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The Quantum Multiple-Access Channel
With Cribbing Encoders
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Abstract— Communication over a quantum multiple-access
channel (MAC) with cribbing encoders is considered, whereby
Transmitter 2 performs a measurement on a system that is
entangled with Transmitter 1. Based on the no-cloning theorem,
perfect cribbing is impossible. This leads to the introduction of
a MAC model with noisy cribbing. In the causal and non-causal
cribbing scenarios, Transmitter 2 performs the measurement
before the input of Transmitter 1 is sent through the channel.
Hence, Transmitter 2’s cribbing may inflict a “state collapse”
for Transmitter 1. Achievable regions are derived for each
setting. Furthermore, a regularized capacity characterization is
established for robust cribbing, i.e. when the cribbing system
contains all the information of the channel input. Building on the
analogy between the noisy cribbing model and the relay channel,
a partial decode-forward region is derived for a quantum MAC
with non-robust cribbing. For the classical-quantum MAC with
cribbing encoders, the capacity region is determined with perfect
cribbing of the classical input, and a cutset region is derived for
noisy cribbing. In the special case of a classical-quantum MAC
with a deterministic cribbing channel, the inner and outer bounds
coincide.

Index Terms— Quantum communication, Shannon theory,
multiple-access channel, cribbing, relay channel.

I. INTRODUCTION

THE multiple-access channel (MAC) is among the most
fundamental and well-understood models in network
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communication and information theory [1], [2]. The MAC is
also referred to as the uplink channel [3], since it is interpreted
in cellular communication as the link from the mobiles to
the base station [4], and in the satellite-based Internet of
Things (IoT), from ground devices to a satellite in space [5].
Furthermore, in a wireless local area network (WLAN), the
MAC represents the channel from the terminals to the access
point [6, Section 3.2]. In general, the signals of different
transmitters may interfere with one another. In particular,
in sequential decoding, the receiver first decodes the message
of one of the transmitters, while treating the other signals as
noise. Then, this estimation can be used in order to reduce
the effective noise for the estimation of the next message.
Following this interplay, if a cognitive transmitter has access
to the signal of another transmitter, this knowledge can be
exploited such that the receiver will decode the messages with
less noise. Such scenarios naturally arise in wireless systems
of cognitive radios [7], [8] and the Internet of Things (IoT) [9].
This motivates the study of the MAC with cribbing encoders,
i.e. the channel setting where one transmitter has access to the
signal of another transmitter [10].

Cooperation in quantum communication networks has been
extensively studied in recent years, following both experimen-
tal progress and theoretical discoveries [11], [12]. Quantum
MACs are considered in the literature in various settings.
Winter [13] derived a regularized characterization for the
classical capacity region of the quantum MAC (see also [14]).
Hsieh et al. [15] and Shi et al. [16] addressed the model
where each transmitter shares entanglement resources with the
receiver independently. Furthermore, Boche and Nötzel [17]
addressed the cooperation setting of a classical-quantum MAC
with conferencing encoders, where the encoders exchange
messages between them in a constant rate (see also [18]).
Remarkably, Leditzky et al. [19] have shown that sharing
entanglement between transmitters can strictly increase the
achievable rates for a classical MAC. The channel construction
in [19] is based on a pseudo-telepathy game [20] where quan-
tum strategies guarantee a certain win and outperform classical
strategies. The authors of the present paper [21] have recently
shown that the dual property does not hold, i.e. entanglement
between receivers does not increase achievable rates. Related
settings of the quantum MAC involve transmission of quantum
information [22], [23], error exponents [24], non-additivity
effects [25], security [26]–[29], and computation codes [30].

The sixth generation of cellular networks (6G) is expected
to achieve gains in terms of latency, resilience, computation
power, and trustworthiness in future communication systems,
such as the tactile internet [31], which not only transfer data
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but also control physical and virtual objects, by using quantum
resources [32]. Cooperation between trusted hardware and
software components in future communication systems has
the potential to isolate untrusted components such that the
attack surface of the communication system is substantially
reduced [31], [33]. Quantum resources and cooperation offer
additional advantages, in terms of performance gains for
communication tasks and reduction of attack surface, and are
of great potential for 6G networks [34], [35]. It is therefore
interesting to investigate cooperation for quantum MACs as
a technique to achieve robust efficient protocols for future
applications.

The classical MAC with cribbing encoders is a channel
model with two transmitters, X1 and X2, and a single receiver,
Y , where one transmitter has access to the other’s transmis-
sions. Willems and van der Meulen [10] introduced this setting
and considered different scenarios of full cribbing, i.e. with a
perfect copy of the other sender’s input. Suppose that Trans-
mitter 2 knows X1. Asnani and Permuter [36] pointed out that
for a Gaussian channel, the full cribbing model is degenerate,
as it reduces to full cooperation since a noiseless transmission
of a continuous signal X1 allows sending an infinite amount
of information from Transmitter 1 to Transmitter 2. This has
motivated Asnani and Permuter to consider the MAC with
partial cribbing, with a “discretized” version of the other input.

Specifically, Transmitter 2 may have access to Z = g(X1),
instead of X1, where g(·) is a deterministic function. See
[36], [37] for further details. The original work of Willems
and van der Meulen [10] included different causality scenarios,
where the sender(s) have the ith copy of each other’s inputs,
either after sending their own transmission at time i (strictly-
causal cribbing), before the ith transmission (causal cribbing),
or a priori before transmission takes place (non-causal crib-
bing). Classical cribbing is further studied in [38]–[46].

The MAC with cribbing encoders is closely-related to
the relay channel [47], [48]. Even in the classical case,
the capacity of the relay channel is an open problem.
Savov et al. [14], [49] derived a partial decode-forward lower
bound for the classical-quantum relay channel, where the relay
encodes information in a strictly-causal manner. Recently,
Ding et al. [50] generalized those results and established the
cutset, multihop, and coherent multihop bounds. Communi-
cation with the help of environment measurement can be
modeled by a quantum channel with a classical relay in the
environment [51]. Considering this setting, Smolin et al. [52]
and Winter [53] determined the environment-assisted quantum
capacity and classical capacity, respectively. Savov et al. [49]
further discussed future research directions of interest, and
pointed out that quantum communication scenarios over the
relay channel may have applications for the design of quan-
tum repeaters [49, Section V.] (see also [50]). In a recent
work by the authors [21], we have considered the quantum
broadcast channel with conferencing receivers, and provided
an information-theoretic perspective on quantum repeaters
through this setting.

In this paper, we consider the quantum MAC MA1A2→B

with cribbing encoders. In quantum communication, the
description is more delicate. By the no-cloning theorem,

universal copying of quantum states is impossible. Therefore,
in the view of quantum mechanics, perfect cribbing is against
the laws of nature. As illustrated in Figure 1, if Encoder 1
sends A1 through the channel, then Encoder 2 is physically
prohibited from having a copy of the input state. Hence,
we consider the quantum MAC with noisy cribbing, consisting
of a concatenation of a cribbing channel and the communica-
tion channel (see Figure 1b). Specifically, Encoder 1 sends
the input system A1 through a cribbing channel that has two
outputs, A�

1 and E. Encoder 2 performs a measurement on
the system E, and uses the measurement outcome in order to
encode the input state of A2. Then, the input systems A�

1 and
A2 are sent through the communication channel. The model
can also be interpreted as if the second transmitter performs
a measurement on the environment E of the first transmitter.

The entanglement between the cribbing system E and the
communication channel input A�

1 has the following implica-
tion. If Encoder 2 measures Ei before A�

1,i is sent through
the channel, as in the causal and non-causal scenarios, then
Encoder 2’s cribbing measurement may inflict a “state col-
lapse” of Encoder 1’s transmission through the communication
channel. In other words, in quantum communication, the
cribbing operation interferes with Encoder 1’s input before
it is even transmitted through the communication channel.

We consider the scenarios of strictly-causal, causal, and
non-causal cribbing. For a MAC with robust cribbing, the
cribbing system E includes all the information that is available
in A�

1. We derive achievable regions for each setting and
establish a regularized capacity characterization for robust
cribbing. Building on the analogy between the noisy cribbing
model and the relay channel, we further develop a partial
decode-forward region for the quantum MAC with strictly-
causal non-robust cribbing. For the classical-quantum MAC
with cribbing encoders, the capacity region is determined with
perfect cribbing of the classical input, and a cutset region is
derived for noisy cribbing. In the special case of a classical-
quantum MAC with a deterministic cribbing channel, the inner
and outer bounds coincide. The setting of noisy cribbing is
significantly more challenging, as it is closely-related to the
relay channel. The comparison between the relay channel and
the MAC with cribbing encoders is further investigated in the
present paper. We derive a generalized packing lemma for the
MAC. While the lemma does not include cribbing, it is useful
in the analysis of the MAC with cribbing encoders.

The paper is organized as follows. In Section II, we give the
definitions of the channel model and a brief review of related
work. In Section III, we provide the information-theoretic
tools for the analysis and state the generalized quantum
packing lemma. The main results are given in Section IV and
Section V. In the former, we focus on robust cribbing, and in
the latter, we introduce partial decode-forward coding for the
non-robust case. The proofs are given in the appendix.

II. DEFINITIONS AND RELATED WORK

A. Notation, States, and Information Measures

We use the following notation conventions. Script let-
ters X ,Y,Z, . . . are used for finite sets. Lowercase letters
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Fig. 1. The quantum multiple-access channel MA1A2→B with cribbing at Encoder 2.

x, y, z, . . . represent constants and values of classical random
variables, and uppercase letters X,Y, Z, . . . represent classical
random variables. The distribution of a random variable X is
specified by a probability mass function (pmf) pX(x) over a
finite set X .

We use xj = (x1, x2, . . . , xj) to denote a sequence of letters
from X . A random sequence Xn and its distribution pXn(xn)
are defined accordingly.

The state of a quantum system A is a density operator ρ
on the Hilbert space HA. A density operator is an Hermitian,
positive semidefinite operator, with unit trace, i.e. ρ† = ρ,
ρ � 0, and Tr(ρ) = 1. The set of all density operators acting
on HA is denoted by D(HA). The state is said to be pure if
ρ = |ψ��ψ|, for some vector |ψ� ∈ HA. Define the quantum
entropy of the density operator ρ as H(ρ) � −Tr[ρ log(ρ)].
Consider the state of a pair of systems A and B on the
product space HA ⊗HB . Given a bipartite state σAB , define
the quantum mutual information as

I(A;B)σ = H(σA) +H(σB)−H(σAB). (1)

Furthermore, conditional quantum entropy and mutual infor-
mation are defined by H(A|B)σ = H(σAB) − H(σB)
and I(A;B|C)σ = H(A|C)σ + H(B|C)σ − H(AB|C)σ ,
respectively. A quantum channel PA→B is a completely-
positive trace-preserving (cptp) linear map from D(HA)
to D(HB).

A measurement of a quantum system is specified in two
equivalent manners. When the post-measurement state is irrel-
evant, we specify a measurement by a positive operator-valued
measure (POVM), i.e. a set of positive semi-definite operators
{Kx}x∈X such that

�
x Kx = �. According to the Born rule,

if the system is in state ρ, then the probability to measure x is
pX(x) = Tr(Kxρ). More generally, a measurement is defined
by a set of operators {Wx}x∈X such that

�
xW

†
xWx = �.

If the system is in the state ρ, then the measurement outcome
X is distributed by pX(x) = Tr(W †

xWxρ) for x ∈ X .
If X = x was measured, then the post-measurement state
is ρ� ≡ (WxρW

†
x)/Tr(W †

xWxρ). Furthermore, the quantum
instrument WA→ĀX of this measurement is the linear map
from the original state, before the measurement, to the joint
state of the system after the measurement with the measure-
ment outcome, i.e.

WA→ĀX(ρ) =
�
x∈X

WxρW
†
x ⊗ |x��x|. (2)

A quantum Markov chain is defined as follows. The quan-
tum systems A B C form a Markov chain if there exists
a recovery channel PB→BC such that ρABC = (idA ⊗
PB→BC)(ρAB) [54]. In general, this holds if and only if

I(A;C|B)ρ = 0 (3)

(see [54, Theorem 5.2]).
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B. Quantum Multiple-Access Channel

A quantum multiple-access channel (MAC) maps a quantum
state at the senders’ system to a quantum state at the receiver.
Here, we consider a channel with two transmitters. Formally,
a quantum MAC is a cptp map MA1A2→B corresponding to
a quantum physical evolution. We assume that the channel
is memoryless. That is, if the systems An

1 = (A1,i)n
i=1 and

An
2 = (A2,i)n

i=1 are sent through n channel uses, then the
joint input state ρAn

1 An
2

undergoes the tensor product mapping
MAn

1 An
2 →Bn ≡M⊗n

A1A2→B .
We will consider a MAC with cribbing, where Trans-

mitter 2 can measure a system E that is entangled with
Transmitter 1’s system. Assume without loss of generality that
the quantum MAC can be decomposed as

MA1A2→B(ρA1A2) =
TrE

�
(NA�

1A2→B ◦ LA1→A�
1E)(ρA1A2)

�
(4)

for all ρA1A2 , and some channel LA1→A�
1E . In general, there

always exists such a channel, since we can define LA1→A�
1E

such that the outputs A�
1 and E are in a product state and

ρA�
1

= ρA1 . However, the interesting case is when the trans-
mitted system A�

1 and the cribbing system E are correlated.
The transmitters and the receiver are often called Alice 1,

Alice 2, and Bob. In the cribbing setting, Alice 1 first sends
the input state of An

1 through the channel LAn
1 →A�n

1 En ≡
L⊗n

A1→A�
1E . Alice 2 gains access to the system En, and

performs a measurement. Then, she encodes the state of her
input An

2 using the measurement outcome, and transmits it to
Bob. Henceforth, we will refer to the channel LA1→A�

1E as the
cribbing channel, and to En as the cribbing system. We denote
the quantum MAC with cribbing by NA�

1A2→B ◦ LA1→A�
1E .

In the sequel, we will also be interested in the following
special cases.

Definition 1: Let N ◦L be a quantum MAC with cribbing.
Given an input state θA1A0 , where A0 is an arbitrary reference
system, let ρA�

1EA0 = LA1→A�
1E(θA1A0) be the output of the

cribbing channel. We say that the quantum MAC is with robust
cribbing if A0 E A�

1 form a quantum Markov chain.
That is, for every input θA1A0 , there exists a recovery

channel Pθ
E→A�

1E such that

ρA�
1EA0 = Pθ

E→A�
1E(ρEA0). (5)

We give the following intuition. In the cribbing setting,
Alice 2 may have a noisy copy of Alice 1’s input. The
condition above means that Alice 2’s copy is “at least as good”
as the one which is transmitted through the channel N . That
is, the channel input A�

1 does not contain more information
than the cribbing system E, which Alice 2 measures. Next,
we define the classical-quantum MAC with noiseless cribbing,
which is a special case of a quantum MAC with robust
cribbing.

Definition 2: The classical-quantum MAC with noiseless
cribbing is defined by N ◦ L such that the inputs A1, A2

are classical, and the cribbing channel simply copies Alice 1’s
input, i.e. A1 ≡ X1, A2 ≡ X2, and L = idX1→X1X1 . Hence,
the cribbing system is an exact copy of Alice 1’s input, i.e.

E ≡ A�
1 ≡ A1 ≡ X1. (6)

We denote the classical-quantum MAC with noiseless cribbing
by NX1X2→B ◦ idX1→X1X1 .

If the cribbing observation is noisy, then it may not satisfy
the robustness property.

