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Quantum communication is based on the generation of quantum states and exploitation of quantum resources
for communication protocols. Currently, photons are considered as the optimal carriers of information, because
they enable long-distance transition with resilience to decoherence and they are relatively easy to create and
detect. Entanglement is a fundamental resource for quantum communication and information processing, and
it is of particular importance for quantum repeaters. Hyperentanglement, a state where parties are entangled
with two or more degrees of freedom (DoFs) simultaneously, provides an important additional resource because it
increases data rates and enhances error resilience. However, in photonics, the channel capacity, i.e., the ultimate
throughput, is fundamentally limited when dealing with linear elements. We propose a technique for achieving
higher transmission rates for quantum communication by using hyperentangled states, based on multiplexing
multiple DoFs on a single photon, transmitting the photon, and eventually demultiplexing the DoFs to different
photons at the destination, using Bell state measurements. Following our scheme, one can generate two entangled
qubit pairs by sending only a single photon. The proposed transmission scheme lays the groundwork for novel
quantum communication protocols with higher transmission rates and refined control over scalable quantum
technologies.
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1. INTRODUCTION
Entanglement and quantum correlations between multipartite
quantum subsystems have recently attracted significant attention
in both fundamental and applied research areas based on quan-
tum mechanics. Multipartite entanglement is the cornerstone of a
range of applications, including quantum communications [1,2],
quantum computation [3] (also including photonic one-way
quantum computing [4–6]), and quantum cryptography [7,8].
There are diverse methods to expand the dimensionality of the
Hilbert space. One notable approach involves creating entangle-
ment across multiple degrees of freedom (DoFs) simultaneously,
termed “hyperentanglement” [9]. The concept of hyperentan-
glement [9–11], which entails entangling more than two DoFs
simultaneously, plays a pivotal role in facilitating the encoding of
information on a large scale. This results in high-capacity quan-
tum communication channels, with photons as the carriers of
information, facilitating the means to manipulate entanglement.
Since long-range communication is nowadays based on single-
mode optical fibers, the prospect of encoding larger amounts
of quantum information on single photons (rather than on pairs
of photons or clusters) makes them attractive, because this can
increase the channel capacity. The volume of information carried
by single photons can be potentially enormous.

In the realm of photon-based quantum information, vari-
ous DoFs of light are leveraged to implement qubits on any

physical states viewed as two-level states. These include, for
example, spin angular momentum (SAM), spatial distribution of
the light beam [e.g., orbital angular momentum (OAM) encod-
ing] [12–14], path encoding (propagation direction or k-vector)
[15], and time [16] (time-bin and time-frequency encoding)
[11,17–19]. While standard entanglement typically involves
pairs of photons with DoFs, such as polarization or path, in
principle any binary quantum alternative can serve as a qubit,
including internal DoFs [12]. Consequently, a single quantum
particle may inherently possess multiple DoFs, allowing the
encoding of several qubits on a single particle. In this context,
these DoFs are entangled at the same time but are not entangled
between themselves. Hyperentangled states are often expressed
as product states of entangled states, where each subsystem is
entangled in a DoF.

Hyperentanglement offers significant advantages in quantum
communication protocols, e.g., secure superdense coding [20]
and cryptography [21–23]. For example, if the DoFs of a hyper-
entangled pair of particles can be considered as a qubit, then
the state of the hyperentangled pair is a tensor product of Bell
states in each of the n ⊗ n variables (each representing an effec-
tive qubit encoded in the DoF). Thus, there are 4n entangled
states overall. This construction upgrades the quantum commu-
nication channel, as it doubles the information capacity with
more qubits multiplexed in each pair of particles. In this vein,
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Fig. 1. (a) General scheme for the increasing communication rate with N DoFs. MUX – multiplexing; blue dashed line highlights the
multiplexing process (using Bell state measurements) detailed in (c). DMUX – demultiplexing; green dashed line encompasses the process
described in (c). (b) Example for encoding a qubit on a single photon. The metasurface that entangles between SAM and OAM of a photon.
The photon carries zero OAM before passing through the metasurface, after which it exits as a superposition of two circular polarizations,
with the corresponding vortex phase fronts opposite to one another [14]. The metasurface can be used to prepare the initial state for our
protocol. (c) Scheme for multiplexing, transmitting, and demultiplexing hyperentanglement using Bell state measurements. The multiplexing
part (demultiplexing) is performed by Bell state measurements of the SAM and OAM DoFs from separate photons (single photon) to a single
photon (separate photons) and is labeled by the dashed blue (green) line.

