∆m′|m,k(C )

+
1

2

∥∥∥∥∥∥ 1

2nR0

2nR0∑
k=1

ζ
xn(m,k)
EnGn

2
− ω⊗n

EG2

∥∥∥∥∥∥
1

. (73)

If we were to remove the encoding of γ, then Eve’s output
would have been ωx

n

EnGn
2

, instead of ζxEnGn
2

. Therefore, by
trace monotonicity under quantum operations, the last trace
norm is bounded by ∆∗

m(C ) (see (61)). Thus,

Pr(B) = Pr

(
1

2

∥∥∥ρm,m′

EnGn
B
− ω⊗n

EG2

∥∥∥
1
> δ

)

≤ Pr

 1

2nR0

2nR0∑
k=1

∆m′|m,k(C ) ≥ δ

2

+ Pr

(
∆∗
m(C ) >

δ

2

)

≤ Pr

(
∃k : ∆m′|m,k(C ) ≥ δ

2

)
+ exp {−2nϵ6}

≤ exp {−2nϵ7} (74)

for some ϵ7 > 0 and sufficiently large n. We deduce that
there exists a deterministic codebook C such that the message-
average error and indistinguishability tend to zero, if

R < I(X;B)ω − I(X;EG2)ω − ϵ1 − ϵ4 ,

R′ < I(G2;B|X)ω − I(G2;E|X)ω − ϵ2 − ϵ5 .

F. Semantic Security

We now complete the analysis for the maximum criteria.
The proof modifies the methods of Cai [35, 36], originally
applied to multiple-access channels.

1) Guaranteed information (expurgation): Consider the
semi-average error probability,

e(m) ≡ 1

2nR′

2nR′∑
m′=1

Pe(C |m,m′) . (75)

Based on the analysis above, the average of {e(m)}2nR

m=1 is
bounded by α1/2. Therefore, at most a fraction of η = α1/4

of the messages m have e(m) > η. Then, we can ex-
purgate the worst η · 2nR messages, and the corresponding
codewords. The guaranteed rate of the expurgated code is



R − 1
n log

(
(1− η)−1

)
, which tends to R as n → ∞. Denote

the expurgated message set by Mexp.
2) Excess information (message permutation): We now

construct a new code to satisfy the maximum criteria. The
transmission consists of two stages. In the first stage, Alice
selects a uniform “key" L ∈ [1 : n2]. Assuming R′ > 0, Alice
can send L with negligible rate loss, such that the message-
average error probabilities vanish. In the second stage, Alice
chooses a permutation πL on the message set [1 : 2nR

′
], and

encodes the message pair (m0,m
′
0) = (m,πL(m

′)) using
the codebook C . Bob obtains an estimate, L̂ and (m̂0, m̂

′
0),

and then declares his estimation for the original messages as
m̂ = m̂0 and m̂′ = π−1

L̂
(m̂′

0).
Based on our previous analysis, the message-average error

probability in the first stage is bounded by

Pr
(
L̂ ̸= L

)
=

1

n2

n2∑
ℓ=1

Pe(C |1, ℓ) ≤ √
α (76)

Now, consider the second block. Let Π1, . . . ,Πn2 be an i.i.d.
sequence of random permutations, uniformly distributed on
the permutation group on the excess message set [1 : 2nR

′
].

Denote the random codebook by Π(C ). For a given m′,

Pr(Πℓ′(m
′) = m̄′) =

(2nR
′ − 1)!

(2nR′)!
=

1

2nR′ (77)

for all m̄′ ∈ [1 : 2nR
′
] and ℓ′ ∈ [1 : n2]. Thus, for every

message pair (m,m′) ∈ Mexp × [1 : 2nR
′
],

E
[
P (n)
e (Π(C )|m,m′)

]
=

∑
m̄′

Pr(Πℓ′(m
′) = m̄′)P (n)

e (C |m, m̄′)

=
1

2nR′

∑
m̄′

P (n)
e (C |m, m̄′) = e(m) ≤ λ . (78)

Now, by the Chernoff bound [35, Lemma 3.1],

Pr

 1

n2

n2∑
l′=1

P (n)
e (Π(C )|m.m′) > 4λ

 < e−λn
2

. (79)

Therefore, the probability that, for some (m,m′),
1
n2

∑n2

l′=1 P
(n)
e (Π(C )|m,m′) > 4λ, tends to zero in a

super-exponential rate by the union bound. We deduce that
there exists a realization (π1, . . . , πn2) such that

P (n)
e (π(C )|m,m′) =

1

n2

n2∑
ℓ′=1

P (n)
e (πℓ′(C )|m,m′) ≤ 4λ

(80)

for all (m,m′) ∈ Mexp × [1 : 2nR
′
].

VIII. PROOF OF THEOREM 7

Consider a degraded wiretap channel. Suppose Alice and
Bob would like to share the entangled resource ΨGn

AG
n
B

, yet
Bob’s share may be stolen by Eve. In our model, there are two
scenarios. Namely, either Bob holds the entanglement resource

GnB , or Eve, depending on whether Eve has succeeded in her
attempt to steal the resource. Alice first prepares a classical
maximally correlated state,

πKMK′M ′ =

 1

2nR

2nR∑
m=1

|m⟩⟨m|M ⊗ |m⟩⟨m|K


⊗

 1

2nR′

2nR′∑
m′=1

|m′⟩⟨m′|M ′ ⊗ |m′⟩⟨m′|K′

 (81)

where M , K, M ′, and K ′ are classical registers, such that
M and K are in perfect (classical) correlation, and so are M ′

and K ′. Bob needs to recover the value of M in both cases,
whether he holds the resource or Eve. Whereas, Bob need only
recover M ′, if he holds the resource. Security requires that
both M and M ′ are hidden from Eve, whether she intercepted
GnB or not.