Definition 3: The classical-quantum MAC with a noisy
cribbing channel QZ|X1 is defined such that the inputs A1,
A�

1, A2 and the cribbing system E are classical, i.e. A1 ≡
A�

1 ≡ X1, A2 ≡ X2, and E ≡ Z , while the cribbing
channel is specified by the classical noisy channel QZ|X1 .
We denote the classical-quantum MAC with noisy cribbing
by NX1X2→B ◦QZ|X1 .

Remark 1: Another simple example of robust cribbing is
the case where A�

1 does not store information at all, say
|HA�

1
| = 1. The resulting channel is a basic multi-hop link

that concatenates two point-to-point channels. Specifically,
Alice 1 sends the input A1 to Alice 2 via LA1→E , Alice 2 mea-
sures E, encodes the input A2, and send it to Bob over
NA2→B .

C. Coding With Cribbing

We consider different scenarios of cribbing. First, we define
the setting of a MAC where Alice 2 obtains her measurements
of the systems E1, E2, . . . in a causal manner. That is, at time i,
Alice 2 can measure the past and present systems E1, . . . , Ei.

Definition 4: A (2nR1 , 2nR2 , n) classical code for the quan-
tum MAC NA�

1A2→B ◦LA1→A�
1E with cribbing consists of the

following:
• Two message sets [1 : 2nR1 ] and [1 : 2nR2 ], assuming

2nRk is an integer;
• an encoding map F1 : [1 : 2nR1 ] → D(H⊗n

A1
) for

Encoder 1;
• a sequence of cribbing POVMs Ki = {Kz

Ei , z ∈ Z},
for Encoder 2;

• a sequence of n encoding maps F2,i : Zi× [1 : 2nR2 ]→
D(H⊗i

A2
), where i ∈ [1 : n], for Encoder 2; and

• a decoding POVM D = {Dm1,m2
Bn }, where the measure-

ment outcome is an index pair (m1,m2), with mk ∈ [1 :
2nRk ] for k = 1, 2.

The sequence of encoding maps needs to be consistent
in the sense that the states ρm2,zi

Ai
2

≡ F2,i(zi
1,m2) sat-

isfy TrAn
2,i+1

(ρm2,zn
1

An
2

) = ρ
m2,zi

1
Ai

2
. We denote the code by

(F1,F2,K,D).
The communication scheme is depicted in Figure 1b. The

sender Alice 1 has the input system An
1 , the sender Alice 2 has

both An
2 , E

n, and the receiver Bob has Bn. Alice k chooses
a message mk according to a uniform distribution over [1 :
2nRk ], for k = 1, 2. To send the message m1 ∈ [1 : 2nR1 ],
Alice 1 encodes the message by ρm1

An
1
≡ F1(m1), and sends

her transmission An
1 through n uses of the cribbing channel.

Her transmission induces the following state,

ρm1
A�n

1 En = L⊗n(ρm1
An

1
) (7)

where En is the cribbing system which will be measured by
the second transmitter.

At time i, Alice 2 measures the system Ei using the
measurement Ki, and obtains a measurement outcome zi.
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To send the message m2 ∈ [1 : 2nR2 ], she prepares the
input state F2,i(m2, z

i) in a causal manner, and sends her
transmission. The average joint input state is

ρm1,m2
A�n

1 An
2

=
�

zn∈Zn

TrEn

�
(id⊗Kzn

)ρm1
A�n

1 En

�
⊗F2,n(m2, z

n) (8)

with Kzn

En ≡ Kzn

EnK
zn−1

En−1 · · ·Kz1
E1

.
Bob receives the channel output systems Bn in the follow-

ing state,

ρm1,m2
Bn = N⊗n(ρm1,m2

A�n
1 An

2
). (9)

He measures with the decoding POVM D and obtains an
estimate of the message pair (m̂1, m̂2) ∈ [1 : 2nR1 ] × [1 :
2nR2 ] from the measurement outcome. The average probability
of error of the code is

P (n)
e (F1,F2,K,D) =

1
2n(R1+R2)

2nR1�
m1=1

2nR2�
m2=1

(1− Tr[Dm1,m2ρm1,m2
Bn ]) . (10)

A (2nR1 , 2nR2 , n, ε) classical code satisfies P (n)
e (F1,F2,

K,D) ≤ ε.
A rate pair (R1, R2) is called achievable with causal

cribbing if for every ε > 0 and sufficiently large n, there
exists a (2nR1 , 2nR2 , n, ε) code. The classical capacity region
Ccaus(N ◦ L) of the quantum MAC with causal cribbing is
defined as the set of achievable pairs (R1, R2), where the
subscript ‘caus’ indicates causal cribbing.

We will also put a considerable focus on strictly-causal and
non-causal cribbing. In the strictly-causal setting, Alice 2 can
measure the cribbing system only after she has sent her
transmission at each time instance. That is, a code with
strictly-causal cribbing is defined in a similar manner, where
Alice 2 first transmits her input A2,i, and only then mea-
sures Ei. Therefore, her input state at time i can only depend
on the past measurements zi−1, and the ith encoding map has
the form F2,i : Zi−1 × [1 : 2nR2 ]→ D(H⊗i

A2
). We denote the

capacity region for this scenario by Cs-c(N ◦ L), where the
subscript ’s-c’ stands for strictly-causal cribbing.

With non-causal cribbing, Alice 2 gains access to the entire
sequence of systems En a priori, i.e. before the beginning of
her transmission. Thus, she can perform a joint measurement
at time i = 1, with a single POVM K = {K�

En}, before
sending An

2 . Thereby, she can prepare a joint state ρm2,�
An

2
of any

form. The capacity region with non-causal cribbing is denoted
by Cn-c(N ◦ L).

Remark 2: The MAC with strictly-causal cribbing is closely
related to the relay channel. In particular, if we impose
R2 = 0, then Alice 2 can only use the cribbing channel to
enhance the transmission of information from Alice 1 to Bob.
That is, Alice 2 acts as a relay in this case. In the sequel,

we will introduce methods for quantum cribbing that are
inspired by relay coding techniques. It should be noted,
however, that as opposed to the relay channel, our cribbing
channel (‘sender-relay link’) is not affected by the transmission
of Alice 2 (the ‘relay’). Specifically, Savov et al. [14], [49]

considered a relay channel PA1A2→EB , where the transmitter
sends a classical input A1 ≡ X1, the relay receives E and
transmits A2 ≡ X2, and the destination receiver receives the
quantum output B. Hence, the state of E in the relay model
is affected by both A1 and A2. Here, on the other hand, the
cribbing channel acts only on A1. Nonetheless, it appears that
the technical challenges carry over from the relay channel to
the present model.

Remark 3: Based on the definitions above, we have the
following relation between the capacity regions of the MAC
with strictly-causal, causal, and non-causal cribbing: Cs-c(N ◦
L) ⊆ Ccaus(N ◦ L) ⊆ Cn-c(N ◦ L). This follows because,
if Alice 2 has causal access to Ei, or to the entire sequence
of En, then she can choose to measure only Ei−1 at time i.
Hence, every code with strictly-causal cribbing can also be
used given causal or non-causal cribbing. Similarly, a causal
scheme can be performed given non-causal cribbing.

D. Related Work

We briefly review the capacity result for the quantum MAC
without cribbing. A code without cribbing is defined in a
similar manner, where Alice 2 is not allowed to measure
the cribbing systems En. In this case, the model is fully
described by MA1A2→B , ignoring its components LA1→A�

1E

and NA�
1A2→B (see (4) and Figure 1b). Denote the capacity

region without cribbing by Cnone(M). Define a rate region
Rnone(N ◦ L) as follows,

Rnone(M) =
�

pU pX1|U pX2|U , θ
x1
A1

⊗ζ
x2
A2⎧⎨⎩ (R1, R2) : R1 ≤ I(X1;B|X2U)ω

R2 ≤ I(X2;B|X1U)ω

R1 +R2 ≤ I(X1X2;B|U)ω

⎫⎬⎭ (11)

where the union is over the joint distributions of the auxiliary
random variables U,X1, X2 and the product state collections
{θx1

A1
⊗ ζx2

A2
}, with

ωUX1X2B =
�

u,x1,x2

pU (u)pX1|U (x1|u)pX2|U (x2|u)|u��u|

⊗ |x1��x1| ⊗ |x2��x2| ⊗MA1A2→B(θx1
A1
⊗ ζx2

A2
) (12)

and |U| = 3, |Xk| ≤ 3(|HAk
|2 + 1), for k = 1, 2.

Theorem 1 (See [13], [14]): The capacity region of the
quantum MAC MA1A2→B without cribbing satisfies

Cnone(M) =
∞�

n=1

1
n
Rnone(M⊗n). (13)

Remark 4: The union over pU in the RHS of (11) can be
viewed as a convex hull operation, hence the regionRnone(M)
is convex. This also has the interpretation of operational
time-sharing. Suppose that pU is a type. By employing a
sequence of T codes consecutively, each corresponds to a
rate pair (R(u)

1 , R
(u)
2 ) over a sub-block of length n · pU (u)

for u ∈ {1, . . . , T}, one achieves a rate pair (R1, R2) that
corresponds to the convex combination of the rates, i.e. Rk =�

u∈U pU (u)R(u)
k for k = 1, 2. The time-sharing argument

implies that the operational capacity region, with or without
cribbing, is a convex set in general.
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III. INFORMATION THEORETIC TOOLS

To derive our results, we use the quantum version of
the method of types properties and techniques. In particular,
we will derive a generalized quantum packing lemma for a
MAC. While this packing lemma does not include cribbing,
it will still be useful in the proof of our main results.

Standard method-of-types concepts are defined as in [55]
and [56]. We briefly introduce the notation and basic
properties while the detailed definitions can be found in
[56, Appendix A]. In particular, given a density operator
ρ =

�
x pX(x)|x��x| on the Hilbert space HA, denote the

strong δ-typical set that is associated with pX by Aδ(pX),
define the strong δ-typical subspace as the vector space that
is spanned by {|xn� : xn ∈ Aδ(pX)}, and let Πδ(ρ) be the
projector onto this subspace. The following inequalities follow
from well-known properties of strong δ-typical sets [57],

Tr(Πδ(ρ)ρ⊗n) ≥1− ε (14)

2−n(H(ρ)+cδ)Πδ(ρ) Πδ(ρ) ρ⊗n Πδ(ρ)  2−n(H(ρ)−cδ)

(15)

Tr(Πδ(ρ)) ≤2n(H(ρ)+cδ) (16)

where c > 0 is a constant. Furthermore, for σB =�
x pX(x)σx

B , let Πδ(σB |xn) denote the projector corre-
sponding to the conditional strong δ-typical set given the
sequence xn. Similarly [55],

Tr(Πδ(σB |xn)σxn

Bn) ≥ 1− ε� (17)

2−n(H(B|X�)σ+c�δ)Πδ(σB |xn)  Πδ(σB |xn)σxn

Bn Πδ(σB |xn)

 2−n(H(B|X�)σ−c�δ)Πδ(σB |xn) (18)

Tr(Πδ(σB |xn)) ≤2n(H(B|X�)σ+c�δ) (19)

where c� > 0 is a constant, σxn

Bn =
�n

i=1 σ
xi

Bi
, and the classical

random variable X � is distributed according to the type of xn.
If xn ∈ Aδ(pX), then

Tr(Πδ(σB)σxn

Bn) ≥1− ε� (20)

as well (see [55, Property 15.2.7]).
The definition can be further generalized to the case of

σx
B =

�
z pZ|X(z|x)σ̂x,z

B . Given a fixed pair (xn, zn) ∈
Xn × Zn, divide the index set [1 : n] into the subsets
I(a, b|xn, zn) = {i : (xi, zi) = (a, b)}, for (a, b) ∈ X × Z .
The projector onto the conditional strong δ-typical subspace
given (xn, zn) is

Πδ(σB |xn, zn) ≡
�
a∈X

�
b∈Z

Πδ
BI(a,b|xn,zn)(σ̂a,b

B ). (21)

Whereas, given a fixed xn ∈ Xn, we let I1(a|xn) = {i :
xi = a}, for a ∈ X , and we define the conditional δ1-typical
projector as

Πδ1(σB |xn) ≡
�
a∈X

Πδ1
BI1(a|xn)(σa

B). (22)

We observe that for δ < δ1 and sufficiently large n, the
conditional typical subspaces are included within each other
and we have the following projector inequality,

Πδ(σB |xn, zn)  Πδ1(σB |xn). (23)

This property will turn out to be useful in the derivation of
the generalized quantum packing lemma below.

A. Generalized Quantum Packing Lemma

Suppose that Alice 1 and Alice 2 wish to send a common
message m0 and two private messages m1 and m2, with-
out cribbing. To this end, they construct three codebooks,
as follows. The first codebook encodes the common message
and consists of 2nR0 codewords un(m0), m0 ∈ [1 : 2nR0 ].
In addition, Alice 1 employs a private codebook with
2n(R0+R1) codewords, xn

1 (m0,m1), (m0,m1) ∈ [1 : 2nR0 ]×
[1 : 2nR1 ], by which she chooses a quantum state from an
ensemble {θxn

1
}xn

1∈Xn
1

. Similarly, Alice 2 uses xn
2 (m0,m2),

(m0,m2) ∈ [1 : 2nR0 ] × [1 : 2nR2 ], and the quantum
states {ζxn

2
}xn

2∈Xn
2

. The achievability proof is based on ran-
dom codebook generation, where the codewords are drawn
at random according to an input distribution pUpX1|UpX2|U .
To recover the transmitted message, Bob performs the square-
root measurement [58], [59] using a code projector Π and
codeword projectors Πunxn

1 xn
2

, (un, xn
1 , x

n
2 ) ∈ Un×Xn

1 ×Xn
2 ,

which project onto subspaces of the Hilbert space HBn . The
lemma below is a generalized version of the quantum packing
lemma by Hsieh, Devetak, and Winter [15].

Lemma 2 (Generalized Quantum Packing Lemma): Let

ρ =
�
u∈U

pU (u)
�

x1∈X1

�
x2∈X2

pX1|U (x1|u)pX2|U (x2|u)ρx1,x2

(24)

where {pUpX1|U (x1|u)pX2|U (x2|u), ρx1x2}(x1,x2)∈X1×X2 is a
given ensemble. Furthermore, suppose that there is a code pro-
jector Π and codeword projectors Πun,xn

1 ,xn
2

, Πun,xn
1

, Πun,xn
2

,
Πun , for (un, xn

1 , x
n
2 ) ∈ Aδ(pUpX1|UpX2|U ), that satisfy for

every α > 0 and sufficiently large n,

Tr(Πρun,xn
1 ,xn

2
) ≥ 1− α (a)

Tr(Πun,xn
1 ,xn

2
ρun,xn

1 ,xn
2
) ≥ 1− α (b)

Tr(Πun,xn
1 ,xn

2
) ≤ 2ne0 (c)

Πρ⊗nΠ  2−n(E0−α)Π (d)

Πun,xn
2
ρun,xn

2
Πun,xn

2
 2−n(E1−α)Πun,xn

2
(e)

Πun,xn
1
ρun,xn

1
Πun,xn

1
 2−n(E2−α)Πun,xn

1
(f)

ΠunρunΠun  2−n(E12−α)Πun (g)

Πun,xn
1 ,xn

2
 Πun,xn

k
 Πun  Π for k = 1, 2,

(h)

for some 0 < e0 < Ej with ρunxn
1 xn

2
≡ �n

i=1 ρuix1,ix2,i .
Then, there exist codewords un(m0), xn

1 (m0,m1), and
xn

2 (m0,m2), for mk ∈ [1 : 2nRk ], k = 0, 1, 2, and a POVM
{Λm0,m1,m2}mk∈[1:2nRk ],k=0,1,2. such that

1
2n(R0+R1+R2)

2nR0�
m0=1

2nR1�
m1=1

2nR2�
m2=1

Tr
�
Λm0,m1,m2ρxn

1 (m0,m1),xn
2 (m0,m2)

�
≥ 1− εn(α)

− 4
�

4 · 2−n(E0−e0−(R0+R1+R2)−ε�
n(α))
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+ 2−n(E1−e0−R1−εn(α)�) + 2−n(E2−e0−R2−εn(α)�)

+ 2−n(E12−e0−(R1+R2)−ε�
n(α))

�
(25)

where εn(α), ε�n(α) tend to zero as n→∞ and α→ 0.
We prove the generalized quantum packing lemma in

Appendix A. The lemma can also be derived by following the
methods in [50]. While the lemma above does not involve crib-
bing, it will still be useful in the analysis of our main results.
Roughly speaking, for the quantum MAC with cribbing, the
cribbing measurement allows Alice 2 to recover a part of Alice
1’s message. As this component is known to both Alice 1 and
Alice 2, it can be treated as a common message.

