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Quantum Channel State Masking
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Abstract— Communication over a quantum channel that
depends on a quantum state is considered when the encoder
has channel side information (CSI) and is required to mask
information on the quantum channel state from the decoder. A
full characterization is established for the entanglement-assisted
masking equivocation region with a maximally correlated channel
state, and a regularized formula is given for the quantum
capacity-leakage function without assistance. For Hadamard
channels without assistance, we derive single-letter inner and
outer bounds, which coincide in the standard case of a channel
that does not depend on a state.

Index Terms— Quantum information, Shannon theory, quan-
tum communication, channel capacity, state masking, entangle-
ment assistance, state information.

I. INTRODUCTION

SECURITY and privacy are critical aspects in modern com-
munication systems [1]–[4]. The classical wiretap channel

was first introduced by Wyner [5], [6] to model communication
in the presence of a passive eavesdropper, and further studied
in various scenarios, as in [7]–[15]. On the other hand, Merhav
and Shamai [16] introduced a different communication system
with the privacy requirement of masking. In this setting,
the sender transmits a sequence Xn over a memoryless state-
dependent channel pY |X,S , where the state sequence Sn has
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a fixed memoryless distribution and is not affected by the
transmission. The transmitter of Xn is informed of Sn and
is required to send information to the receiver while limiting
the amount of information that the receiver can learn about Sn.
It was shown in [16] that the achievable masking equivocation
region consists of rate-leakage pairs (R,L) such that

R ≤ I(U ;Y )− I(U ;S) (1)

L ≥ I(S;U, Y ) (2)

for (S,U,X, Y ) ∼ pS × pU|S × pX|U,S × pY |X,S , where
U is an auxiliary random variable, with cardinality |U| ≤
|X ||S|. Related settings and extensions are also considered
in [17]–[24].

The field of quantum information is rapidly evolving in both
practice and theory [25]–[32]. As technology approaches the
atomic scale, we seem to be on the verge of the “Quantum
Age” [33], [34]. Dynamics can be modeled by a noisy quantum
channel, describing physical evolutions, density transforma-
tion, discarding of sub-systems, quantum measurements, etc.
[35] [36, Section 4.6]. Quantum information theory is the
natural extension of classical information theory. Neverthe-
less, this generalization reveals astonishing phenomena with
no parallel in classical communication [37]. For example,
two memoryless quantum channels, each with zero quantum
capacity, can have a nonzero quantum capacity when used
together [38]. This property is known as super-activation.

Communication through quantum channels can be sepa-
rated into different categories. For classical communication,
the Holevo-Schumacher-Westmoreland (HSW) Theorem pro-
vides a regularized (“multi-letter”) formula for the capacity
of a quantum channel without assistance [39], [40]. Although
calculation of such a formula is intractable in general, it pro-
vides computable lower bounds, and there are special cases
where the capacity can be computed exactly. The reason for
this difficulty is that the Holevo information is not necessarily
additive [41]. A similar difficulty occurs with transmission of
quantum information. A regularized formula for the quantum
capacity is given in [42]–[45], in terms of the coherent
information. A computable formula is obtained in the special
case where the channel is degradable or less noisy [46].

Another scenario of interest is when Alice and Bob are
provided with entanglement resources [47], [48]. While entan-
glement can be used to produce shared randomness, it is
a much more powerful aid [36], [49]. In particular, super-
dense coding [50] is a well known communication protocol
where two classical bits are transmitted using a single use
of a noiseless qubit channel and a maximally entangled pair.
Thereby, entanglement assistance doubles the transmission rate
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of classical messages over a noiseless qubit channel. The
entanglement-assisted capacity of a noisy quantum channel
was fully characterized by Bennett et al. [51], [52] in terms
of the quantum mutual information. Entanglement resources
are thus instrumental for the performance analysis of quantum
communication systems, as the characterization with entan-
glement assistance provides a computable upper bound for
unassisted communication as well. In the other direction, i.e.
using information measures to understand quantum physics,
the quantum mutual information plays a role in investigating
the entanglement structure of quantum field theories [53]–[56].