expanding the hyperentanglement to even more DoFs offers
higher information capacity, i.e., a large Hilbert space can be
achieved through entanglement in more than one DoF, and the
DoF can also be expanded to more than two dimensions (known
as high-dimensional entanglement), such as OAM DoF [12] or
frequency [11].

In recent years, multipartite entanglement has seen a grow-
ing focus [24–28], due to the ever-increasing demand for
high-capacity channels, where hyperentangled photonic states
provide a high-capacity link for sending information by more
efficient encoding on each physical photon. However, coding
information on single photons also involves some limitations,
since this means that the nonclassical correlations manifesting
the entanglement are always local. Thus, it appears that entan-
gling multiple qubits on a single photon precludes the use of one
of the main advantages of entanglement: the ability to measure
the correlations between the qubits in separate locations.

Here, we show how to overcome the limitations of encoding
multiple qubits on a single photon. We present a scheme for
the transmission of qubits at a higher rate by multiplexing N
qubits on a single photon using Bell state measurements [29],
transmitting a string of single photons to a distant location,
and eventually—at the destination—demultiplexing the quan-
tum information to N photons, each carrying a single qubit
[Fig. 1(a)]. This increases the quantum capacity of the channel
while still allowing the information to be processed in paral-
lel at the destination, exploiting the nonlocality of quantum
information processing.

2. MULTIPLEXING–DEMULTIPLEXING SCHEME
Our method allows the encoding of a stream of single photons,
each acting as an “information carrier” photon, with compre-
hensive information encompassing all the other photons within
the state. This stands in contrast to conventional hyperentan-
gled states, where multiple photons are entangled across various
DoFs without a primary photon containing the entire quantum
state information. Moreover, our technique is general and can
be applied to any set of DoFs without restriction to a specific
implementation. As a concrete example, we use the DoFs of
SAM and OAM, where we perform Bell state measurements of
the SAM and OAM DoFs from two separate photons and code
the quantum information on a single photon [30]. The technique
has two parts [Fig. 1(c)]: a multiplexing part, where we mea-
sure in Bell basis the SAM of photon P1 with photon A and
the OAM of photon P2 with photon B, followed by a demulti-
plexing part, where we measure (also in Bell basis) the SAM
and OAM of photon C and photon D. The encoding protocol
comprises of photon C (the information carrier) and photons A
and B, which are entangled (separately) in their SAM and OAM
with photon C. The decoding protocol comprises photons D, E,

and F. Photon C, the information carrier, is transmitted through
the quantum channel until it reaches the receiver, where it is
presented as photon C’ and the encoded information can now
be demultiplexed.

For the encoding and decoding of qubits, we employ two pairs
of hyperentangled 3-photon states. The first state comprises pho-
tons A, B, and C, while the second state involves photons D, E,
and F. The generation of these two pairs can be achieved using
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a metasurface [Fig. 1(b)]: a mask imprinting a different wave-
function to each polarization of the electromagnetic field. These
devices were recently used to imprint entanglement between the
SAM and the OAM of a photon [14].

To design a metasurface that entangles the photon SAM with
OAM, the nanoantenna orientations are designed in such a way
that the mask adds or subtracts ∆ℓ = 1 (one quanta of OAM),
depending on the sign of the spin, and performs a spin-flip
|σ+⟩ ↔ |σ−⟩. Such a metasurface [14], presented in Fig. 1(b),
performs the unitary transformation |σ±⟩|ℓ⟩ ⇔ |σ∓⟩|ℓ ± ∆ℓ⟩,
where σ± represents the spin states of the photon (right- and
left-handed circular polarizations), and ℓ represents the OAM
of the photon.