IV. MAIN RESULTS

We state our results on the quantum MAC NA�
1A2→B ◦

LA1→A�
1E with cribbing.

A. Strictly-Causal Cribbing

We begin with the MAC with strictly-causal cribbing, where
Alice 2 transmits A2,i at time i, and then measures the cribbing
system Ei after the transmission. Hence, she only knows the
past measurement outcomes zi−1 at time i. We derive an
achievable region, and give a regularized characterization for
the capacity region in the special case of robust cribbing.
As a consequence, we determine the capacity region of the
classical-quantum MAC with noiseless cribbing. Define

RDF
s-c (N ◦ L) =

�
pU pX1|U pX2|U , θ

x1
A1

⊗ζ
x2
A2⎧⎨⎩

(R1, R2) : R1 ≤ I(X1;E|U)ω

R2 ≤ I(X2;B|X1, U)ω

R1 +R2 ≤ I(X1X2;B)ω

⎫⎬⎭ (26)

with

ωUX1X2A�
1EA2 =�

u,x1,x2

pU (u)pX1|U (x1|u)pX2|U (x2|u)|u��u|

⊗ |x1��x1| ⊗ |x2��x2| ⊗ LA1→A�
1E(θx1

A1
)⊗ ζx2

A2
, (27)

ωUX1X2B = NA�
1A2→B(ωUX1X2A�

1A2). (28)

The superscript ‘DF’ stands for decode-forward coding, refer-
ring to the coding scheme that achieves this rate region. Our
terminology follows the analogy with the relay model (see
Remark 2).

Before we state the capacity theorem, we give the following
lemma. In principle, one may use the property below in order
to compute the region RDF

s-c (N ◦ L) for a given channel.
Lemma 3: The union in (26) is exhausted by auxiliary

variables U , X1, X2 with |U| ≤ |HB|2 +2, |X1| ≤ (|HA1 |2 +
2)(|HB|4 + 2), and |X2| ≤ (|HA2 |2 + 1)(|HB|2 + 2).
The proof of is based on the Fenchel-Eggleston-Carathéodory
lemma [60], using similar arguments as in [23]. The details
are given in Appendix B.

Theorem 4: Consider a quantum MAC NA�
1A2→B ◦

LA1→A�
1E .

1) The rate region RDF
s-c (N ◦L) is achievable for the quantum

MAC with strictly-causal cribbing, i.e.

Cs-c(N ◦ L) ⊇ RDF
s-c (N ◦ L). (29)

2) Given robust cribbing, the capacity region satisfies

Cs-c(N ◦ L) =
∞�

n=1

1
n
RDF

s-c (N⊗n ◦ L⊗n). (30)

The proof of Theorem 4 is given in Appendix C. To the
best of our knowledge, the achievability result above is new
even for a classical channel. In the proof, we extend the
block Markov coding scheme [10], where Alice 1 encodes two
messages in each block in a sequential manner, such that one
message is new and the other overlaps with the previous block.
Willems and van der Muelen [10] refer to those messages as
fresh information and resolution, respectively. Given strictly-
causal cribbing, Alice 2 can measure the cribbing systems
of the previous block. Thus, Alice 2 decodes the resolu-
tion by measuring the previous cribbing block, and encodes
the resolution along with her own message. Bob recovers
the messages in a reversed order using backward decoding.
We refer to this coding scheme as ‘decode-forward’, since
Alice 2 is responsible for decoding the messages of Alice 1,
and forwarding them to Bob.

Remark 5: The decode-forward coding scheme relies heav-
ily on the ability of Alice 2 to decode using a cribbing
measurement. Our results suggest that this is optimal when
the cribbing link is robust. However, as we will discuss in
Section V, this is far from optimal when the cribbing link is
too noisy. Therefore, we will introduce a new cribbing method
which is useful for the non-robust case as well.

As a consequence of Theorem 4, we determine the capacity
region of the classical-quantum MAC with a noiseless cribbing
channel (see Definition 2).

Corollary 5: The capacity region of the classical-quantum
MAC (NX1X2→B ◦ idX1→X1X1) with strictly-causal noiseless
cribbing is given by

Cs-c(N ◦ id) =�
pU pX1|U pX2|U

⎧⎨⎩
(R1, R2) : R1 ≤ H(X1|U)

R2 ≤ I(X2;B|X1, U)ω

R1 +R2 ≤ I(X1X2;B)ω

⎫⎬⎭
(31)

with

ωUX1X2B =
�

u,x1,x2

pU (u)pX1|U (x1|u)pX2|U (x2|u)|u��u|

⊗ |x1��x1| ⊗ |x2��x2| ⊗ NX1X2→B(x1, x2) (32)

The proof of Corollary 5 is given in Appendix D. The corollary
can be viewed as the classical-quantum counterpart of Willems
and van der Muelen’s result on the classical MAC with
noiseless cribbing [10].

B. Causal and Non-Causal Cribbing

In this section, we address causal and non-causal cribbing.
Recall that in the causal setting, Alice 2 measures the cribbing
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system Ei at time i, before she transmits. Hence, she knows
the past and present measurement outcomes zi = (zi−1, zi) at
time i. Whereas, in the non-causal case, Alice 2 can perform a
joint measurement on En a priori, i.e. before the beginning of
her transmission. Here, as opposed to the model in the previous
section, Alice 2’s measurement may cause a “state collapse”
of Alice 1’s input. Hence, it affects the input state for both
transmitters. This can be seen in the achievable region below
as well. Define

RDF
caus(N ◦ L) =

�
pU pX1|U , WE→ĒZ , pX2|Z,U , θ

x1
A1

⊗ζ
x2
A2⎧⎨⎩ (R1, R2) : R1 ≤ I(X1; ĒZ|U)ω

R2 ≤ I(X2;B|X1U)ω

R1 + R2 ≤ I(X1X2;B)ω

⎫⎬⎭ (33)

where the union is over the probability distributions pUpX1|U
for the auxiliary random variables U and X1, over the mea-
surement instrumentWE→ĒZ(ρ) ≡�z WzρW

†
z ⊗ |z��z|, the

conditional probability distributions pX2|Z,U for the auxiliary
random variable X2, and the input state collections {θx1

A1
⊗

ζx2
A2
}, with

ωUX1A�
1ĒZX2A2

=
�

u,x1,z

pU (u)pX1|U (x1|u)|u��u| ⊗ |x1��x1|

⊗Wz

�LA1→A�
1E(θx1

A1
)
�
W †

z ⊗ |z��z|

⊗
��

x2

pX2|Z,U (x2|z, u)|x2��x2| ⊗ ζx2
A2

�
, (34)

ωUX1X2B = NA�
1A2→B(ωUX1X2A�

1A2). (35)

Here, WE→ĒZ is a quantum instrument of a measurement,
where Ē is the post-measurement cribbing system, and Z is
the measurement outcome.

Theorem 6: Consider a quantum MAC NA�
1A2→B ◦

LA1→A�
1E .

1) The rate region RDF
caus(N ◦L) is achievable for the quantum

MAC with causal cribbing, i.e.

Ccaus(N ◦ L) ⊇ RDF
caus(N ◦ L). (36)

2) For the classical-quantum MAC (NX1X2→B ◦ idX1→X1X1)
with noiseless cribbing,

Ccaus(N ◦ id) = Cn-c(N ◦ id) =�
pX1X2

⎧⎨⎩
(R1, R2) : R1 ≤ H(X1)

R2 ≤ I(X2;B|X1)ω

R1 +R2 ≤ I(X1X2;B)ω

⎫⎬⎭ (37)

with

ωX1X2B =
�

x1,x2

pX1X2(x1, x2)|x1, x2��x1, x2|

⊗ NX1X2→B(x1, x2) (38)

The proof of Theorem 6 is given in Appendix E. Part 1
seems to be new for classical channels as well, while
part 2 is the classical-quantum version of Willems and
van der Muelen’s result [10].

Remark 6: The classical achievability proof of Willems and
van der Meulen [10] is based on the notion of Shannon

Fig. 2. The beam splitter relation of the single-mode bosonic MAC. The
left beam splitter corresponds to the cribbing channel LA1→A�

1E , while the
right beam splitter describes the communication channel NA�

1A2→B . Alice 1
encodes the message m1 by a coherent state, and sends her transmission
through n uses of the cribbing channel LA1→A�

1E . The output En is the
cribbing system which will be measured by the second transmitter in a strictly-
causal manner. At time i, Alice 2 encodes a coherent state that depends
on her message m2 and on the previous cribbing measurement outcomes
zi−1, she sends the state, and then performs a measurement on Ei to obtain
a measurement outcome zi which she will use in the next time instance.
The inputs A�n

1,i and A2,i are sent through the communication channel
NA�

1A2→B , and Bob receives the output Bi. Bob performs a measurement
on Bn to obtain an estimate (m̂1, m̂2) of the senders’ messages.

strategies, as originally introduced in models of channel uncer-
tainty [61]. For the classical MAC, a strategy is defined as a
function f : X1 → X2 that maps an input symbol of Alice 1 to
that of Alice 2. Here, we replace the strategy by a quantum
instrument that Alice 2 performs on the cribbing system.

C. Bosonic MAC With Strictly-Causal Cribbing

To demonstrate our results, consider the single-mode
bosonic MAC. We extend the finite-dimension result in
Theorem 4 to the bosonic channel with infinite-dimension
Hilbert spaces based on the discretization limiting argument
by Guha et al. [62]. A detailed description of (continuous-
variable) bosonic systems can be found in [63]. Here, we only
define the notation for the quantities that we use. We use
hat-notation, e.g. â, b̂, ê, to denote operators that act on a
quantum state. The single-mode Hilbert space is spanned by
the Fock basis {|n�}∞n=0. Each |n� is an eigenstate of the
number operator n̂ = â†â, where â is the bosonic field
annihilation operator. In particular, |0� is the vacuum state
of the field. The creation operator â† creates an excitation:
â†|n� = √n+ 1|n+1�, for n ≥ 0. Reversely, the annihilation
operator â takes away an excitation: â|n + 1� =

√
n+ 1|n�.

A coherent state |α�, where α ∈ C, corresponds to an
oscillation of the electromagnetic field, and it is the outcome
of applying the displacement operator to the vacuum state,
i.e. |α� = D(α)|0�, which resembles the creation operation,
with D(α) ≡ exp(αâ† − α∗â). A thermal state τ(N) is a
Gaussian mixture of coherent states, where

τ(N) ≡
�

C

d2α
e−|α|2/N

πN
|α��α|

=
1

N + 1

∞�
n=0

�
N

N + 1

�n

|n��n| (39)

given an average photon number N ≥ 0.
Consider a bosonic MAC with cribbing encoders, whereby

the channel input is a pair of electromagnetic field modes, with
annihilation operator â1 and â2, and the output is a modes with
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annihilation operator b̂. The annihilation operators correspond
to Alice 1, Alice 2, and Bob, respectively. The input-output
relation of the bosonic MAC in the Heisenberg picture [64] is
given by

ê =
√
η1 â1 +

�
1− η1 ĉ (40)

â�1 =
�

1− η1 â1 −√η1 ĉ (41)

and

b̂ =
√
η2 â

�
1 +
�

1− η2 â2 (42)

where ĉ is associated with the environment noise and the
parameter ηk is the transmissivity, 0 ≤ ηk ≤ 1, which captures,
for instance, the length of the optical fiber and its absorption
length [65]. The relations above correspond to the outputs
of a beam splitter, as illustrated in Figure 2. It is assumed
that the encoder uses a coherent state protocol with an input
constraint. That is, the input state is a coherent state |xk�,
xk ∈ C, for k = 1, 2, such that each codeword satisfies
1
n

�n
i=1 |xk,i|2 ≤ NAk

.
Based on part 1 of Theorem 4, we derive the following

achievable region with strictly-causal cribbing,

Cs-c(N ◦ L) ⊇⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(R1, R2) :
R1 ≤ g(η1NA1 + (1 − η1)NC)− g((1− η1)NC)
R2 ≤ g(η2η1NC + (1 − η2)NA2)− g(η2η1NC)
R1 +R2 ≤ g(η2(1− η1)NA1

+η2η1NC + (1− η2)NA2)− g(η2η1NC)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(43)

where g(N) is the entropy of a thermal state with mean photon
number N ,

g(x) =

�
(x+ 1) log(x+ 1)− x log(x) x > 0
0 x = 0.

(44)

To obtain the region above, set the inputs to be mixed
coherent states, |X1� and |X2�, where Xk is a circularly-
symmetric Gaussian random variable with zero mean and
variance NAk

/2, for k = 1, 2, and let U = 0.
On the other hand, the capacity region of single-mode

Bosonic MAC without cribbing is [66]

Cnone(N ◦ L) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(R1, R2) :
R1 ≤ g(η2(1 − η1)NA1 + η2η1NC)− g(η2η1NC)
R2 ≤ g(η2η1NC + (1− η2)NA2)− g(η2η1NC)
R1 +R2 ≤ g(η2(1− η1)NA1

+η2η1NC + (1− η2)NA2)− g(η2η1NC)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

(45)

The decode-forward achievable region with strictly-causal
cribbing and the capacity region without cribbing are depicted
in Figure 3 as the area below the thick blue line and below
the dashed red line, respectively. As can be seen in the figure,
cribbing can lead to a significant rate gain for Alice 1.

Fig. 3. Achievable regions for the single-mode bosonic MAC. The decode
forward achievable region with strictly-causal cribbing is the area below the
thick blue line (see (43)). For comparison, the capacity region without cribbing
Cnone(N ◦ L) is depicted as the area below the red dashed line (see (45)).
The transmission rate of Alice 1 can be significantly higher using cribbing.