The entanglement-assisted capacity theorem can be viewed
as the quantum generalization of Shannon’s classical capacity
theorem [57] (see page 2640 in [52]). Nonetheless, there
are communication settings where entanglement can increase
the capacity of a classical channel, such as the zero-error
capacity problem [58] and the multiple access channel with
entangled encoders [59]. Entanglement assistance also has
striking effects in communication games and their security
applications [59]–[64]. Furthermore, entanglement can assist
the transmission of quantum information. By employing the
teleportation protocol [65], qubits can be sent at half the rate of
classical bits given entanglement resources. Thus, for a given
quantum channel, the entanglement-assisted quantum capac-
ity has half the value of the entanglement-assisted classical
capacity in units of qubits per channel use.

From a practical standpoint, it is also important to deter-
mine the amount of entanglement supply that is con-
sumed in the process of sending information. The tradeoff
between communication and resource rates is considered in
[66]–[71]. Furthermore, the study of such tradeoffs led to
the development of general “father” and “mother” protocols
[72]–[76], which produce achievability schemes for various
settings including those mentioned above. Many of those
protocols can be presented as a consequence of the decou-
pling theorem [77]–[79]. Roughly speaking, the decoupling
approach shows that quantum information can be reliably com-
municated when Bob’s environment is decoupled from Alice’s
purifying reference system. Further work on entanglement-
assisted communication can be found in [80]–[89] and ref-
erences therein.

Boche, Cai, and Nötzel [90] addressed the classical-
quantum channel with channel state information (CSI) at the
encoder. The capacity was determined given causal CSI, and
a regularized formula was provided given non-causal CSI [90]
(see also [91], [92]). Warsi and Coon [93] used an information-
spectrum approach to derive multi-letter bounds for a similar
setting, where the side information has a limited rate. The
entanglement-assisted capacity of a quantum channel with
non-causal CSI was determined by Dupuis in [78], [94], and
with causal CSI in [95], [96]. One-shot communication with
CSI is considered in [89] as well. Luo and Devetak [97] con-
sidered channel simulation with source side information (SSI)
at the decoder, and also solved the quantum generalization of
the Wyner-Ziv problem [98]. Quantum data compression with
SSI is also studied in [99]–[105]. Compression with SSI given
entanglement assistance was recently considered by Khanian
and Winter [106]–[108].

Considering secure communication over the quantum wire-
tap channel, Devetak [45] and Cai et al. [109] established
a regularized characterization of the secrecy capacity with-
out assistance. Connections to the coherent information of a
quantum point to point channel were drawn in [110]. Related
models appear in [111]–[116] as well. The entanglement-
assisted secrecy capacity was determined by Qi et al. [117]
(see also [68], [118]). Boche et al. [14], [119] studied the
quantum wiretap channel with an active jammer. Furthermore,
the capacity-equivocation region was established, characteriz-
ing the tradeoff between secret key consumption and private
classical communication [111], [113] (see also [120] [36,
Section 23.5.3]). In [45], Devetak considered entanglement
generation using a secret-key-assisted quantum channel. The
quantum Gel’fand-Pinsker wiretap channel is considered in
[116] and other related scenarios can be found in [121]–[123].
The quantum broadcast and multiple access channels with
confidential messages were recently considered in [124], [125]
and [126], [127], respectively.

In this paper, we consider a quantum state-dependent chan-
nel NEA�→B , when the encoder has CSI and is required to
mask information on the quantum channel state from the
decoder. Specifically, Alice maps the state of the quantum
message system M and the CSI systems En0 to the state of
the channel input systems A�n in such a manner that limits
the leakage-rate of Bob’s information on Cn from Bn, where
the systems En0 and Cn are entangled with the channel state
systems En (see Figure 1a). Another significant distinction
from the classical case is that the leakage requirement involves
Bob’s share of the entanglement resources, since the decoder
has access to both the output systems and his part of the
entangled pairs (see Figure 1b). In the classical setting, shared
randomness does not need to be included in the leakage
constraint as it cannot help the decoder. On the other hand,
we know that Bob can extract quantum information by per-
forming measurements on his entanglement resources, using
the teleportation protocol for example.