Alice applies an encoding map FMM ′Gn
A→An on MM ′ and

her share of entanglement, GnA. Hence, the input state is

σKK′AnGn
B
= FMM ′Gn

A→An(πKMK′M ′ ⊗ΨGn
AG

n
B
) , (82)

and transmits An through n channel uses, hence the output

ωKK′BnEnGn
B
= N⊗n

A→BE(ψKK′AnGn
B
) . (83)

If the entanglement resource is available to Bob, then he
applies a decoding channel DBnGn

B→M̂M̂ ′ , creating

ρKK′M̂M̂ ′En = DBnGn
B→M̂M̂ ′(ωKK′BnGn

BE
n) . (84)

If Eve has stolen the entanglement resource, then Bob applies
a decoding channel D∗

Bn→M̃
, hence

ρ∗
KK′M̃En = D∗

Bn→M̃
(ωKK′BnGn

BE
n) . (85)

Consider a sequence of (2nR, 2nR
′
, n) codes, with vanishing

errors and leakage, i.e.,
1

2

∥∥ρKM̂K′M̂ ′ − πKMK′M ′
∥∥
1
≤ αn , (86)

1

2

∥∥ρ∗
KM̃

− πKM
∥∥
1
≤ α∗

n , (87)

and

I(KK ′;EnGnB)ω ≤ βn (88)

where αn, α∗
n, and βn tend to zero as n → ∞. Eq. (88)

represents a weaker form of secrecy, yet this is sufficient for
the converse part. Based on entropy continuity,∣∣∣I(K;M)π − I(K; M̂)ρ∗

∣∣∣ ≤ nε∗n (89)∣∣∣I(K;M ′|K)π − I(K; M̂ ′|K)ρ

∣∣∣ ≤ nεn (90)

where εn, ε∗n → 0 when n→ ∞ (see [15, App.C, part B])
Consider the scenario where Bob receives Bn alone, while

Eve gets both En and GnB . Now,

nR = I(K;M)π

≤ I(K; M̂)ρ∗ + nϵ∗n

≤ I(K;Bn)ω + nϵ∗n

≤ I(K;Bn)ω − I(K;EnGnB)ω + n(ε∗n + βn) (91)



where the first inequality is due to (89), the second follows
from the data processing inequality (see (85)), and the third
from (88).

We move to the more challenging bound, on the excess rate.
Here, we use the degraded property. Consider the scenario
where Bob holds both Bn and GnB . As before, we use (88)
and (90) to show that

nR′ = I(K ′;M ′|K)π

≤ I(K ′;GnBB
n|K)ω − I(K ′;EnGnB |K)ω + n(εn + βn) .

(92)

We can also write this as

n(R′ − εn − βn) ≤ I(K ′GnB ;B
n|K)ω − I(K ′GnB ;E

n|K)ω−
[I(GnB ;B

n|K)ω − I(GnB ;E
n|K)ω] . (93)

Due to our assumption that the quantum wiretap channel is
degraded, the expression within the square brackets above is
nonnegative. Thus,

n(R′ − εn − βn) ≤ I(K ′GnB ;B
n|K)ω − I(K ′GnB ;E

n|K)ω .
(94)

To complete the regularized converse proof, set X = K and
G2 = (K ′, GnB) in (91) and (94), and take n→ ∞.

IX. SUMMARY

We study secure communication with unreliable entangle-
ment assistance. Alice wishes to send a secret message to Bob,
while exploiting pre-shared entanglement assistance. In our
setting, the assistance is unreliable due to one of two reasons:
Interception or loss. In the interception model, Eve may steal
the entanglement assistance (see Figure 1(b)). Whereas, loss
implies that Eve is passive and the assistance may get lost to
the environment (see Figure 2). Our present work continues the
line of research that started with [15] and [17] on unreliable
entanglement assistance. However, the previous work [15, 17]
did not include security concerns.

Here, we derive achievable rates for both the interception
and loss models, subject to a maximal error criterion and
semantic security. In the interception model, the guaranteed
rate bound includes both Eve’s system E and Bob’s entangled
resource GB (see (24)), which reflects Eve’s access to the en-
tanglement assistance if she succeeds to intercept the resource.
On the other hand, in the passive eavesdropper model, the
guaranteed rate bound does not involve the entangled resource
GB (see (29)), as the assistance is beyond Eve’s reach.

Moreover, the bound on the excess rate, in the passive
model, does not include Eve’s system at all (see (29)), i.e.,
secrecy does not entail a rate reduction. This is expected
because given reliable entanglement assistance, Alice and Bob
can secure a shared key, and apply the one-time pad encryption
to the excess message.

As an example, we consider the erasure channel and the
amplitude damping channel. For the erasure channel, time
division is optimal. This is “good news" from a practical
perspectives, as time division is much easier to implement.

We observe that in general, time division is impossible if
Eve can actively intercept Bob’s entanlged resource, since
Alice’s operations on her share of the entanglement could leak
information on the guaranteed information. For the amplitude
damping channel, the boundary of our achievable region is
disconnected in agreement with this property. In the passive
model, on the other hand, our encoding scheme outperforms
time division.

Some questions still remain open, as we do not have a
full understanding of the behavior of the capacity region, its
convexity properties, and the type of entanglement that allows
positive guaranteed rate under interception. Furthermore, while
we have presented a regularized characterization, a single-
letter capacity formula for the class of degraded channels could
lead to further insights.
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