V. PARTIAL DECODE-FORWARD

We have pointed out in Remark 5 that if the cribbing system
is not robust, then the decode-forward strategy in the previous
section is not necessarily optimal. In fact, if the cribbing
system E that Alice 2 measures is noisier than the channel
input A�

1, then the inner bounds above may be worse than
in transmission without cribbing. This is easy to see when E
does not contain any information, say |HE | = 1, in which
case the decode-forward region leaves Alice 1 with zero rate,

RDF
s-c (N ◦ L) = RDF

caus(N ◦ L) =�
(0, R2) : R2 ≤ max

pX , ζx
A2

I(X ;B)
�
. (46)

In order to treat the case where the cribbing system is
noisy, we introduce a quantum cribbing method that is based
on relay coding techniques (see Remark 2 on the analogy
between the relay channel and the cribbing model). Specif-
ically, we improve the inner bound by incorporating the
partial decode-forward technique within our previous cribbing
scheme. Consider the quantum MAC with strictly-causal crib-
bing. Define

RPDF
s-c (N ◦ L) =

�
pUV pX1|U,V pX2|U,V , θ

x1
A1

⊗ζ
x2
A2⎧⎨⎩ (R1, R2) : R1 ≤ I(V ;E|U)ω + I(X1;B|X2UV )ω

R2 ≤ I(X2;B|X1U)ω

R1 +R2 ≤ I(X1X2;B)ω

⎫⎬⎭
(47)

with

ωUV X1X2A�
1EA2 =

�
u,v,x1,x2

pU,V (u, v)pX1|U,V (x1|u, v)

· pX2|U,V (x2|u, v)|u, v, x1, x2��u, v, x1, x2|
⊗ LA1→A�

1E(θx1
A1

)⊗ ζx2
A2
, (48)

ωUV X1X2B = NA�
1A2→B(ωUV X1X2A�

1A2). (49)

The superscript ‘PDF’ stands for partial decode-forward
coding.
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Theorem 7: Consider a quantum MAC NA�
1A2→B ◦

LA1→A�
1E . The rate region RPDF

s-c (N ◦ L) is achievable for
the quantum MAC with strictly-causal cribbing, i.e.

Cs-c(N ◦ L) ⊇ RPDF
s-c (N ◦ L). (50)

The proof of Theorem 7 is given in Appendix F. To the best
of our knowledge, this is a new result for classical channels as
well. As opposed to the analysis for Section IV, the decoder
does not fully rely on the cribbing measurement to recover the
information from Alice 1. Instead, we use rate-splitting such
that part of Alice 1’s message is decoded-forward through
the cribbing system E, and the remaining part is decoded
using A�

1.
For the classical-quantum MAC with noisy cribbing, we also

prove a cutset upper bound. In this case, the channel inputs
are A�

1 ≡ A1 ≡ X1 and A2 ≡ X2, and the cribbing
channel L is represented by a classical noisy channel QZ|X1

(see Definition 3). Then, we determine the capacity region in
the special case where Z is a determinisitic function of X1,
by showing that the partial decode-forward inner bound and
the cutset outer bound coincide. Given a classical-quantum
MAC NX1X2→B ◦QZ|X1 , define

RCS
s-c(N ◦Q) =�

pU pX1|U pX2|U

⎧⎨⎩ (R1, R2) : R1 ≤ I(X1;BZ|X2U)ω

R2 ≤ I(X2;B|X1U)ω

R1 +R2 ≤ I(X1X2;B)ω

⎫⎬⎭
(51)

with

ωUX1X2ZB =
�

u,x1,z,x2

pU (u)pX1|U (x1|u)QZ|X1(z|x1)

· pX2|U (x2|u)|u, x1, z, x2��u, x1, z, x2|
⊗ NX1X2→B(x1, x2). (52)

The superscript ‘CS’ stands for the cutset outer bound.
Theorem 8: Consider a classical-quantum MAC with a

noisy cribbing channel QZ|X1 .
1) The capacity region of the classical-quantum MAC
NX1X2→B ◦ QZ|X1 with strictly-causal noisy cribbing is
bounded by

Cs-c(N ◦Q) ⊆ RCS
s-c(N ◦Q). (53)

2) If QZ|X1 is a 0-1 matrix, i.e. the cribbing observation Z
is a deterministic function of X1, then

Cs-c(N ◦Q) = RPDF
s-c (N ◦Q) = RCS

s-c(N ◦Q) =

�
pU pX1|U pX2|U

⎧⎪⎪⎨⎪⎪⎩
(R1, R2) :
R1 ≤ H(Z|U) + I(X1;B|X2UZ)ω

R2 ≤ I(X2;B|X1U)ω

R1 +R2 ≤ I(X1X2;B)ω

⎫⎪⎪⎬⎪⎪⎭ .

(54)

The proof of Theorem 8 is given in Appendix G. Part 1
seems to be new for classical channels as well, while part 2 is
the classical-quantum version of the classical result on the
classical MAC with partial cribbing [36]. Although, Asnani
and Permuter [36] considered a more complex network with
cribbing at both encoders.

VI. SUMMARY AND DISCUSSION

We consider the quantum MAC MA1A2→B with cribbing
encoders. In quantum communication, the description is more
delicate. By the no-cloning theorem, universal copying of
quantum states is impossible. Therefore, in the view of quan-
tum mechanics, perfect cribbing is against the laws of nature.
As illustrated in Figure 1, if Alice 1 sends A1 through the
channel, then Alice 2 is physically prohibited from having
a copy of the input state. Hence, we consider the quantum
MAC with noisy cribbing, consisting of a concatenation of a
cribbing channel LA1→A�

1E and the communication channel
NA�

1A2→B (see Figure 1b). Specifically, Alice 1 sends her
input system A1 through a cribbing channel that has two
outputs, A�

1 and E. Alice 2 performs a measurement on the
system E, and uses the measurement outcome in order to
encode the input state of A2. Then, the input systems A�

1

and A2 are sent through the communication channel. The
model can also be interpreted as if the second transmitter
performs a measurement on the environment E of the first
transmitter.

We consider the scenarios of strictly-causal, causal, and
non-causal cribbing. In strictly-causal cribbing, Alice 2 trans-
mits A2,i at time i, and then measures the cribbing system
Ei after the transmission. Hence, she only knows the past
measurement outcomes zi−1 at time i. In the causal setting,
Alice 2 measures the cribbing system Ei, at time i, before she
transmits. Hence, she knows the past and present measurement
outcomes zi = (zi−1, zi) at time i. Whereas, in the non-
causal case, Alice 2 can perform a joint measurement on En a
priori, i.e. before the beginning of her transmission. The entan-
glement between Transmitter 1 and the cribbing system of
Transmitter 2 has the following implication. In both the causal
and non-causal scenarios, Alice 2 performs the measurement
before the input A�

1,i is sent through the channel. Hence, the
cribbing measurement may inflict a “state collapse” for Alice
1’s transmission. In other words, in quantum communication,
the cribbing operation interferes with Alice 1’s input before it
is even transmitted through the communication channel. For
a MAC with robust cribbing, there exists a recovery channel
from E to EA�

1. Thereby, the cribbing system E includes all
the information that is available in A�

1. We derived achievable
regions for each setting and established a regularized capacity
characterization for robust cribbing.

The setting of noisy cribbing is significantly more chal-
lenging and it is closely-related to the relay channel. We have
derived a generalized packing lemma for the MAC. While
the lemma does not include cribbing, it is useful in the
analysis of the MAC with cribbing encoders. In the setting
of the generalized quantum packing lemma in Section III,
Alice 1 and Alice 2 send three messages to Bob, a common
message m0 and two private messages m1 and m2. It is
assumed that there is no cribbing. The generalized quantum
packing lemma implies that the capacity region of the quantum
MAC MA1A2→B with a common message, without cribbing,
is given by the regularization of the following region,

R∗
none(M) =

�
pU pX1|U pX2|U , θ

x1
A1

⊗ζ
x2
A2
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(R0, R1, R2) : R1 ≤ I(X1;B|X2U)ω

R2 ≤ I(X2;B|X1U)ω

R1 +R2 ≤ I(X1X2;B|U)ω

R0 +R1 +R2 ≤ I(X1X2;B)ω

⎫⎪⎪⎬⎪⎪⎭ (55)

where the union is as in (11), with |U| = |HA1 |2+ |HA2 |2+1,
|X1| ≤ |U|(|HAk

|2 + 1), for k = 1, 2.
This generalizes the classical-quantum result due to Boche

and Nötzel [17, Theorem 2].
We further investigated the comparison between the relay

channel and the MAC with cribbing encoders in Section V
(see Remark 2). Building on the analogy between the noisy
cribbing model and the relay channel, we developed a partial
decode-forward region for the quantum MAC with strictly-
causal non-robust cribbing. For the classical-quantum MAC
with cribbing encoders, we have completely determined the
capacity region with perfect cribbing of the classical input,
and derived a cutset region for noisy cribbing. In the special
case of a classical-quantum MAC with a deterministic cribbing
channel, the inner and outer bounds coincide.

Cooperation in terms of a quantum MAC offers
additional advantages for resilience and trustworthiness,
e.g. to compensate for jamming attacks by an adversary
[67, Section VI.C.]. As previously mentioned, in future
communication systems, not only data but also physical and
virtual objects will be controlled [31]. This growing demand of
communication resources sharpens the need for quantum tech-
nology, and it is thus interesting to develop the corresponding
theory.

APPENDIX A
PROOF OF LEMMA 2 (GENERALIZED

QUANTUM PACKING LEMMA)

Consider the following code construction and decoding
measurement.

A. Classical Codebook Construction

(i) Generate 2nR0 independent sequences un(m0), m0 ∈
[1 : 2nR0 ], at random according to

�n
i=1 pU (ui).

(ii) For every m0, generate 2nRk conditionally independent
sequences xn

k (m0,mk), mk ∈ [1 : 2nRk ], according to�n
i=1 pXk|U (xk,i|ui(m0)), where k = 1, 2.

We denote the codebooks by C = (C0,C1,C2), respectively.

B. Decoding POVM

For every un, xn
1 , x

n
2 , define

Υunxn
1 xn

2
= ΠΠunxn

1 xn
2
Π. (56)

Then, define

Λm0,m1,m2 =⎛⎝ 2nR0�
m�

0=1

2nR1�
m�

1=1

2nR2�
m�

2=1

Υun(m�
0)x

n
1 (m�

0,m�
1)x

n
2 (m�

0,m�
2)

⎞⎠−1/2

·Υun(m0)xn
1 (m0,m1)xn

2 (m0,m2)

·
⎛⎝ 2nR0�

m�
0=1

2nR1�
m�

1=1

2nR2�
m�

2=1

Υun(m�
0)x

n
1 (m�

0,m�
1)x

n
2 (m�

0,m�
2)

⎞⎠−1/2

.

(57)

C. Error Analysis

Denote the message-average error probability by

P (n)
e (C ) =

1
2n(R0+R1+R2)

�
m��

0 ,m��
1 ,m��

2

P (n)
e (C |m��

0 ,m
��
1 ,m

��
2)

(58)

where the conditional probability of error is defined as

P (n)
e (C |m0,m1,m2) ≡

Tr
�
(�− Λm0,m1,m2)ρUn(m0),Xn

1 (m0,m1),Xn
2 (m0,m2)

�
. (59)

We will show that the expected probability of error is bounded
by

ECP
(n)
e (C ) ≤ 2(α+ 3

√
α)

+ 4
�

4 · 2−n(E0−e0−(R0+R1+R2)−α)

+ 2−n(E1−e0−R1−α) + 2−n(E2−e0−R2−α)

+ 2−n(E12−e0−(R1+R2)−α)

�
. (60)

Fix a message triplet (m0,m1,m2). By the symmetry of the
codebook generation, we have

ECP
(n)
e (C )

=
1

2n(R0+R1+R2)

�
m��

0 ,m��
1 ,m��

2

ECP
(n)
e (C |m��

0 ,m
��
1 ,m

��
2)

= ECP
(n)
e (C |m0,m1,m2). (61)

Hence, we may assume without loss of generality that the
triplet (m0,m1,m2) was sent.

The error analysis begins with the Hayashi-Nagaoka
inequality [68, Lemma 2],

�− (S1 + S2)−1/2S1(S1 + S2)−1/2 ≤ 2(�− S1) + 4S2 ,

(62)

for S1, S2 such that 0  Sj  �, j = 1, 2. Then, by the
definition of Λm0,m1,m2 in (57),

�− Λm0,m1,m2

 2(�−ΥUn(m0)Xn
1 (m0,m1)Xn

2 (m0,m2))

+ 4
�

m�
0,m�

1,m�
2 :

(m�
0,m�

1,m�
2) �=(m0,m1,m2)

ΥUn(m�
0)X

n
1 (m�

0,m�
1)X

n
2 (m�

0,m�
2)
.

(63)

Thus, the expected probability of error satisfies

ECP
(n)
e (C )

= ECP
(n)
e (C |m0,m1,m2)

≤ 2E

"
Tr
�
(�−ΥUn(m0),Xn

1 (m0,m1),Xn
2 (m0,m2))
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· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�#
+ 4

�
m�

0,m�
1,m�

2 :

(m�
0,m�

1,m�
2) �=(m0,m1,m2)

E

"
Tr
�
ΥUn(m�

0),X
n
1 (m�

0,m�
1),X

n
2 (m�

0,m�
2)

· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�#
(64)

where the equality is due to (61), and the inequality follows
from (59) and (63).

The first term is now bounded as in the single-
user case [15]. We note that the probability that
(Un(m0), Xn

1 (m0,m1), Xn
2 (m0,m2)) is not δ-typical,

for our fixed message triplet (m0,m1,m2), tends to zero as
n→∞, by the weak law of large numbers. That is,

Pr
$
Un(m0), Xn

1 (m0,m1), Xn
2 (m0,m2) /∈

Aδ(PUPX1|UPX2)
%
≤ ζn (65)

where ζn tends to zero as n → ∞. For every δ-typical
realization of (un(m0), xn

1 (m0,m1), xn
2 (m0,m2)), we have

Tr
�
Υun(m0),xn

1 (m0,m1),xn
2 (m0,m2)

· ρun(m0),xn
1 (m0,m1),xn

2 (m0,m2)

�
= Tr

�
ΠΠun(m0),xn

1 (m0,m1),xn
2 (m0,m2)Π

· ρun(m0),xn
1 (m0,m1),xn

2 (m0,m2)

�
. (66)

Then, by the cyclicity of the trace operation, this equals

Tr
�
Πun(m0),xn

1 (m0,m1),xn
2 (m0,m2)

·Πρun(m0),xn
1 (m0,m1),xn

2 (m0,m2)Π
�

≥ Tr
�
Πun(m0),xn

1 (m0,m1),xn
2 (m0,m2)

· ρun(m0),xn
1 (m0,m1),xn

2 (m0,m2)

�
− &&Πun(m0),xn

1 (m0,m1),xn
2 (m0,m2)

· ρun(m0),xn
1 (m0,m1),xn

2 (m0,m2)Πun(m0),xn
1 (m0,m1),xn

2 (m0,m2)

− ρun(m0),xn
1 (m0,m1),xn

2 (m0,m2)

&&
≥ 1− α− 2

√
α (67)

where the last inequality follows from the gentle operator
lemma [69], [55, Lemma 9.4.2] and Assumption (b). It follows
that the first term in the RHS of (64) is bounded by 2(α +
2
√
α) + ζn ≤ 2(α+ 3

√
α) (see (65)), for sufficiently large n.