We note that in the quantum information literature, the term
‘masking’ is sometimes used in a different context of an
invertible process that distributes a quantum state to two
receivers such that each receiver cannot gain information on
the original quantum state [128]–[130]. In particular, it was
shown in [128] that a universal unitary masker that satisfies
this property for every input state does not exist. Our setting is
fundamentally different as we consider a system with a fixed
quantum state |φEE0 C�⊗n that is known to all parties and
controls a communication channel with a single output.

Analogously to the classical model, we consider channel
state systems Cn that store undesired quantum information
which leaks to the receiver [16]. This could model a leakage
in the system of secret information, or could stand for another
transmission to another receiver (Charlie), with a product state,
out of our control, and which is not intended to our receiver
(Bob), and is therefore to be concealed from him. Thus,
the goal of the transmitter (Alice) now is to try and mask
this undesired information as much as possible on the one
hand, and to transmit reliable independent information rate
on the other. The systems En0 can be thought of as part of
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Fig. 1. Coding for a quantum state-dependent channel NEA�→B given state
information at the encoder and masking from the decoder, with and without
entanglement assistance. The quantum systems of Alice and Bob are marked
in red and blue, respectively. The channel state systems En and Cn are
marked in brown.

the environment of both our transmitter and the transmitter
of Cn, possibly entangled if those transmitters had previous
interaction, while En belong to the channel’s environment.
Dupuis’ interpretation [94] for the entanglement between En0
and En is that Alice shares entanglement with the channel
itself.

A full characterization is established for the entanglement-
assisted masking equivocation region with maximally cor-
related channel state systems, and a regularized formula is
given for the quantum masking region without assistance.
We also derive a single-letter outer bound on the unassisted
masking region for Hadamard channels, and verify that the
inner and outer bounds coincide in the standard case of
a channel that does not depend on its state. To prove the
direct part, we first determine an achievable masking region
with rate-limited entanglement. Here, we are most interested
in the asymptotic characterization of achievable communica-
tion rates. On the other hand, in previous work, the decou-
pling approach typically produces such characterizations as
a consequence of results for the one-shot setting, where the
blocklength is n = 1 [77]–[79]. Therefore, we derive an
asymptotic version of the decoupling theorem that can be
applied directly, without considering the one-shot counterpart.
While the derivation follows from the one-shot decoupling
theorem using familiar arguments, it provides an analytic tool
that is easier to combine with classical techniques, without a
one-shot proxy. Here, the decoupling approach is used such
that both Bob’s environment and the channel state systems En

and Cn are decoupled from Alice’s purifying reference system.
In order to establish the masking requirement, we approximate
the leakage rate using the decoupled state that results from
the decoupling theorem. The approximation relies on the
Alicki-Fannes-Winter inequality [131], [132], as the decoupled
state is close to the actual output state and its leakage rate
has a simpler bound. This demonstrates how the decoupling
approach is suitable to our needs. Further explanation on the
decoupling nature of our problem is given in Section V.

Our result with entanglement assistance requires the
assumption that the channel state systems E, E0, and C
are maximally correlated. Analytically, the presence of three
channel state systems poses a difficulty that does not exist in
the classical setting of Merhav and Shamai [16], and this is
where the maximal correlation assumption comes into play.
We note that the maximal correlation assumption holds in the
special case of a classical channel state, yet our setting is more
general. The converse proof without assistance is based on
different considerations from those in the classical converse
proof by Merhav and Shamai [16]. In the classical proof,
the derivation of the bounds on both the communication and
leakage rates begins with Fano’s inequality, followed by argu-
ments that do not hold in our model since conditional quantum
entropies can be negative. Hence, we bound the leakage rate
in a different manner using the coherent information bound
on the communication rate.