To initiate the multiplexing part, our transmitter utilizes pho-
tons P1 and P2. A Bell measurement is conducted on the SAM
of photons P1 and A, as well as the OAM of photons P2 and
B [Fig. 1(c)]. To implement the multiplexing protocol of both
SAM and OAM from photons P1 and P2 to photon C, the trans-
mitter uses the 3-photon state consisting of photons A, B, and
C. The collective state of the three photons can be described as
follows:

|σ+, LA⟩A ⊗ |SB,−1⟩B ⊗ |σ−,+1⟩C + |σ−, LA⟩A ⊗ |SB,+1⟩B ⊗ |σ+,−1⟩C,
(1)

where ±1 represent one quanta of OAM, SB is the SAM DoF of
photon B, and LA is the OAM of photon A (which is not utilized
for information storage on these DoFs). Equation (1) describes a
state with photon A and photon C entangled in their SAM, while
photons B and C are entangled in their OAM. Their combination
yields a set of 16 hyperentangled Bell states. Notably, the state
in Eq. (1) is hyperentangled, possessing entanglement in each
quantum variable concurrently and independently, while there is
a primary photon (photon C) that encapsulates the information
stored in the two other photons by being entangled simultane-
ously in two different DoFs with both of them. It is important to
highlight that this hyperentangled state can autonomously serve
as a valuable resource for a variety of quantum communication
protocols.

After conducting the two-particle joint measurement involv-
ing photon A with photon P1, and photon B with photon P2,
the transmitter projects each of these pairs onto the 16-basis of
orthogonal and complete hyperentangled Bell states, discrimi-
nating one of them in each measurement. The measurements of
photons A with P1, and photons B with P2, are encoded as four-bit
classical information. Following this, appropriate Pauli opera-
tions are applied to the SAM and OAM of photon C, enabling
the perfect reconstruction of the initial SAM of photon P1 and
the initial OAM of photon P2. A detailed description is presented
in the Supplement 1, section B. This scheme is presented by the
blue dashed line in Fig. 1(c). Such a mechanism is an effective
way of multiplexing quantum information on a single photon.
The single photon can now be transmitted to a distant destina-
tion, where the information can be demultiplexed into multiple
photons, facilitating nonlocal quantum operations. The trans-
mission then occurs by transmitting a single photon carrying
two qubits, which doubles the quantum transmission rate.

To demultiplex the quantum information at the receiver, the
local process is repeated, separating the DoFs from photon C′

to photons E and F, demultiplexing the hyperentangled state. To
demultiplex the SAM and OAM DoFs in photon C′, the receiver
prepares ahead a hyperentangled state, analogous to the mul-
tiplexing part, consisting of three photons—D, E, and F. This

Fig. 2. (a) Density matrices of the initial (before the multiplexing
stage) and final (after the demultiplexing stage) states, with error
rate (i.e., the chances of a photon to get lost) of 0.2 [red dot in
(b)]. The initial state is randomly generated. (b) Calculated fidelity
as a function of error rate. Each point represents the average of 70
randomized states with the same error rate.

state comprises two Bell states: photons D and E, which are
entangled in their SAM, and another Bell pair of photons D
and F, which are entangled in their OAM. Subsequently, qubits
encoded in photons C and D are measured in Bell basis, with
one measurement for the SAM of both photons and the second
for the OAM of both photons. By interpreting and decoding
the results, the decoder can apply unitary gates on photons E
and F (entangled with photon D in the SAM and OAM, respec-
tively) to perfectly reconstruct the SAM and OAM qubits. Thus,
using only linear elements, the decoder has locally demulti-
plexed two qubits encoded on a single photon to two distinct
photons. In a fashion similar to the multiplexing process, our
decoder separates the DoFs from the information carrier photon
and demultiplexes the qubits to multiple photons (each DoF on
a different photon). To be able to perform deterministic mul-
tiplexing and demultiplexing, one should be able to perform a
complete Bell state measurement, which cannot be performed
using “standard” Einstein–Podolsky–Rosen (EPR) pairs and lin-
ear optics only [31,32]. However, using hyperentanglement, one
can actually isolate every individual Bell measurement (out of
four possible outcomes) with a 100% certainty [33–39].