Next, observe that the sum in the RHS of (64) can be divided
as follows, �

m�
0,m�

1,m�
2 :

(m�
0,m�

1,m�
2) �=(m0,m1,m2)

ETr
�
Υm�

0,m�
1,m�

2

· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�
=
�

m�
0 �=m0

ETr
�
Υm�

0,m1,m2ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�
+
�

m�
1 �=m1

ETr
�
Υm0,m�

1,m2ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�

+
�

m�
2 �=m2

ETr
�
Υm0,m1,m�

2
ρUn(m0),Xn

1 (m0,m1),Xn
2 (m0,m2)

�
+

�
m�

1 �=m1 , m�
2 �=m2

ETr
�
Υm0,m�

1,m�
2
ρUn(m0),Xn

1 (m0,m1),Xn
2 (m0,m2)

�
+

�
m�

0 �=m0 , m�
1 �=m1

ETr
�
Υm�

0,m�
1,m2 · ρUn(m0),Xn

1 (m0,m1),Xn
2 (m0,m2)

�
+

�
m�

0 �=m0 , m�
2 �=m2

ETr
�
Υm�

0,m1,m�
2
· ρUn(m0),Xn

1 (m0,m1),Xn
2 (m0,m2)

�
+

�
m�

0 �=m0 , m�
1 �=m1 , m�

2 �=m2

ETr
�
Υm�

0,m�
1,m�

2
· ρUn(m0),Xn

1 (m0,m1),Xn
2 (m0,m2)

�
(68)

The derivation above is analogous to the union of events
bound in the classical proof. In particular, the first three sums
correspond to the event that exactly one of the messages is
decoded erroneously, the next three sums to the event that
two of the messages are decoded incorrectly, and the last sum
is the probability that all of the decoder’s estimates are wrong.

Now, we will bound each of the seven sums in the RHS
of (68). Consider the first sum. Then,

ETr
�
ΥUn(m�

0),Xn
1 (m�

0,m1),Xn
2 (m�

0,m2)

· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�
= Tr

�
E
'
ΠΠUn(m�

0),Xn
1 (m�

0,m1),Xn
2 (m�

0,m2)Π

· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

(�
. (69)

Observe that for every m�
0 �= m0, the random vec-

tors (Un(m�
0), X

n
1 (m�

0,m1), Xn
2 (m�

0,m2)) and (Un(m0),
Xn

1 (m0,m1), Xn
2 (m0,m2)) are statistically independent of

each other. Thus, the expression in the square brackets
becomes

E
'
ΠΠUn(m�

0),X
n
1 (m�

0,m1),Xn
2 (m�

0,m2)Π
(

· E'ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

(
= E

'
ΠΠUn(m�

0),X
n
1 (m�

0,m1),Xn
2 (m�

0,m2)Π
( · ρ⊗n. (70)

Furthermore, the probability that one of the aforementioned
random vectors is not δ-typical tends to zero as n → ∞,
by the weak law of large numbers. It follows that

ETr
�
ΥUn(m�

0),X
n
1 (m�

0,m1),Xn
2 (m�

0,m2)

· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�
= Tr

�
E
'
ΠΠUn(m�

0),X
n
1 (m�

0,m1),Xn
2 (m�

0,m2)Π
( · ρ⊗n

�
= ETr

�
ΠΠUn(m�

0),X
n
1 (m�

0,m1),Xn
2 (m�

0,m2)Π · ρ⊗n
�

= ETr
�
ΠUn(m�

0),Xn
1 (m�

0,m1),Xn
2 (m�

0,m2) · Πρ⊗nΠ
�

≤ 2−n(E0−α)
ETr

�
ΠUn(m�

0),Xn
1 (m�

0,m1),Xn
2 (m�

0,m2) · Π
�
+ ζn

≤ 2−n(E0−α)
ETr

�
ΠUn(m�

0),Xn
1 (m�

0,m1),Xn
2 (m�

0,m2)

�
+ ζn

≤ 2−n(E0−e0−α) + 2ζn (71)
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where the first and last inequalities hold by Assumptions (c)
and (d). Thus, for large n, the first sum in the RHS of (68)
is bounded by 2−n(E0−e0−2α) · 2nR0 = 2−n(E0−e0−R0−2α).
By the same considerations, the last three sums are bounded
by 2−n(E0−e0−(R0+R1)−2α), 2−n(E0−e0−(R0+R2)−2α), and
2−n(E0−e0−(R0+R1+R2)−2α), respectively. Thus, the combina-
tion of the first, fifth, sixth, and seventh sums in the RHS
of (68) is bounded by 4 · 2−n(E0−e0−(R0+R1+R2)−2α).

It remains to bound the second, third, and fourth sums in
the RHS of (68). Moving to the second sum,

ETr
�
ΥUn(m0),Xn

1 (m0,m�
1),X

n
2 (m0,m2)

· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�
= Tr

�
E
'
ΠΠUn(m0),Xn

1 (m0,m�
1),X

n
2 (m�

0,m2)Π

· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

(�
. (72)

Consider a given realization of the codebooks C0 = {un
0 (m0)}

and C2 = {xn
2 (m0,m1)}. For every m�

1 �= m1, the sequences
Xn

1 (m0,m
�
1) and Xn

1 (m0,m1) are statistically independent.
Thus, when we condition on C0, C2, the expression in the
square brackets becomes

EC1

'
ΠΠun(m0),Xn

1 (m0,m�
1),x

n
2 (m0,m2)Π

(
· EC1

'
ρun(m0),Xn

1 (m0,m1),xn
2 (m0,m2)

(
= EC1

'
ΠΠun(m0),Xn

1 (m0,m�
1),x

n
2 (m0,m2)Π

(
· ρun(m0),xn

2 (m0,m2)

= EC1

'
Πun(m0),Xn

1 (m0,m�
1),x

n
2 (m0,m2)

( · ρun(m0),xn
2 (m0,m2)

= EC1

�
Πun(m0),xn

2 (m0,m2)Πun(m0),Xn
1 (m0,m�

1),x
n
2 (m0,m2)

Πun(m0),xn
2 (m0,m2)

�
· ρun(m0),xn

2 (m0,m2). (73)

The last two equalities follow from Assumption (h), since
P0P1P0 = P1 for every pair of projectors P0 and P1 such
that P0 � P1. It follows that

EC1Tr
�
Υun(m0),Xn

1 (m0,m�
1),x

n
2 (m0,m2)

· ρun(m0),Xn
1 (m0,m1),xn

2 (m0,m2)

�
= Tr

�
EC1

'
Πun(m0),xn

2 (m0,m2)Πun(m0),Xn
1 (m0,m�

1),x
n
2 (m0,m2)

Πun(m0),xn
2 (m0,m2)

( · ρun(m0),xn
2 (m0,m2)

�
= EC1Tr

�
Πun(m0),xn

2 (m0,m2)Πun(m0),Xn
1 (m0,m�

1),x
n
2 (m0,m2)

Πun(m0),xn
2 (m0,m2) · ρun(m0),xn

2 (m0,m2)

�
= EC1Tr

�
Πun(m0),Xn

1 (m0,m�
1),x

n
2 (m0,m2)

·Πun(m0),xn
2 (m0,m2)ρun(m0),xn

2 (m0,m2)Πun(m0),xn
2 (m0,m2)

�
≤ 2−n(E1−α)

EC1Tr
�
Πun(m0),Xn

1 (m0,m�
1),x

n
2 (m�

0,m2)

·Πun(m0),xn
2 (m0,m2)

�
+ ζn

≤ 2−n(E1−α)
EC1Tr

�
Πun(m0),Xn

1 (m0,m�
1),x

n
2 (m0,m�

2)

�
+ ζn

≤ 2−n(E1−e0−α) + 2ζn (74)

by Assumptions (c) and (e). Thus, the second sum in
the RHS of (68) is bounded by 2−n(E1−e0−2α) · 2nR1 =
2−n(E1−e0−R1−2α). By symmetry, the third sum is bounded
by 2−n(E2−e0−R2−2α).

As for the fourth sum in the RHS of (68),

ETr
�
ΥUn(m0),Xn

1 (m0,m�
1),X

n
2 (m0,m�

2)

· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�
= Tr

�
E
'
ΠΠUn(m0),Xn

1 (m0,m�
1),X

n
2 (m0,m�

2)
Π

· ρUn(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

(�
(75)

For every m�
1 �= m1 and m�

2 �= m2, the ran-
dom vectors (Xn

1 (m0,m
�
1), Xn

2 (m0,m
�
2)) and (Xn

1 (m0,m1),
Xn

2 (m0,m2)) are statistically independent. Thus, when we
condition on C0 = {un

0 (m0)}, the expectation in the square
bracket is a product,

EC1×C2

'
ΠΠun(m0),Xn

1 (m0,m�
1),X

n
2 (m0,m�

2)
Π
(

· EC1×C2

'
ρun(m0),Xn

1 (m0,m1),Xn
2 (m0,m2)

(
= EC1×C2

'
ΠΠun(m0),Xn

1 (m0,m�
1),X

n
2 (m0,m�

2)
Π
( · ρun(m0)

= EC1×C2

'
Πun(m0)Πun(m0),Xn

1 (m0,m�
1),X

n
2 (m0,m�

2)

Πun(m0)

( · ρun(m0) (76)

based on Assumption (h). It follows that

EC1×C2Tr
�
Υun(m0),Xn

1 (m0,m�
1),X

n
2 (m0,m�

2)

· ρun(m0),Xn
1 (m0,m1),Xn

2 (m0,m2)

�
≤ 2−n(E12−α)

EC1×C2Tr
�
Πun(m0),Xn

1 (m0,m�
1),X

n
2 (m0,m�

2)

·Πun(m0),xn
2 (m0,m2)

�
+ ζn

≤ 2−n(E12−e0−2α) (77)

for sufficiently large n, by Assumptions (c) and (g).
We conclude that the probability of decoding error, averaged

over the class of the codebooks, is bounded as in (60).
Therefore, there must exist deterministic codebooks with the
same error bound, as we were set to prove. �

APPENDIX B
PROOF OF LEMMA 3 (CARDINALITY BOUNDS)

To bound the alphabet size of the random variables U ,
X1, and X2, we use the Fenchel-Eggleston-Carathéodory
lemma [60] and similar arguments as in [23] and [56]. Let

d0 = |HB|2 + 2 (78)

d1 = |U|(|HA1 |2 + 2) (79)

d2 = |U|(|HA2 |2 + 1). (80)

First, we bound the cardinality of U . Consider a given
ensemble {pX1|U (x1|u)pX2|U (x2|u) , θx1

A1
⊗ ζx2

A2
}. Every den-

sity matrix ρA has a unique parametric representation V (ρA)
of dimension |HA|2 − 1. Then, define a map f0 : U → R

d0

by

f0(u) =
$
V (ωu

B) , H(B|X1, X2, U = u)ω ,

I(X1;E|U = u)ω , I(X2;B|X1U = u)ω

%
(81)
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where ωu
B =

�
x1,x2

pX1|U (x1|u)pX2|U (x2|u) N (TrE(L
(θx1

A1
)) ⊗ ζx2

A2
). The map f0 can be extended to a map that

acts on probability distributions as follows,

F0 : pU (·) �→
�
u∈U

pU (u)f0(u) =
$
V (ωB) ,

H(B|X1X2)ω , I(X1;E|U)ω , I(X2;B|X1U)ω

%
. (82)

According to the Fenchel-Eggleston-Carathéodory
lemma [60], any point in the convex closure of a connected
compact set within Rd belongs to the convex hull of d
points in the set. Since the map F0 is linear, it maps
the set of distributions on U to a connected compact set
in Rd0 . Thus, for every pU , there exists a probability
distribution pŪ on a subset Ū ⊆ U of size d0, such that
F0(pŪ ) = F0(pU ). We deduce that alphabet size can be
restricted to |U| ≤ d0, while preserving ωB , H(B|X1X2)ω,
I(X1;E|U)ρ, I(X2;B|X1U)ρ, and thus, H(B)ω and
I(X1X2;B)ω = H(B)ω −H(B|X1X2)ω.

Next, we bound the alphabet size for the auxiliary variables
X1 and X2. For every u ∈ U , define a map f1,u : X1 →
R|HA1 |2+2 by

f1,u(x1) =
$
V (θx1

A1
) , H(E|X1 = x1, U = u)ω ,

H(B|X1 = x1, U = u)ω , H(B|X2, X1 = x1, U = u)ω

%
.

(83)

Then, the map f1 is extended to

F1,u : pX1|U (·|u) �→
�

x1∈X1

pX1|U (x1|u)f1,u(x1) =$
V (θu

A1
) , H(E|X1, U = u) , H(B|X1, U = u)ω ,

H(B|X2, X1, U = u)ω

%
(84)

with

θu
A1
≡
�
x1

pX1|U (x1|u)θx1
A1
. (85)

Thus, by Fenchel-Eggleston-Carathéodory lemma [60], for
every pX1|U (·|u), there exists a probability distribution
pX̄1|U (·|u) on a subset X̄1 ⊆ X1 of size |HA1 |2 + 2, such
that F1,u(pX̄1|U (·|u)) = F1,u(pX1|U (·|u))). We deduce that
alphabet size can be restricted to |X1| ≤ d1, while preserving
H(E|X1U), H(B|X1U)ω, H(B|X1X2)ω, and

ωUA1X2A2 =
�

u

pU (u)pX2|U (x2|u)|u��u|

⊗ θu
A1
⊗ |x2��x2| ⊗ ζx2

A2
(86)

where θu
A1

is as in (85). This implies that ωUA�
1EX2A2 =

L(ωUA1X2A2), H(E|U)ω , and I(X1;E|U)ω = H(E|U)ω −
H(E|X1U)ω remain the same, and also ωUX2B ≡
NA�

1A2→B(ωUX2A�
1A2), H(B)ω, I(X2;B|X1U)ω =

H(B|X1U)ω − H(B|X1X2)ω, and I(X1, X2;B)ω =
H(B)ω−H(B|X1, X2)ω . The bound |X2| ≤ d2 follows from
the same argument using the function f2,u : X2 → R|HA2 |2+1,

f2,u(x2) =
$
V (ζx2

A2
) , H(B|X1, X2 = x2, U = u)ω ,

H(B|X1, X2 = x2)ω

%
(87)

for u ∈ U . This completes the proof for the cardinality
bounds. �

APPENDIX C
PROOF OF THEOREM 4

Consider the quantum MAC N ◦ L with strictly-causal
cribbing.

A. Part 1

We show that for every δ1, δ2, ε0 > 0, there exists a
(2n(R1−δ1), 2n(R2−δ2), n, ε0) code for NA�

1A2→B ◦ LA1→A�
1E

with strictly-causal cribbing at Encoder 2, provided that
(R1, R2) ∈ RDF

s-c (N ◦ L). To prove achievability, we extend
the classical block Markov coding with backward decoding
to the quantum setting, and then apply the quantum packing
lemma.

We use T transmission blocks, where each block consists
of n channel uses. In particular, with strictly-causal cribbing,
Encoder 2 has access to the cribbing measurements from the
previous blocks. Each transmitter sends T − 1 messages. Let
us fix mk(0) = mk(T ) ≡ 1 for k = 1, 2. Alice 1 sends
(m1(j))T−1

j=1 , and Alice 2 (m2(j))T−1
j=1 . Hence, the coding rate

for User k is
�

T−1
T

�
Rk, which tends to Rk as the number of

blocks T grows to infinity.
Let {pU (u)pX1|U (x1|u)pX2|U (x2|u), θx1 ⊗ζx2} be a given

ensemble over HA1 ⊗HA2 .
Define

ωx1
A�

1E = LA1→A�
1E(θx1) , (88)

ωx1,x2
B = NA�

1A2→B(ωx1
A�

1
⊗ ζx2). (89)

In addition, let

θu =
�

x1∈X1

pX1|U (x1|u)θx1 (90)

ζu =
�

x2∈X2

pX2|U (x2|u)ζx2 (91)

ωu
A�

1E = LA1→A�
1E(θu) (92)

ωu
B = NA�

1A2→B(ωu
A�

1
⊗ ζu) (93)

for u ∈ U . Hence, ωA�
1E and ωB are the corresponding average

states.
The code construction, encoding with cribbing, and decod-

ing procedures are described below.

B. Classical Codebook Construction

(i) Generate 2nR1 independent sequences un(m0), m0 ∈
[1 : 2nR1 ], at random according to

�n
i=1 pU (ui).