II. DEFINITIONS AND RELATED WORK

A. Notation, States, and Information Measures

We use the following notation conventions. Calligraphic
letters X ,Y,Z, . . . are used for finite sets. Lowercase letters
x, y, z, . . . represent constants and values of classical random
variables, and uppercase letters X,Y, Z, . . . represent classical
random variables. The distribution of a random variable X is
specified by a probability mass function (pmf) pX(x) over
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a finite set X . We use xj = (x1, x2, . . . , xj) to denote a
sequence of letters from X . A random sequence Xn and its
distribution pXn(xn) are defined accordingly.

The state of a quantum system A is given by a density
operator ρ on the Hilbert space HA. A density operator is an
Hermitian, positive semidefinite operator, with unit trace, i.e.
ρ† = ρ, ρ � 0, and Tr(ρ) = 1. The state is said to be pure
if ρ = |ψ��ψ|, for some vector |ψ� ∈ HA, where �ψ| is the
Hermitian conjugate of |ψ�. In general, a density operator has
a spectral decomposition of the following form,

ρ =
∑
z∈Z

pZ(z)|ψz��ψz | (3)

where Z = {1, 2, . . . , |HA|}, pZ(z) is a probability distri-
bution over Z , and {|ψz�}z∈Z forms an orthonormal basis
of the Hilbert space HA. The density operator can thus be
thought of as an average of pure states. A measurement of
a quantum system is any set of operators {Λj} that forms a
positive operator-valued measure (POVM), i.e. the operators
are positive semi-definite and

∑
j Λj = �, where � is the

identity operator (see [36, Definition 4.2.1]). According to the
Born rule, if the system is in state ρ, then the probability of
the measurement outcome j is given by pA(j) = Tr(Λjρ).
The trace distance between two density operators ρ and σ is
	ρ− σ	1 where 	F	1 = Tr(

√
F †F ).

Define the quantum entropy of the density operator ρ as

H(ρ) � −Tr[ρ log(ρ)] (4)

which is the same as the Shannon entropy associated with
the eigenvalues of ρ. We may also consider the state of a
pair of systems A and B on the tensor product HA ⊗HB of
the corresponding Hilbert spaces. Given a bipartite state σAB ,
define the quantum mutual information as

I(A;B)σ = H(σA) +H(σB)−H(σAB). (5)

Furthermore, conditional quantum entropy and mutual infor-
mation are defined by H(A|B)σ = H(σAB) − H(σB) and
I(A;B|C)σ = H(A|C)σ+H(B|C)σ−H(A,B|C)σ , respec-
tively. The coherent information is then defined as

I(A�B)σ = −H(A|B)σ (6)

and I(A�B|C)σ = I(A�BC)σ = −H(A|BC)σ accordingly.
A pure bipartite state is called entangled if it cannot be

expressed as the tensor product of two states in HA and HB .
The maximally entangled state between two systems of dimen-
sion D is defined by |ΦAB� = 1√

D

∑D−1
j=0 |j�A⊗ |j�B , where

{|j�A}D−1
j=0 and {|j�B}D−1

j=0 are respective orthonormal bases.
Note that I(A;B)|Φ��Φ| = 2 · log(D) and I(A�B)|Φ��Φ| =
log(D).

B. Quantum Channel

A quantum channel maps a quantum state at the sender
system to a quantum state at the receiver system. Here, we con-
sider a channel with two inputs, where one of the inputs,
which is referred to as the channel state, is not controlled
by the encoder. Formally, a quantum state-dependent chan-
nel (NEA�→B, |φEE0 C�) is defined by a linear, completely

positive, trace preserving map NEA�→B and a quantum state
|φEE0 C�. This model can be interpreted as if the channel is
entangled with the systems E, E0, and C. A quantum channel
has a Kraus representation

NEA�→B(ρEA�) =
∑
j

NjρEA�N †
j (7)

for all ρEA� , and for some set of operators Nj such that∑
j N

†
jNj = �. Every quantum channel NEA�→B has an iso-

metric extension UN
EA�→BK , also called a Stinespring dilation,

such that

UN
EA�→BK(ρEA�) = UρEA�U † (8)

NEA�→B(ρEA�) = TrK(UρEA�U †) (9)

where the operator U is an isometry, i.e. U †U = �

[133, Section VII]. The system K is often associated with
the decoder’s environment, or with a malicious eavesdrop-
per in the wiretap channel model [45], and the channel
N̂EA�→K(ρEA�) = TrB(UρEA�U †) is called the complemen-
tary channel for NEA�→B .