3. RESULTS AND DISCUSSION
At this point it is essential to calculate the quantum capacity of
the channel. In communication theory, the term “channel use”
refers to a single transmission over the communication channel
[40]. Thus, in our context, we examine the transmission of a
single photon through the system, and the quantum capacity is

https://doi.org/10.6084/m9.figshare.25639512


168 Vol. 2, No. 3 / 25 June 2024 / Optica Quantum Research Article

defined as the best ratio of information qubits per transmission,
i.e., per single photon. In the following we simulate the process
in the presence of noise to assess its performance in terms of
quantum capacity and fidelity. The results are shown in Fig. 2.
The reconstructed state is presented in Fig. 2(a), and the calcu-
lated fidelity v. error rate in Fig. 2(b). The Fidelity is defined
as F = Tr(ρf |ψi⟩⟨ψi |) = Tr(ρf ρi), i.e.− the overlap of the ideal
teleported state |ψ⟩ and the measured density matrix ρf at the
side of the receiver. We simulate (using [41]) the protocol by
sending two qubits of information using the transmission of a
single photon through a noisy quantum channel. The most com-
mon noise in quantum optical communication protocols is the
loss of photons. Therefore, to simulate the noise, we assume
an erasure channel where a transmitter sends a qubit, and the
receiver either receives the qubit correctly or loses the qubit with
some probability. With this in mind, we introduce photon loss
noise after each operation of the multiplexing–demultiplexing
protocol presented in Fig. 1(c). Finally, to evaluate the perfor-
mance of our system in the presence of noise, we measure the
fidelity between the initial and the reconstructed states, while
increasing the erasure rate (the probability that the photon is
lost).

Let us first examine the standard case of an erasure channel
in a system with a single qubit per transmitted photon. The
quantum capacity is

CQ = 1 − 2ε for 0 ≤ ε ≤
1
2

, (2)

where ε is the erasure rate. Otherwise, if 1
2 ≤ ε ≤ 1, CQ = 0,

because more than half the photons are lost to the environ-
ment. In contradistinction, in our system the quantum capacity
is doubled, as derived in Eq. (7), that is

CQ = 2(1 − 2ε) for 0 ≤ ε ≤
1
2

. (3)

Thus, our protocol improves the quantum capacity, i.e., the ratio
of information qubits per transmission, by increasing the number
of DoFs available for representing the qubits and multiplexing
them on a single photon.

Generally speaking, in network information processing tasks,
one may distinguish between local and nonlocal resources. For
example, the transmission of a qubit between remote locations
is a nonlocal resource. On the other hand, the application of
quantum gates and (local) Bell measurements, performed at the
transmitter and the receiver separately, are considered to be
local resources. Entanglement can be either local or nonlocal.
A Bell state between two qubits in the transmitters is a local
resource. However, if one of the qubits is sent to the receiver,
then the entanglement resource becomes nonlocal. In quantum
computing, the focus is often on the local resources of com-
plexity. On the other hand, in communication theory, the focus
is on the conversion of nonlocal resources, while the local state
preparation, measurements, and operation costs are ignored [42].
Our system is intended for quantum communication, hence we
analyze the communication performance and channel capacity.
Consequently, we consider the conversion of nonlocal resources,
while the complexity of the local multiplexing–demultiplexing
procedures is not included in our analysis. An example of an
application that requires the use of nonlocal resources is dis-
tributed quantum computation [43,44]: it refers to the idea of
distributing quantum computing tasks across multiple quantum
processors or quantum computers, connected in a network. This

approach is motivated by the challenges associated with build-
ing large-scale, fault-tolerant quantum computers, as well as the
potential advantages of leveraging distributed resources.