(ii) For every m0, generate 2nR1 conditionally independent
sequences xn

1 (m0,m1), m1 ∈ [1 : 2nR1 ], according to�n
i=1 pX1|U (x1,i|ui(m0)).

(iii) For every m0, generate 2nR2 conditionally independent
sequences xn

2 (m0,m2), m2 ∈ [1 : 2nR2 ], according to�n
i=1 pX2|U (x2,i|ui(m0)).
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C. Encoding and Decoding

1) Encoder 1: To send the messages (m1(j))T−1
j=1 ,

Alice 1 performs the following. In block j, set

m0 = m1(j − 1) , m1 = m1(j). (94)

Then, prepare the state

ρAn
1 (j) = θxn

1 (m0,m1) (95)

and send An
1 (j), for j ∈ [1 : T ]. As the jth transmission goes

through the cribbing channel LA1→A�
1E , we have

ρA�n
1 (j)En(j) = ω

xn
1 (m0,m1)

A�n
1 En . (96)

The second transmitter can access the cribbing system
En(j), which are entangled with Alice 1’s transmission.
Cribbing is performed by a sequence of measurements that
recover the messages of Alice 1. In each block, the choice
of the cribbing measurement depends on the outcome in the
previous block. With strictly-causal encoding, Alice 2 must
perform the cribbing measurement at the end of the block,
after she has already sent An

2 (j).
2) Encoder 2: To send the messages (m2(j))T−1

j=1 ,
Alice 2 performs the following. Fix )m1(0) ≡ 1. In block j,
given the previous cribbing estimate )m1(j−1), do as follows,
for j = 1, 2, . . . , T .

(i) Set

m0 = )m1(j − 1) , m2 = m2(j). (97)

(ii) Prepare the state

ρAn
2 (j) = ζxn

2 (m0,m2) (98)

and send An
2 (j), for j ∈ [1 : T ].

(iii) Measure the next cribbing estimate )m1(j) by applying
a POVM KEn(j)|m0 = {Km1|m0} that will be chosen
later.

3) Backward Decoding: The decoder recovers the mes-
sages using sequential measurements as well. Yet, the order
is backwards, i.e. the measurement of the jth message of
Alice 1 is chosen based on the estimate of m1(j + 1). Fix
m̂1(0) = m̂1(T ) ≡ 1.

In block j, for j = T, T − 1, . . . , 2, the decoder uses
the previous estimate of m̂1(j), and measures m̂1(j − 1)
and m̂2(j) using a POVM DBn(j)|m̂1 = {Dm0,m2|m̂1} with
m̂1 = m̂1(j). Finally, in block 1, the decoder measures m̂2(1)
with a POVM DBn(1)|m0,m1 = {D�

m2|m̂0,m̂1
}, with m̂0 = 1

and m̂1 = m̂1(1). The decoding POVMs will also be specified
later.

D. Analysis of Probability of Error

Let δ > 0. We use the notation εi(δ), i = 1, 2, . . ., for
terms that tend to zero as δ → 0. By symmetry, we may
assume without loss of generality that the transmitters send
the messages M1(j) = M2(j) = 1. Consider the following
events,

E0(j) ={(Un(M1(j − 1)), Xn
1 (M1(j − 1), 1),

Xn
2 (M1(j − 1), 1)) /∈ Aδ1(pU,X1,X2)} (99)

E1(j) ={*M1(j) �= 1} (100)

E2(j) ={+M1(j − 1) �= 1} (101)

E3(j) ={+M2(j) �= 1} (102)

for j ∈ [1 : T ], with δ1 ≡ δ/(2|X2||U|). By the union of
events bound, the probability of error is bounded by

P
(Tn)
e|m1(j)=m2(j)=1(F1,F2,K,D)

≤
T�

j=1

Pr (E0(j)) +
T�

j=1

Pr (E1(j) | E c
0 (j) ∩ E c

1 (j − 1))

+
T�

j=1

Pr (E2(j) ∪ E3(j) | E c
0 (j) ∩ E c

1 (j) ∩ E c
2 (j + 1))

(103)

where the conditioning on M1(j) = M2(j) = 1 is omitted for
convenience of notation. By the weak law of large numbers,
the probability terms Pr (E0(j)) tend to zero as n→∞.

To bound the second sum, which is associated with
the cribbing measurements, we use the quantum packing
lemma. Alice 2’s measurement is effectively a decoder for
the marginal cribbing channel L(1)

A1→E , which is defined

by L(1)
A1→E(ρA1) ≡ TrA�

1

�LA1→EA�
1
(ρA1)

�
. Given E c

0 (j),
we have that (Un(M1(j − 1)), Xn

1 (M1(j − 1), 1)) ∈
Aδ(pU,X1). Now, observe that

Tr
�
Πδ(ωE |un, xn

1 )ωun,xn
1

En

�
≥1− ε1(δ) (104)

Πδ(ωE |un)ωun

EnΠδ(ωE |un) 2−n(H(E|U)ω−ε1(δ))Πδ(ωE)
(105)

Tr
�
Πδ(ωE |un, xn

1 )
� ≤2n(H(E|U,X1)ω+ε1(δ)) (106)

Tr
�
Πδ(ωE |un)ωun,xn

1
En

�
≥1− ε1(δ) (107)

for all (un, xn
1 ) ∈ Aδ(pU,X1), by (17)-(20), respectively. Since

the codebooks are statistically independent of each other,
we have by the single-user quantum packing lemma [15],
[56, Lemma 12], that there exists a POVM Km1|un such that
Pr (E1(j) | E c

0 (j) ∩ E c
1 (j − 1)) ≤ 2−n(I(X1;E|U)ρ−R1−ε2(δ)),

which tends to zero as n→∞, provided that

R1 < I(X1;E|U)ω − ε2(δ). (108)

We move to the last sum in the RHS of (103). Here, we use
our generalized packing lemma. Suppose that E c

1 (j)∩E c
2 (j+1)

occurred, namely Encoder 2 measured the correct M1(j − 1)
and the decoder measured the correct M1(j). Furthermore,

Tr(Πδ(ωB)ωun,xn
1 ,xn

2
Bn ) ≥ 1− ε3(δ) (a’)

Tr(Πδ(ωB|un, xn
1 , x

n
2 )ωun,xn

1 ,xn
2

Bn ) ≥ 1− ε3(δ) (b’)

Tr(Πδ(ωB|un, xn
1 , x

n
2 )) ≤ 2nH(B|X1X2)ω (c’)

Πδ(ωB)ω⊗n
B Πδ(ωB)  2−n(H(B)ω−α)Πδ(ωB)

(d’)

and

Πδ(ωB|un, xn
2 )ωun,xn

2
Bn Πδ(ωB|un, xn

2 )

 2−n(H(B|X2U)ω−α)Πδ(ωB|un, xn
2 ) (e’)
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Πδ(ωB|un, xn
1 )ωun,xn

1
Bn Πδ(ωB|un, xn

1 )

 2−n(H(B|X1U)ω−α)Πδ(ωB|un, xn
1 ) (f’)

Πδ(ωB|un)ωun

BnΠδ(ωB |un)

 2−n(H(B|U)ω−α)Πδ(ωB |un) (g’)

Πδ(ωB|un, xn
1 , x

n
2 )

 Πδ(ωB|un, xn
k )  Πδ(ωB|un)  Πδ(ωB)

for k = 1, 2, (h’)

for all (xn
1 , x

n
1 ) ∈ Aδ/2(pX1,X2), by (17)-(20). Therefore,

by Lemma 2, there exists a POVM Dm0,m2|m1 such that

Pr (E2(j) ∪ E3(j) | E c
0 (j) ∩ E c

1 (j) ∩ E c
2 (j + 1))

≤ 4 · 2−n(I(X1X2;B)ρ−(R0+R2)−ε4(δ))

+ 2−n(I(X2;B|X1U)ω−R2−ε4(δ))

+ 2−n(I(X1X2;B|U)ω−R2−ε4(δ)) (109)

where we set R0 ← R1 and R1 ← 0, since we are decoding
(m0,m2) ≡ (M1(j−1),M2(j)) while conditioning on m1 ≡
M1(j). The last bound tends to zero as n→∞, provided that

R2 < I(X2;B|X1U)ω − ε4(δ) (110)

and

R1 +R2 < I(X1X2;B)ω − ε4(δ). (111)

This completes the achievability proof.

E. Part 2

Consider the quantum MAC with strictly-causal robust
cribbing. To show that rate pairs in 1

κRDF
s-c ((N ◦ L)⊗κ) are

achievable, one may employ the coding scheme from part 1 for
the product MAC (N◦L)⊗κ, where κ is arbitrarily large. Now,
we show the converse part using standard considerations along
with the quantum Markov chain property for robust cribbing
(see Definition 1).

Suppose that Alice 1 chooses m1 uniformly at random,
and prepares an input state ρm1

An
1

. Upon sending the sys-
tems An

1 through the cribbing channel, we have ρm1
A�n

1 En =
LAn

1 →A�n
1 En(ρm1

An
1
). Before preparing the state of her system

A2,i, Alice 2 can measure the cribbing systems Ei−1, and
obtain an outcome zi−1. Hence, Alice 2 prepares the input
state ρm2,zi−1

Ai
2

. Then, A�
1,i and A2,i are sent through the MAC

NA�
1A2→B . Bob receives the output systems Bn and performs

a measurement in order to obtain an estimate (m̂1, m̂2) of the
message pair.

Consider a sequence of codes (F1n,F2n,Kn,Dn) such that
the average probability of error tends to zero, hence the error
probabilities Pr

$+M1 �= M1

%
, Pr

$
(+M1,+M2) �= (M1,M2)

%
,

Pr
$+M2 �= M2|M1

%
are bounded by some αn which tends

to zero as n→∞. By Fano’s inequality [70], it follows that

H(M1|+M1) ≤ nεn (112)

H(M1,M2|+M1,+M2) ≤ nε�n (113)

H(M2|+M2,M1) ≤ nε��n (114)

where εn, ε
�
n, ε

��
n tend to zero as n→∞. Hence,

nR1 = H(M1) = I(M1;+M1)ρ +H(M1|+M1)

≤ I(M1;+M1)ρ + nεn

≤ I(M1;Bn)ρ + nεn

≤ I(M1;A�n
1 E

n)ρ + nεn (115)

where the second inequality follows from the Holevo bound
(see Ref. [57, Theo. 12.1]), and the last inequality follows
from the data processing inequality. Now, given robust crib-
bing, the systems M1 En A�n

1 form a quantum Markov
chain, by Definition 1. Hence, I(M1;A�n

1 |En)ρ = 0 and
I(M1;A�n

1 E
n)ρ = I(M1;En)ρ. Thus,

nR1 ≤ I(M1;En)ρ + nεn. (116)

By the same considerations, we also have

n(R1 +R2) = I(M1M2;+M1,+M2)ρ +H(M1M2|+M1, +M2)
≤ I(M1M2;Bn)ρ + nε�n (117)

and

nR2 = I(M2; +M2|M1)ρ +H(M2|+M2,M1)
≤ I(M2;Bn|M1)ρ + nε��n. (118)

The proof for the regularized region follows from (116)-(118)
by defining Xn

1 = f1(M1), Xn
2 = f2(M2), and Un = ∅,

where fk is an arbitrary one-to-one map from [1 : 2nRk ] to
Xn

k , for k = 1, 2. �

APPENDIX D
PROOF OF COROLLARY 5

Consider the classical-quantum MAC NX1X2→B ◦
idX1→X1X1 with strictly-causal noiseless cribbing. Since
the cribbing system stores a perfect copy of Alice 1’s
classical input in this case, i.e. E ≡ X1, we have
I(X1;E|U)ω = H(X1|U). Thereby, achievability
immediately follows from part 1 of Theorem 4. Note
that the classical-quantum setting with noiseless cribbing is
a special case of robust cribbing. Hence, we can use the
derivation of part 2 of Theorem 4 as well.

As for the converse proof, let Xn
1 ≡ F1(M1) and X2,i ≡

F2,i(M2, X
i−1
1 ) denote the channel inputs. Since the encoding

map F1 is classical, there exists a random element S1 that
controls the encoding function. That is, Xn

1 ≡ f1(M1, S1),
where f1 is a deterministic function, and S1 is statistically
independent of the message. Define

Ui ≡ (X i−1
1 , S1). (119)

Then, the transmission rate of Alice 1 satisfies

nR1 = H(M1)
= H(M1|S1)
= H(Xn

1 |S1)

=
n�

i=1

H(X1,i|Ui) (120)
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where the second equality holds since S1 is independent of
the message, the third since Xn

1 is a deterministic function of
(M1, S1), and the last equality follows from the entropy chain
rule (see (119)).

Next, we bound the transmission rate of Alice 2 as follows,

nR2 = H(M2)
= H(M2|M1, S1)

= I(M2; +M2|M1, S1) +H(M2|+M2,M1, S1)

≤ I(M2; +M2|M1, S1) +H(M2|+M2,M1)
≤ I(M2;Bn|M1, S1)ρ + nε��n (121)

where the first inequality holds since conditioning cannot
increase entropy, and the second follows from the data process-
ing inequality and Fano’s inequality (see (114)). Using the
chain rule, the last bound can be expressed as

nR2 ≤
n�

i=1

I(M2;Bi|M1, S1, B
i−1)ρ + nε��n

=
n�

i=1

I(M2;Bi|M1, S1, X1,i, X
i−1
1 , Bi−1)ρ + nε��n

(122)

as Xn
1 is a deterministic function of (M1, S1). Observe that

the mutual information summand is then bounded by

I(M2;Bi|M1, S1, X1,i, X
i−1
1 , Bi−1)ρ

≤ I(M2, X2,i;Bi|M1, S1, X1,i, X
i−1
1 , Bi−1)ρ

= H(Bi|M1, S1, X1,i, X
i−1
1 , Bi−1)ρ

−H(Bi|X1,i, X2,i,M1,M2, S1, X
i−1
1 , Bi−1)ρ

≤ H(Bi|S1, X1,i, X
i−1
1 )ρ

−H(Bi|X1,i, X2,i,M1,M2, S1, X
i−1
1 , Bi−1)ρ. (123)

Consider the second term, and observe that given X1,i = x1,i,
X2,i = x2,i, the output system Bi is in the state N (x1,i, x2,i)
and it has no correlation with M1, M2, S1, X i−1

1 , and Bi−1.
That is, given X1,i and X2,i, the system Bi is in a product
state with the joint system of (M1,M2, S1, X

i−1
1 , Bi−1).

Thus, the second term equals H(Bi|X1,i, X2,i)ρ. Similarly,
H(Bi|S1, X1,i, X2,i, X

i−1
1 )ρ = H(Bi|X1,i, X2,i)ρ as well,

which implies

H(Bi|X1,i, X2,i,M1,M2, S1, X
i−1
1 , Bi−1)ρ

= H(Bi|X1,i, X2,i, S1, X
i−1
1 )ρ. (124)

Therefore, by (122)-(124), along with the definition of Ui

in (119),

nR2 ≤
n�

i=1

[H(Bi|X1,i, Ui)ρ −H(Bi|X1,i, X2,i, Ui)ρ] + nε��n

=
n�

i=1

I(X2,i;Bi|X1,i, Ui)ρ + nε��n. (125)

The bound on the sum-rate is straightforward. Indeed,
by (117),

n(R1 +R2) ≤
n�

i=1

I(M1M2;Bi|Bi−1)ρ + nε�n

≤
n�

i=1

I(M1M2B
i−1;Bi)ρ + nε�n

≤
n�

i=1

I(M1M2B
i−1X1,iX2,i;Bi)ρ + nε�n

=
n�

i=1

I(X1,iX2,i;Bi)ρ + nε�n (126)

since I(M1M2B
i−1;Bi|X1,iX2,i)ρ = 0.