We assume that both the channel state systems and the
quantum channel have a product form. That is, the joint state
of the systems En = (E1, . . . , En), En0 = (E0,1, . . . , E0,n)
and Cn = (C1, . . . , Cn) is |φEE0 C�⊗n, and if the systems
A�n = (A�

1, . . . , A
�
n) are sent through n channel uses, then

the input state ρEnA�n undergoes the tensor product mapping
NEnA�n→Bn ≡ N⊗n

EA�→B . Given CSI, the transmitter has
access to the systems En0 , which are entangled with the
channel state systems En. We will further consider a secrecy
requirement that limits the information that the receiver can
obtain on Cn. The sender and the receiver are often referred
to as Alice and Bob.

Remark 1: Our results apply to the case where E, E0, and
C are in a mixed state as well. Specifically, given a mixed
state ϕEE0 C , there exists a purification |φTEE0 C�, such that
the reduced density operator for this purification is ϕEE0 C .
Hence, we can redefine the channel as follows. First, replace
the channel state system E by Ẽ = (T,E), and then consider
the quantum state-dependent channel ÑẼA�→B , where

ÑTEA�→B(ρTEA�) = NEA�→B(TrT (ρTEA�)). (10)

C. Less Noisy, Degradable, and Hadamard Channels

In the unassisted setting, we will also be interested in the
following special cases.

1) Less Noisy Output: First, we define the class of state-
dependent channels with a less noisy output.

Definition 1: A quantum state-dependent channel
(NEA�→B, |φEE0C�) is said to have a less noisy output
if there exists an isometric extension UN

EA�→BK such that for
every ρAA�EC with ρEC = φEC ,

H(A|B)ρ ≤ H(A|KC)ρ (11)

where ρABKC = UN
EA�→BK(ρAEA�C).

The definition for a channel with a less noisy output can be
equivalently stated as

I(A;B)ρ ≥ I(A;KC)ρ (12)
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or

I(A�B)ρ ≥ I(A�K|C)ρ (13)

for all ρAA�EC with ρEC = φEC . Intuitively, the channel
output is less noisy than its environment. Specifically, if we
could use UN

EA�→BK as a broadcast channel, with Receiver
B and Receiver K , then (13) would imply that quantum
information can be reliably sent to Receiver B at a higher
rate than it can be sent to Receiver K , even if Receiver K
has complete knowledge of Cn, i.e. Receiver K has Cn as
CSI. For a quantum channel PA�→B that does have a state,
the definition above coincides with the standard definition of
a less noisy broadcast channel [134, Section II.C].

A stronger requirement is that of a degradable channel [46],
[134].

Definition 2: A quantum state-dependent channel
(NEA�→B, |φEE0C�) is said to be degradable if there
exists an isometric extension UN

EA�→BC1 K such that the
complementary channel N̂EA�→C1 K is a concatenation of the
main channel NEA�→B and a degrading channel DB→C1K ,
i.e.

N̂EA�→C1 K = DB→C1K ◦ NEA�→B (14)

and for every ρAA�EC with ρEC = φEC ,

ρABKC1 = ρABKC (15)

where ρABC1 KC ≡ UN
EA�→BC1 K(ρAEA�C).

Based on the data processing theorem, the conditions of
the definition above imply that I(A;B)ρ ≥ I(A;KC1)ρ =
I(A;KC)ρ. Thereby, if a channel is degradable, then it has
a less noisy output. Similarly, the intuition is that the state of
the decoder’s environment is a noisy version of the channel
output state.