Nonetheless, in the pursuit of generating those local resources
of hyperentangled states (which enable the encoding of more
qubits per photons), various experimental challenges arise. One
such challenge involves efficiency detecting all photons. A
potential solution to overcome this challenge is the utilization
of a photon number resolving detector (PNRD) [45], a spe-
cialized device designed for accurately determining the exact
number of photons in a given light pulse. Unlike conventional
photodetectors, which can only provide information about the
presence of photons but not their exact number, PNRDs offer the
capability to resolve the photon number with a high degree of
precision. These detectors prove instrumental in post-selection
processes used for entangling photons, and thereby can enhance
the fidelity of our resource hyperentangled states compared
to standard single-photon detectors. Another method is to use
quantum non-demolition measurement (QND), whereby a sin-
gle photon can be observed without destroying it and keeping
its quantum information intact [46,47].

Another challenge lies in performing a complete Bell state
measurement across multiple DoFs (that is, hyperentangled Bell
state measurement). However, recent advancements suggest that
this technological hurdle can be solved, demonstrating tele-
portation of multiple DoFs on a single photon within fidelity
suppressing classical limits [30], as well as teleportation in high
dimensions [48,49] and between different DoFs [50].

These technological enhancements, coupled with recent
experimental achievements in the teleportation of multiple
DoFs, underscore that, despite encountering some experimen-
tal challenges and photon losses, our proposed scheme has the
potential to significantly boost data rates per photon suppressing
the throughput achievable through the standard encoding of a
single qubit per photon.

In conclusion, distinguishing between the theoretical cal-
culation of the quantum channel capacity and its associated
communication resource requirements, and the practical exper-
imental challenges inherent to the local resources required for
the protocol, is important. Specifically, the practical challenges
in our protocol pertain to the implementation of local hyper-
entangled states and the performance of hyperentangled Bell
state measurements at both ends—at the transmitter and at the
receiver.

In the subsequent discussion, we provide a detailed explo-
ration of the performance of the improved quantum channel
within our setup.

3.1. Enhanced Quantum Capacity

The quantum capacity is the ratio of information qubits per phys-
ical photon transmission. Every quantum channel NA→B has a
Stinespring representationNA→B(ρ) = TrE(VρV†) for every input
density operator ρ on the Hilbert space HA, where the operator
V : HA → HB ⊗ HE satisfies V†V = I. We refer to the systems
A, B, and E as belonging to Alice, Bob, and the environment,
respectively.

Given a joint state |ϕA Ā⟩, where Ā is an ancilla, denote the cor-
responding joint state of Bob, the environment, and the ancilla
by |ωBEĀ⟩ ≡ (V ⊗ I)|ϕAĀ⟩. The coherent information serves as a
measure for the rate of quantum information that can be reliably
transmitted through the quantum channel from Alice to Bob.
The coherent information I(Ā⟩B)ω, from Ā (Alice) to B (Bob),
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is defined as

I(Ā⟩B)ω ≡ S(ωB) − S(ωBA1 ) = S(ωB) − S(ωE), (4)

where ωB, ωBA1 , and ωE are the reduced density operators
of the respective systems, as S(ω) = −Tr(ω log(ω)) denotes
the von Neumann entropy with respect to the density opera-
tor ω. The coherent information of the channel is defined as
I(N) ≡ max

|φAĀ⟩
I(Ā⟩B)ω, where we optimize over all possible input

states |ϕAĀ1⟩.
Based on the Lloyd–Shor–Devetak result [51–53], a.k.a. the

LSD theorem, the quantum capacity CQ(N) of a given channel
NA→B is given by the following formula:

CQ(N) ≡ lim
n→∞

1
n

I(N ⊗n), (5)

where N is the quantum channel and n is the number of trans-
mitted photons through the quantum channel. In principle, to
compute the quantum capacity for a general quantum channel,
we need to compute the coherent information for the n-fold
product channel N ⊗n, normalize by n, and then take n to infin-
ity. This could be difficult to compute. However, for the class
of degradable channels, the characterization reduces to a much
simpler formula: CQ(N) ≡ I(N). Intuitively, a quantum channel
is degradable when the channel from Alice to the environment
is noisier than the channel from Alice to Bob.