To complete the proof, consider a time index K that is
drawn uniformly at random, from [1 : n], independently of
M1, M2, and S1. Then, by (120), (125), and (126),

R1 = H(X1,K |UK ,K) (127)

R2 − ε��n ≤ I(X2,K ;BK |X1,K , UK ,K)ρ (128)

R1 +R2 − ε�n ≤ I(X1,KX2,K ;BK |K)ρ. (129)

Furthermore, define a joint state ωUX1X2B by identifying U ≡
(K,UK), X1 ≡ X1,K , X2 ≡ X2,K , and B ≡ BK . That is,

ωUX1X2B ≡
n�

i=1

�
ui,x1,x2

1
n
pUi(ui)pX1,i|Ui

(x1|ui)

· pX2,i|Ui
(x2|ui)|i, ui��i, ui| ⊗ |x1��x1| ⊗ |x2��x2|

⊗ N (x1, x2). (130)

Thus, the individual rates are bounded by

R1 = H(X1|U) (131)

R2 − ε��n ≤ I(X2;B|X1, U)ω. (132)

As for the sum-rate bound in (129),

R1 +R2 − ε�n ≤ I(X1X2;B|K)ω

≤ I(X1X2K;B)ω

= I(X1X2;B)ω + I(K;B|X1X2)ω

= I(X1X2;B)ω (133)

as I(K;B|X1X2)ω = 0 since the channel has a memoryless
product form. This completes the proof of Corollary 5. �

APPENDIX E
PROOF OF THEOREM 6

A. Part 1

Consider the quantum MAC N ◦ L with causal cribbing.
Since the achievability proof is similar to the derivation for
the strictly-causal setting in Appendix E, we only give the
outline. As before, we use T transmission blocks to send
T − 1 messages for each user, (m1(j))T−1

j=1 and (m2(j))T−1
j=1 .

Let {pUpX1|U , θ
x1} be a given ensemble over HA1 . Further-

more, consider a measurement instrument WE→ĒZ , and let
{pX2|Z,U (·|z, u), ζx2}, for z ∈ Z and u ∈ U , be a collection
of ensembles over HA2 .

Define

σx1
A�

1E = LA1→A�
1E(θx1) , (134)

ωx1
A�

1ĒZ
=WE→ĒZ(ωx1

A�
1E) (135)

ωx1,x2
B = NA�

1A2→B(ωx1
A�

1
⊗ ζx2). (136)
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In addition, for every u ∈ U and measurement outcome z ∈ Z ,
let

θu =
�

x1∈X1

pX1|U (x1|u)θx1 (137)

ζu,z =
�

x2∈X2

pX2|U,Z(x2|u, z)ζx2 (138)

and consider the corresponding post-measurement states,

ωu,z

A�
1Ē

= WzLA1→A�
1E(θu)W †

z /Tr
�
W †

zWzLA1→A�
1E(θu)

�
(139)

ωu,z
B = NA�

1A2→B(ωu,z
A�

1
⊗ ζu,z). (140)

Hence, ωA�
1ĒZ , and ωB are the corresponding average states.

The code is described below.

B. Classical Codebook Construction
(i) Generate 2nR1 independent sequences un(m0), m0 ∈

[1 : 2nR1 ], at random according to
�n

i=1 pU (ui).
(ii) For every m0, generate 2nR1 conditionally independent

sequences xn
1 (m0,m1), m1 ∈ [1 : 2nR1 ], according to�n

i=1 pX1|U (x1,i|ui(m0)).
(iii) For every m0 and measurement sequence zn ∈
Zn, generate 2nR2 conditionally independent sequences
xn

2 (m0,m2, z
n), m2 ∈ [1 : 2nR2 ], according to�n

i=1 pX2|Z,U (x2,i|zi, ui(m0)).

C. Encoding and Decoding

1) Encoder 1: To send the messages (m1(j))T−1
j=1 ,

Alice 1 performs the following. In block j, set

m0 = m1(j − 1) , m1 = m1(j). (141)

Then, prepare the state

ρAn
1 (j) = θxn

1 (m0,m1) (142)

and send An
1 (j), for j ∈ [1 : T ]. As the jth transmission goes

through the cribbing channel LA1→A�
1E , we have

ρA�n
1 (j)En(j) = σ

xn
1 (m0,m1)

A�n
1 En . (143)

The second transmitter can access the cribbing system
En(j), which are entangled with Alice 1’s transmission.
Cribbing is performed by a sequence of measurements that
recover the messages of Alice 1. In each block, the choice
of the cribbing measurement depends on the outcome in the
previous block. With causal encoding, Alice 2 can prepare her
input at time i based on the measurement outcome of Ei.

2) Encoder 2: To send the messages (m2(j))T−1
j=1 ,

Alice 2 performs the following. Fix )m1(0) ≡ 1. In block j,
given the previous cribbing estimate )m1(j−1), do as follows,
for j = 1, 2, . . . , T .

(i) Apply the measurement instrument WEn→ĒnZn ≡
W⊗n

E→ĒZ
to the cribbing system En(j). As a result,

Alice 2 obtains a measurement outcome zn(j). Hence,
the average post-measurement state is

ρA�n
1 (j)Ēn(j)Zn(j) = ω

xn
1 (m0,m1)

A�n
1 ĒnZn . (144)

(ii) Set

m0 = )m1(j − 1) , m2 = m2(j) , zn = zn(j). (145)

(iii) Prepare the state

ρAn
2 (j) = ζxn

2 (m0,m2,zn) (146)

and send An
2 (j), for j ∈ [1 : T ].

(iv) Measure the next cribbing estimate )m1(j) by applying
a POVM KĒn(j)Zn(j)|m0

= {Km1|m0}, which will be
chosen later, on the joint system Ēn(j), Zn(j) following
step (i).

D. Backward Decoding

The decoder recovers the messages in a backward order,
i.e. the measurement of the jth message of Alice 1 is chosen
based on the estimate of m1(j+1). Fix m̂1(0) = m̂1(T ) ≡ 1.

In block j, for j = T, T − 1, . . . , 2, the decoder uses
the previous estimate of m̂1(j), and measures m̂1(j − 1)
and m̂2(j) using a POVM DBn(j)|m̂1 = {Dm0,m2|m̂1} with
m̂1 = m̂1(j). Finally, in block 1, the decoder measures m̂2(1)
with a POVM DBn(1)|m0,m1 = {D�

m2|m̂0,m̂1
}, with m̂0 = 1

and m̂1 = m̂1(1). The decoding POVMs will also be specified
later.

E. Analysis of Probability of Error

Let δ > 0. We use the notation εi(δ), i = 1, 2, . . ., for
terms that tend to zero as δ → 0. By symmetry, we may
assume without loss of generality that the transmitters send
the messages M1(j) = M2(j) = 1. Consider the following
events,

E0(j) ={(Un(M1(j − 1)), Xn
1 (M1(j − 1), 1),

Xn
2 (M1(j − 1), 1, Zn(j))) /∈ Aδ1(pU,X1,X2)} (147)

E1(j) ={*M1(j) �= 1} (148)

E2(j) ={+M1(j − 1) �= 1} (149)

E3(j) ={+M2(j) �= 1} (150)

for j ∈ [1 : T ], with δ1 ≡ δ/(2|X2||U|). By the union of
events bound, the probability of error is bounded by

P
(Tn)
e|m1(j)=m2(j)=1(F1,F2,K,D)

≤
T�

j=1

Pr (E0(j)) +
T�

j=1

Pr (E1(j) | E c
0 (j) ∩ E c

1 (j − 1))

+
T�

j=1

Pr (E2(j) ∪ E3(j) | E c
0 (j) ∩ E c

1 (j) ∩ E c
2 (j + 1))

(151)

where the conditioning on M1(j) = M2(j) = 1 is omitted for
convenience of notation. By the weak law of large numbers,
the probability terms Pr (E0(j)) tend to zero as n→∞.

To bound the second sum, which is associated with the
cribbing measurements, we use the quantum packing lemma.
Alice 2’s measurement is effectively a decoder for the marginal
cribbing channel KE→ĒZ ◦ L(1)

A1→E . Given E c
0 (j), we have
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that (Un(M1(j− 1)), Xn
1 (M1(j − 1), 1)) ∈ Aδ(pU,X1 ). Now,

observe that

Tr
�
Πδ(ωĒZ |un, xn

1 )ωun,xn
1

ĒnZn

�
≥ 1− ε1(δ) (152)

Πδ(ωĒZ |un)ωun

ĒnZnΠδ(ωĒZ |un) 
2−n(H(ĒZ|U)ω−ε1(δ))Πδ(ωĒZ) (153)

Tr
�
Πδ(ωĒZ |un, xn

1 )
� ≤ 2n(H(ĒZ|U,X1)ω+ε1(δ)) (154)

Tr
�
Πδ(ωĒZ |un)ωun,xn

1
ĒnZn

�
≥ 1− ε1(δ) (155)

for all (un, xn
1 ) ∈ Aδ(pU,X1), by (17)-(20), respectively.

Since the codebooks are statistically independent of
each other, we have by the single-user quantum pack-
ing lemma [15] [56, Lemma 12], that there exists a
POVM Km1|un such that Pr (E1(j) | E c

0 (j) ∩ E c
1 (j − 1)) ≤

2−n(I(X1;ĒZ|U)ρ−R1−ε2(δ)), which tends to zero as n → ∞,
provided that

R1 < I(X1; ĒZ|U)ω − ε2(δ). (156)

The last sum in the RHS of (151) tends to zero as in
Appendix E, based on our generalized packing lemma (see
Lemma 2), for

provided that R2 < I(X2;B|X1U)ω and R1 + R2 <
I(X1X2;B)ω . This completes the proof outline for part 1.

F. Part 2

Consider the classical-quantum MAC NX1X2→B ◦
idX1→X1X1 with either causal or non-causal noiseless
cribbing. Observe that it suffices to show the direct part for
causal cribbing, and the converse part for the non-causal
setting, since Ccaus(N ◦ L) ⊆ Cn-c(N ◦ L) (see Remark 3).
As the cribbing system stores a perfect copy of Alice
1’s classical input in this case, i.e. E ≡ Ē ≡ Z ≡ X1,
we have I(X1; ĒZ|U)ω = H(X1|U). Thereby, achievability
immediately follows from part 1 of the theorem.

Now, we show the converse part for non-causal cribbing.
Suppose that Alice k chooses a message Mk uniformly at
random, for k = 1, 2. Alice 1 transmits Xn

1 = F1(M1).
Thereby, Alice 2 measures Xn

1 from the cribbing system and
transmits Xn

2 = F2(M2, X
n
1 ). Then, Xn

1 and Xn
2 are sent

through n copies of the classical-quantum MAC NX1X2→B .
Bob receives the output systems Bn and performs a measure-
ment in order to obtain an estimate (+M1,+M2) of the message
pair. Consider a sequence of codes such that the average
probability of error tends to zero. Since the encoding map
F1 is classical, there exists a random element S1 such that
Xn

1 ≡ f1(M1, S1), where f1 is a deterministic function. Then,
Alice 1’s transmission rate satisfies

nR1 = H(Xn
1 |S1)

≤
n�

i=1

H(X1,i). (157)

To bound the second transmission rate and the rate sum, we
apply Fano’s inequality as in Appendix E, hence

nR2 ≤ I(M2;Bn|M1, S1)ρ + nε��n (158)

(see (121)). Using the chain rule, the last bound can be
expressed as

nR2 ≤
n�

i=1

I(M2;Bi|M1, S1, B
i−1)ρ + nε��n

=
n�

i=1

I(M2;Bi|M1, S1, X1,i, B
i−1)ρ + nε��n (159)

since X1,i is a deterministic function of (M1, S1). Observe
that

I(M2;Bi|M1, S1, X1,i, B
i−1)ρ

≤ I(M2, X2,i;Bi|M1, S1, X1,i, B
i−1)ρ

= H(Bi|M1, S1, X1,i, B
i−1)ρ

−H(Bi|X1,i, X2,i,M1,M2, S1, B
i−1)ρ

≤ H(Bi|X1,i)ρ −H(Bi|X1,i, X2,i,M1,M2, S1, B
i−1)ρ.

(160)

Consider the second term, and observe that given X1,i and
X2,i, the system Bi is in a product state with the joint
system of (M1,M2, S1, B

i−1). Thus, the second term equals
H(Bi|X1,i, X2,i)ρ. Therefore, by (159)-(160),

nR2 ≤
n�

i=1

I(X2,i;Bi|X1,i)ρ + ε��n. (161)

Similarly, the rate sum is bounded by

n(R1 +R2) ≤
n�

i=1

I(X1,iX2,i;Bi)ρ + nε�n (162)

(see (126)).
To obtain the single-letter converse, consider a time indexK

that is drawn uniformly at random, from [1 : n], independently
of M1, M2, and S1. By (157), (161), and (162),

R1 ≤ H(X1,K |K) (163)

R2 − ε��n ≤ I(X2,K ;BK |X1,K ,K)ρ (164)

R1 +R2 − ε�n ≤ I(X1,KX2,K ;BK |K)ρ. (165)

Furthermore, define a joint state ωX1X2B by identifying
X1 ≡ X1,K , X2 ≡ X2,K , and B ≡ BK . That
is, ωKX1X2B ≡ �n

i=1

�
x1,x2

1
npX1,i(x1)pX2,i (x2)|i��i| ⊗

|x1��x1| ⊗ |x2��x2| ⊗ N (x1, x2). Thus, the individual rates
are bounded by

R1 = H(X1|K)
≤ H(X1) (166)

and

R2 − ε��n ≤ I(X2;B|X1,K)ω

≤ I(X2,K;B|X1)ω

= I(X2;B|X1)ω , (167)

and the rate sum by

R1 +R2 − ε�n ≤ I(X1X2;B|K)ω

≤ I(X1X2K;B)ω

= I(X1X2;B)ω (168)
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as I(K;B|X1X2)ω = 0 since the channel has a memoryless
product form. This completes the proof of Theorem 6. �

APPENDIX F
PROOF OF THEOREM 7

Consider the quantum MAC N ◦L with strictly-causal crib-
bing. Here, we prove the partial-decode forward bound on the
capacity region. We show that for every δ1, δ2, ε0 > 0, there
exists a (2n(R1−δ1), 2n(R2−δ2), n, ε0) code for NA�

1A2→B ◦
LA1→A�

1E with strictly-causal cribbing at Encoder 2, pro-
vided that (R1, R2) ∈ RPDF

s-c (N ◦ L). To prove achievability,
we extend the classical block Markov coding with backward
decoding to the quantum setting, and then apply the quantum
packing lemma.

As before, we use T transmission blocks, where each block
consists of n channel uses. Given strictly-causal cribbing,
Encoder 2 has access to the cribbing measurements from the
previous blocks. Alice 1 sends T − 1 pairs of messages, and
Alice 2 sends T − 1 messages. Specifically, Alice 1 sends the
pairs (�1(j),m�

1(j))
T−1
j=1 at rates (R0, R1−R0), with R0 < R1,

while Alice 2 sends (m2(j))T−1
j=1 at rate R2. Let us fix �1(0) =

m�
1(0) = m2(0) ≡ 1 and �1(T ) = m�

1(T ) = m2(T ) ≡ 1.
Hence, the coding rate for User k is

�
T−1

T

�
Rk, which tends

to Rk as the number of blocks T grows to infinity.
Let {pU (u)pX0|UpX1|X0,U (x1|x0, u)pX2|X0,U (x2|x0, u),

θx1 ⊗ζx2} be a given ensemble over HA1 ⊗HA2 .
Define

ωx1
A�

1E = LA1→A�
1E(θx1) , (169)

ωx1,x2
B = NA�

1A2→B(ωx1
A�

1
⊗ ζx2). (170)

In addition, let

θx0,u =
�

x1∈X1

pX1|X0,U (x1|x0, u)θx1 (171)

ζx0,u =
�

x2∈X2

pX2|X0,U (x2|x0, u)ζx2 (172)

ωx0,u
A�

1E = LA1→A�
1E(θx0,u) (173)

ωx0,u
B = NA�

1A2→B(ωx0,u
A�

1
⊗ ζx0,u) (174)

for u ∈ U and x0 ∈ X0. Hence, ωA�
1E and ωB are the

corresponding average states.
The partial decode-forward coding scheme is described

below and depicted in Figure 4.

A. Classical Codebook Construction
(i) Generate 2nR0 independent sequences un(�0), �0 ∈ [1 :

2nR0 ], at random according to
�n

i=1 pU (ui).
(ii) For every �0, generate 2nR0 conditionally independent

sequences xn
0 (�0, �1), �1 ∈ [1 : 2nR0 ], according to�n

i=1 pX0|U (x0,i|ui(�0)).
(iii) For every (�0, �1), generate 2n(R1−R0) conditionally

independent sequences xn
1 (�0, �1,m�

1), m�
1 ∈ [1 :

2n(R1−R0)], according to
�n

i=1 pX1|U (x1,i|x0,i(�0, �1),
ui(�0)).

(iv) For every �0, generate 2nR2 conditionally independent
sequences xn

2 (�0,m2), m2 ∈ [1 : 2nR2 ], according to�n
i=1 pX2|U (x2,i|ui(m0)).

B. Encoding and Decoding

1) Encoder 1: To send the messages (�1(j),m�
1(j))

T−1
j=1 ,

Alice 1 performs the following. In block j, set

�0 = �1(j − 1) , �1 = �1(j) , m�
1 = m�

1(j). (175)

Then, prepare the state

ρAn
1 (j) = θxn

1 (�0,�1,m�
1) (176)

and send An
1 (j), for j ∈ [1 : T ]. See the third row in Figure 4.

As the jth transmission goes through the cribbing channel
LA1→A�

1E , we have

ρA�n
1 (j)En(j) = ω

xn
1 (�0,�1,m�

1)

A�n
1 En . (177)

The second transmitter can access the cribbing system
En(j), which are entangled with Alice 1’s transmission.
Cribbing is performed by a sequence of measurements that
recover the messages of Alice 1. In each block, the choice
of the cribbing measurement depends on the outcome in the
previous block. With strictly-causal encoding, Alice 2 must
perform the cribbing measurement at the end of the block,
after she has already sent An

2 (j).
2) Encoder 2: To send the messages (m2(j))T−1

j=1 ,

Alice 2 performs the following. Fix )�1(0) ≡ 1. In block j,
given the previous cribbing estimate )�1(j − 1), do as follows,
for j = 1, 2, . . . , T .

(i) Set

�0 = )�1(j − 1) , m2 = m2(j). (178)

(ii) Prepare the state

ρAn
2 (j) = ζxn

2 (�0,m2) (179)

and send An
2 (j), for j ∈ [1 : T ]. See the fourth and fifth

rows in Figure 4.
(iii) Measure the next cribbing estimate )�1(j) by applying a

POVM KEn(j)|�0 = {K�1|un}, with un ≡ un(�0), that
will be chosen later.

Here, the decoder performs two measurements on each out-
put block. As in [71] and [56], we use the gentle measurement
lemma to verify that the decoder’s measurement does not cause
a “state collapse” at the output.

3) Sequential Decoding: To estimate Alice 1 and Alice 2’s
messages, Bob performs the following.

(i) First, the decoder recovers the messages (�1(j)) and
(m2(j)), using backward decoding. That is, the mea-
surement of the jth message is chosen based on the
estimate of �1(j + 1). See the bottom part of Figure 4.
Fix �1(0) = �1(T ) ≡ 1.
In block j, for j = T, T − 1, . . . , 1, the decoder uses
the previous estimate of �̂1(j), and measures �̂1(j − 1)
and m̂2(j) using a POVM DBn(j)|�1 = {D�0,m2|�1} with
�1 = �̂1(j).

(ii) Next, the decoder recovers the messages (m�
1(j)), going

in the forward direction. For j = 1, 2, . . . , T , the decoder
uses the estimate of �̂1(j − 1), �̂1(j), and m̂2(j) from
the previous step, and measures m̂�

1(j) using a POVM
GBn(j)|�0,�1,m2 = {Gm�

1|xn
0 ,xn

2
}, based on the knowledge
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Fig. 4. Partial decode-forward cribbing scheme. The block index j ∈ [1 : T ] is indicated at the top. In the following rows, we have the corresponding
elements: (1), (2) auxiliary sequences; (3) codewords of Alice 1; (4) cribbing estimates by Alice 2; (5) codewords of Alice 2; (6) estimated messages at the
decoder. The arrows in the fourth row indicate that the Alice 2 measures and encodes forward with respect to the block index, while the arrows in the sixth
row indicate that Bob decodes backwards.

of �0 = �̂1(j − 1), �1 = �̂1(j), m2 = m̂2(j), xn
0 =

xn
0 (�0, �1), and xn

2 = xn
2 (�0,m2).

C. Analysis of Probability of Error

Let δ > 0. We use the notation εi(δ), i = 1, 2, . . ., for
terms that tend to zero as δ → 0. By symmetry, we may
assume without loss of generality that the transmitters send
the messages L1(j) = M �

1(j) = M2(j) = 1. Consider the
following events,

E0(j) ={(Un(L1(j − 1)), Xn
0 (L1(j − 1), 1),

Xn
1 (L1(j − 1), 1, 1), Xn

2 (L1(j − 1), 1))

/∈ Aδ1(pU,X0,X1,X2)} (180)

E1(j) ={)L1(j) �= 1} (181)

E2(j) ={,L1(j − 1) �= 1} (182)

E3(j) ={+M2(j)) �= 1} (183)

E4(j) ={+M �
1(j) �= 1} (184)

for j ∈ [1 : T ], with δ1 ≡ δ/(2|X2||U|). By the union of
events bound, the probability of error is bounded by

P
(Tn)
e|m1(j)=m2(j)=1(F1,F2,K,D)

≤
T�

j=1

Pr (E0(j)) +
T�

j=1

Pr (E1(j) | E c
0 (j) ∩ E c

1 (j − 1))

+
T�

j=1

Pr (E2(j) ∪ E3(j) | E c
0 (j) ∩ E c

1 (j) ∩ E c
2 (j + 1))

+
T�

j=1

Pr
�
E4(j) | E c

0 (j) ∩ E c
1 (j) ∩ E c

2 (j + 1)

∩ E c
2 (j) ∩ E c

3 (j)
�

(185)

where the conditioning on L1(j) = M �
1(j) = M2(j) = 1 is

omitted for convenience of notation. By the weak law of large
numbers, the first sum tends to zero as n→∞. To bound the
second and third sums, we use the arguments in Appendix F,

replacing m0,m1 by �0, �1, respectively, and thus, replacing
R1 and X1 by R0 and X0, respectively. Thus, there exists a
cribbing measurement K�1|un such that the second sum

tends to zero if

R0 < I(X0;E|U)ω − ε2(δ) , (186)

by the single-user packing lemma (see (108)). Furthermore,
there exists a POVM D�0,m2|�1 such that the third sum tends

to zero as n→∞, provided that

R2 < I(X2;B|X0U)ω − ε4(δ) (187)

and

R0 +R2 < I(X0X2;B)ω − ε4(δ) (188)

by Lemma 2 and the arguments in Appendix F that lead
to (110)-(111).

It remains to show that the fourth sum in the RHS of (185)
tends to zero as well. As in [71] and [56], we observe that due
to the packing lemma inequality (25), the gentle measurement
lemma [69], [72] implies that the post-measurement state ρ̃Bn

is close to the original state ρBn in the sense that
1
2
�ρ̃Bn − ρBn�1 ≤

�
4 · 2−n(I(X0X2;B)ρ−(R0+R2)−ε4(δ))

+ 2−n(I(X2;B|X0U)ω−R2−ε4(δ))

+ 2−n(I(X0X2;B|U)ω−R2−ε4(δ))

�1/2

≤ ε5(δ) (189)

for sufficiently large n and rates as in (187)-(188). There-
fore, the distribution of measurement outcomes when ρ̃Bn

is measured is roughly the same as if the measurements
DBn(j)|L1(j−1) were never performed. To be precise, the
difference between the probability of a measurement outcome
m̂�

1 when ρ̃Bn is measured and the probability when ρBn is
measured is bounded by ε5(δ) in absolute value (see [55, Lem.
9.11]). Furthermore,

Tr
�
Πδ(ωB|xn

1 , x
n
0 , x

n
2 )ωxn

1 ,xn
0 ,xn

2
B1

n

�
≥ 1− ε6(δ) (190)
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Πδ(ωB|xn
0 , x

n
2 )ωxn

1 ,xn
0 ,xn

2
Bn Πδ(ωB|xn

0 , x
n
2 ) 

2−n(H(B|X0X2)ω−ε6(δ))Πδ(ωB |xn
0 , x

n
2 ) (191)

Tr
�
Πδ(ωB|xn

1 , x
n
0 , x

n
2 )
� ≤ 2n(H(B|X1X0X2)ω+ε6(δ)) (192)

Tr
�
Πδ(ωB|xn

0 , x
n
2 )ωxn

1 ,xn
0 ,xn

2
Bn

�
≥ 1− ε6(δ) (193)

for all (xn
0 , x

n
1 , x

n
2 ) ∈ Aδ/2(pX0,X1,X2), by (17)-(20),

respectively. Thus, by the single-user quantum packing
lemma [15] [56, Lemma 12], there exists a POVM Gm�

1|xn
0 ,xn

2

such that the error term in the fourth sum tends to zero as
n→∞, provided that

R1 −R0 < I(X1;B|X0X2)ω − ε2(δ). (194)

We have thus shown that a rate pair (R1, R2) is achievable if

R1 > R0

R0 < I(X0;E|U)ω

R1 −R0 < I(X1;B|X0X2)ω

R0 +R2 < I(X0X2;B)ω

R2 < I(X2;B|X0U)ω (195)

(see (186), (187), (188) and (194)). By eliminating R0,
we obtain the following region

R1 < I(X0;E|U)ω + I(X1;B|X0X2)ω

R1 +R2 < I(X0X1X2;B)ω = I(X1X2;B)ω

R2 < I(X2;B|X0U)ω. (196)

Then, set X0 = (U, V ). This completes the achievability proof
for the partial decode-forward inner bound. �

APPENDIX G
PROOF OF THEOREM 8

A. Part 1

Consider the classical-quantum MAC NX1X2→B ◦ QZ|X1

with strictly-causal noisy cribbing. Suppose that
Alice 1 chooses m1 uniformly at random, and
prepares an input state ρm1

An
1

. Consider a sequence
of codes (F1n,F2n,Kn,Dn) such that the average
probability of error tends to zero, hence the error
probabilities Pr

$+M1 �= M1|M2

%
, Pr

$+M2 �= M2|M1

%
,

and Pr
$
(+M1,+M2) �= (M1,M2)

%
, are bounded by some αn

which tends to zero as n → ∞. By Fano’s inequality [70],
it follows that

H(M1|+M1,M2) ≤ nεn (197)

H(M2|+M2,M1) ≤ nε�n (198)

H(M1,M2|+M1,+M2) ≤ nε��n (199)

where εn, ε
�
n, ε

��
n tend to zero as n→∞. Hence,

nR1 = H(M1|M2, S1, S2)
= I(M1;+M1|M2, S2)ρ +H(M1|+M1,M2, S1, S2)
≤ H(M1|M2, S1, S2)
= I(M1;+M1|M2, S2)ρ +H(M1|+M1,M2)
≤ I(M1;+M1|M2, S1, S2)ρ + nεn

≤ I(M1;Bn|M2, S1, S2)ρ + nεn (200)

where the last inequality follows from the Holevo bound (see
Ref. [57, Theo. 12.1]). Now,

I(M1;Bn|M2, S1, S2)ρ

≤ I(M1;BnZn|M2S1S2)ρ

=
n�

i=1

I(M1;BiZi|Bi−1Zi−1M2S1S2)ρ

=
n�

i=1

I(M1X1,i;BiZi|Bi−1Zi−1M2S1S2X2,i)ρ (201)

where the last equality holds since X1,i and X2,i are determin-
istic functions of (M1, S1) and (M2, Z

i−1, S2), respectively.
Observe that

I(M1X1,i;BiZi|Bi−1Zi−1M2S1S2X2,i)ρ

= H(BiZi|Bi−1Zi−1M2S1S2X2,i)ρ

−H(BiZi|Bi−1Zi−1M1M2S1S2X1,iX2,i)ρ

≤ H(BiZi|X2,i)ρ

−H(BiZi|Bi−1Zi−1M1M2S1S2X1,iX2,i)ρ (202)

since conditioning cannot increase entropy. The second term
equals H(BiZi|X1,iX2,i)ρ because, given (X1,i, X2,i) =
(x1, x2), the joint cribbing and output system BiZi has no
correlation with Bi−1Zi−1M1M2S1S2. Thus, by (200)-(202),

R1 ≤ 1
n

n�
i=1

I(X1,i;BiZi|X2,i)ρ + εn. (203)

Similarly,

R2 ≤ 1
n

n�
i=1

I(X2,i;Bi|X1,i)ρ + ε�n (204)

and

R1 +R2 =
1
n

n�
i=1

I(X1,iX2,i;Bi)ρ + ε�n (205)

Defining a time index U that is drawn from [1 : n]
independently uniformly at random, it follows that

R1 − εn ≤ I(X1;BZ|X2U)ω (206)

R2 − ε�n ≤ I(X2;B|X1U)ω (207)

and

R1 +R2 − ε��n ≤ I(X1X2;B|U)ω

≤ I(X1X2U ;B)ω

≤ I(X1X2;B)ω. (208)

where ωUX1ZX2B is defined as

ωUX1ZX2B ≡ 1
n

n�
i=1

$
|i��i| ⊗

�
x1,x2

pX1,i(x1)Q(z|x1)

· pX2,i(x2)|x1, z, x2��x1, z, x2| ⊗ N (x1, x2)
%
. (209)
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B. Part 2

Suppose that Z = g(X1), where g : X1 → Z is a
deterministic function. We determine the capacity region using
the inner bound in Theorem 7 and the outer bound in part 1.
Observe that it suffices to consider the first rate, since the
first inequality is the only difference between the inner and
outer bounds (cf. (47) and (51)). Consider the partial-decode
forward inner bound in Theorem 7. Since Z = g(X1), we can
set V = Z in the RHS of (47). Hence, the first rate R1 is
bounded by

I(V ;Z|U) = H(Z|U). (210)

The converse part follows from part 1, as

I(X1;BZ|X2U)ω = I(X1;Z|X2U) + I(X1;B|X2UZ)ω

≤ H(Z|X2U) + I(X1;B|X2UZ)ω

≤ H(Z|U) + I(X1;B|X2UZ)ω. (211)

This completes the proof of Theorem 8. �
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