In the standard case of an erasure channel, the quantum chan-
nel capacity is given by CQ = 1 − 2ε for 0 ≤ ε ≤ 1

2 , where ε is
the erasure rate. Otherwise, if 1

2 ≤ ε ≤ 1, the quantum capacity
is zero. Now, we calculate the quantum channel capacity of our
case, where we transmit two qubits over a single transmission (a
single photon contains two qubits).

To show achievability of the quantum channel capacity of our
protocol, we calculate the overall coherent information in our
model, from A1A2 to B1B2, according to Eq. (4). Suppose that we
encode the input qubits such that |ϕA1 Ā1⟩ ⊗ |ϕA2 Ā2⟩ is a product
of EPR pairs. Then

I(Ā1Ā2⟩B1B2)ρ = S(B1B2Z)ρ − S(Ā1Ā2B1B2Z)ρ , (6)

where Z is a classical indicator that takes the value 1 if an erasure
occurred, and otherwise 0 if the photon was not erased, and we
describe a classical-quantum state as ρZB =

∑︁
Z pz(z)|z⟩⟨z| ⊗ ρz

B.
The output Bi can be viewed as a qutrit, HB = C

{0,1,e}, since the
erasure state is orthogonal to the qubit’s states. Now,

I(Ā1Ā2⟩B1B2)ρ

= S(B1B2 |Z) − S(A1A2B1B2 |Z)

= (1 − p)S
(︃
IB1

2
⊗
IB2

2

)︃
+ p · S(|e⟩⟨e| ⊗ |e⟩⟨e|)

− (1 − p)S(ϕĀ1B1 ⊗ ϕĀ 2B2 )

− p · S
(︃
IB1

2
⊗
IB2

2
⊗ |e⟩⟨e| ⊗ |e⟩⟨e|

)︃
,

(7)

since the conditional entropy satisfies S(B|Z)ρ =
∑︁
Z

pz(z)S(ρz
B)

and the indicator Z is distributed according to Bernoulli (p). Note
that if erasure occurred, then the output state is |e⟩⟨e| ⊗ |e⟩⟨e|.
Otherwise, if erasure has not occurred, then the output state is
identical to the reduced input state, I2 ⊗ I

2 .

Now, for product states, ρAB = ρA ⊗ ρB, we have S(AB)ρ =
S(A)ρ + S(B)ρ . Thus, Eq. (7) reduces to

I(Ā1Ā2⟩B1B2)ρ = 2 − 4p, (8)

which means that the coherent information, which in our case
is the quantum capacity, is doubled compared to the standard
encoding of a single DoF on a photon. A detailed description of
this calculation is given in the Supplement 1.

As a final step, we show that the quantum capacity is increased
while multiplexing more qubits on a single photon. One may
notice that in the general case, where we multiplex n DoFs, the
quantum capacity will increase by a factor of n, following the
same derivation:

I(Ā1Ā2 . . . Ān⟩B1B . . . Bn)ρ

= S(B1B2 . . . Bn)ρ − S(Ā1Ā2 . . . ĀnB1B2 . . . Bn)ρ

= S(B1B2 . . . Bn, Z)ρ − S(Ā1Ā2 . . . Ān, B1B2 . . . Bn, Z)ρ
= S(B1B2 . . . Bn |Z) − S(Ā1Ā2 . . . Ān, B1B2 . . . Bn |Z)

= (1 − p)S
(︃
IĀ1

2
⊗
IĀ2

2
. . . ⊗

IĀn

2

)︃
+ p · S(|e⟩⟨e| ⊗ |e⟩⟨e| . . . ⊗ |e⟩⟨e|)
− (1 − p)S(ϕĀ1B1 ⊗ ϕĀ2B2 . . . ⊗ ϕĀnBn ) − p

· S
(︃
IĀ1

2
⊗
IĀ2

2
. . . ⊗

IĀn

2
⊗ |e⟩⟨e| ⊗ |e⟩⟨e| . . . ⊗ |e⟩⟨e|

)︃
= (1 − 2p)n.

(9)
This means, that our technique of multiplexing qubits on a single
photon—instead of transmitting several photons while each is
encoded with a single qubit—has a higher quantum channel
capacity. In fact, we can increase the quantum channel capacity
more than twice compared to the standard case if we multiplex
more than two DoFs.

Thus far, we have described the process in detail for two
DoFs. However, this protocol of multiplexing qubits on a sin-
gle photon, transmitting it, and eventually demultiplexing into
multiple photons while recovering the full quantum information,
can be scaled up by increasing the size of the Hilbert space of
the transmitted qubits. We distinguish between two strategies
to increase the Hilbert space: (1) adding k DoFs as two-level
systems (i.e., adding more qubits); and (2) adding a DoF as
an n-level system, where n = 2k (in other words, rather than
expanding the number of DoFs, the approach involves utilizing
some of the existing DoFs as qudits). From a purely math-
ematical perspective, the two options follow the same trend.
Both actions enlarge the Hilbert space and enable the multi-
plexing of a greater amount of information on a single photon.
However, the latter strategy, working with a DoF considered as
an n-level system, leads to a linear increase in space dimen-
sion. In contrast, the first approach of introducing several DoFs,
each treated as a qubit, results in an exponential increase in
the Hilbert space. This is due to the Hilbert space being defined
as {2N ⊗ 2N ⊗ . . . ⊗ 2N}. Consequently, hyperentanglement, i.e.,
encoding simultaneously on several DoFs, scales more rapidly
in the dimensionality of the Hilbert space, facilitating the storage
of additional quantum information on each qubit.

Ideally, one can increase the Hilbert space by adding an indefi-
nite number of DoFs and encoding all of them on a single photon,
thereby increasing the quantum channel capacity by k or n = 2k,
respectively. However, there are practical limits to the number of

https://doi.org/10.6084/m9.figshare.25639512
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different DoFs that can be carried by a single photon. For exam-
ple, the number of detectors required for measuring is equal to
the number of encoded qubits, not to the number of the physical
photons. This sets a technological limit on the number of DoFs
that can be encoded on a single photon. Additionally, expanding
with more DoFs restricts the size of the Hilbert space suitable for
Bell tests, as required by the quantum communication procedure.

Another method for increasing the dimensionality in the
second strategy is by expanding the number of modes in the
OAM DoF to more than two (i.e., encode a qubit in this DoF).
For example, the metasurface can be designed to endow each
polarization with multiple states of OAM, resulting in multi-
plexing of high-dimensional qubits on the information carrier
photon. Another example, perhaps even more important, is
employing frequency as a DoF, where the number of possi-
bilities can be enormous (the number of peaks in a frequency
comb) [17]. Here, dispersive effects in the fiber may restrict the
number of possibilities, but these are not conceptual, and some
might be accounted for in advance in the coding scheme.

As a case study, we can use two DoFs, such as frequency and
SAM. The SAM DoF is a two-level system, and the frequency
DoF can be extended to be N-dimensional. These two DoFs are
orthogonal and can be encoded together on a single physical
photon (i.e., the combined product channel). When encoding
the DoFs together, the qubits transmission rate for general noise
models can be larger than the sum of the quantum capacities for
each one separately. This unique feature is known as the superad-
ditivity of the quantum capacity [54]. In addition, in some cases
we can even achieve superactivation, where the quantum channel
capacity of each channel (for each DoF) is zero, but the quantum
channel capacity of the combined product channel takes a pos-
itive value [54]. This feature is unique to quantum communica-
tion and does not occur in classical communication. For detailed
discussion about the two schemes for increasing the Hilbert
space of our qubits (thus increasing the rate of communication)
and about superactivation, see the Supplement 1.

One may also consider the task of sending classical infor-
mation using the quantum channel, as in the simple setting of
superdense coding [20]. The ultimate rate of classical informa-
tion per quantum transmission is called the classical capacity
of the quantum channel. Whether superadditivity applies to the
classical capacity of a quantum product channel is yet an open
problem [2,55].

Thus far, we have presented a technique that increases the
transmission rate. However, since the quantum capacity also
determines the rate of generating entangled pairs in remote loca-
tions, this protocol is also valuable for entanglement generation
for quantum communication tasks, such as quantum key dis-
tribution and superdense coding [20]. In the latter, we can use a
Bell pair to transmit two classical bits over a single channel (a
single qubit), doubling the transmission rate. In our setting, we
can multiply the transmission rate by a factor of four using the
doubled generation of photon pairs. Figure 3 describes a similar
setting for another purpose—generation of nonlocal entangle-
ment between a transmitter and a receiver far apart from each
other—and here too our method facilitates entanglement gener-
ation at twice the rate, i.e., by sending only a single photon, we
generate two nonlocal pairs of entangled photons at the desti-
nation. Our transmitter prepares ahead two entangled pairs: the
SAM of photons P3 and P1, and the OAM of photons P2 and P4.
Then, our transmitter performs a Bell state measurement of the
SAM of photon P1 with photon A, and the OAM of photon P2

Fig. 3. Scheme for generating entangled photon pairs at a double
rate. We start with initial states of the SAM of photon P1 entangled
with the SAM of photon P3, and the OAM of photon P2 entangled
with the OAM of photon P4. The green line represents entanglement
between two DoFs, the black dashed line represents a measurement
in Bell basis, and the solid black line represents the communication
channel. At the output, we obtain the SAM of photon E entangled
with the SAM of photon P3, and the OAM of photon F entangled
with OAM of photon P4.

with photon B (as in Fig. 3), thus creating entanglement between
the SAM of photon C with the SAM of photon P3, and the OAM
of photon C with the OAM of photon P4. After the demulti-
plexing part, we end up with two separate pairs of entangled
photons: photon E is entangled with photon P3 (in SAM DoF),
and photon F is entangled with photon P4 (in OAM DoF).

This feature of generating entangled pairs of photons at
twice the rate can be important in entanglement-assisted com-
munication, increasing the channel capacity—specifically the
entanglement-assisted classical capacity—which is the highest
rate at which classical information can be transmitted from a
sender to a receiver sharing an unlimited amount of noiseless
entanglement. Our protocol not only increases the transmission
rate of a quantum communication channel, but also increases the
rate of generating entangled pairs of qubits in remote locations.

4. CONCLUSIONS
To conclude, we proposed a protocol to enhance the transmis-
sion rate of qubits. This is achieved by multiplexing N qubits
onto a single photon through Bell state measurements, send-
ing the single photon, and then, upon reaching the destination,
demultiplexing the quantum information onto N different pho-
tons, which can be used for parallel processing of the quantum
information. This system preserves the correlations between the
different DoFs, despite being all carried by a single photon. Our
protocol can also be valuable for entanglement generation, i.e.,
the protocol can generate two entangled qubit pairs by sending
only a single photon. This can be useful for various quantum
communication protocols, such as quantum key distribution,
superdense coding, etc.

As technology evolves, enhancing quantum capacities, exem-
plified by our approach of encoding multiple qubits per photon,
becomes a key enabler for pushing the limits of data rates,
paving the way for more sophisticated quantum communication
applications, such as, distributed quantum computations.
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