2) Hadamard Channels: Next, we consider the special case
of Hadamard channels, which are defined as channels with an
entanglement-breaking complementary [135]. Here, we will
use the following definition. Consider an isometric channel

VEA�→C1KB(ρEA�) = V ρEA�V † (16)

with

V ≡
∑
x∈X
|ηxC1K��ζ

x
EA� | ⊗ |ψxB� (17)

for some pure states |ηxC1 K�, |ζxEA��, and |ψxB�, such that∑
x |ζxEA���ζxEA� | = �EA� , where {|ψxB�}x∈X is an ortho-

normal basis for the output Hilbert space HB . Given a state
ρAA�EC at the input, the output state is then

ρAC1KBC = VEA�→C1KB(ρAEA�C). (18)

The definition of a Hadamard channel is given below.
Definition 3: A Hadamard state-dependent channel

(NH
EA�→B, |φEE0 C�) is a channel of the form

NH
EA�→B(ρEA�) = TrC1K

(
V (ρEA�)V †) (19)

with the isometry V as in (17), and such that for every input
state ρAA�EC with ρEC = φEC , the output state satisfies

ρAKBC1 = ρAKBC (20)

where ρAC1 KBC = V ρAEA�CV
†.

It can be shown that the definition of a Hadamard chan-
nel above coincides with the definition of a channel whose
complementary is entanglement breaking (see detailed proof
in [136, Section II.C.2]).

Observe that the complementary channel N̂H
EA�→C1 K can

be simulated as follows. First, Bob performs a projective
measurement on the channel outputB in the basis {|ψxB�}x∈X .
Then, given the measurement outcome x∗, the state |ηx∗

C1 K�
is prepared. It follows that a Hadamard channel is degradable,
and thus has a less noisy output.

D. Coding

We define a secrecy code to transmit quantum information
given entanglement resources. We denote Alice and Bob’s
entangled systems by GA and GB , respectively. With non-
causal CSI, Alice has acess to the systems En0 , which are
entangled with the channel state sequence En.

Definition 4: A (2nQ, 2nRe , n) quantum masking code with
rate-limited entanglement assistance and CSI at the encoder
consists of the following: A quantum message state ρMT ,
where M is a system of dimension |HM | = 2nQ and T is
a reference system, a pure entangled state ΨGA,GB , where
|HGA | = |HGB | = 2nRe , an encoding channelFMGAEn

0 →A�n ,
and a decoding channel DBnGB→M̂ . We denote the code by
(F ,Ψ,D).

The communication scheme is depicted in Figure 1b. The
sender Alice has the systems M , GA, En0 , and A�n, and the
receiver Bob has the systems Bn, GB , and M̂ . Alice encodes
the quantum state of the message system M using her share of
the entangled resources GA and her access to the systems En0
which are entangled with the channel state systems. To this
end, she applies the encoding map FMGAEn

0 →A�n , which
results in the input state

ρCnEnA�nTGB = FEn
0MGA→A�n(φ⊗nCEE0

⊗ ρMT ⊗ΨGAGB )

(21)

and transmits the systems A�n over n channel uses of
NEA�→B . Hence, the output state is

ρCnBnTGB = NEnA�n→Bn(ρCnEnA�nTGB ). (22)

Bob receives the channel output and applies the decoding
map DBnGB→M̂ to the output systems Bn and to his share
of the entangled resources GB , such that the state of M̂ is an
estimate of the original state of the message system M . The
estimation error is given by

e(n)(F ,Ψ,D, ρMT ) =
1
2

∥∥∥ρMT −DBnGB→M̂ (ρBnGBT )
∥∥∥

1

(23)

where ρBnGBT = TrCn(ρCnBnGBT ). The masking leakage
rate of the code (F ,Ψ,D) is defined as

	(n)(F ,Ψ,D, ρMT ) � 1
n
I(Cn;BnGB)ρ. (24)

A (2nQ, 2nRe , n, ε, L) quantum masking code satisfies
e(n)(F ,Ψ,D, ρMT ) ≤ ε and 	(n)(F ,Ψ,D, ρMT ) ≤ L for
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all ρMT . A triplet (Q,L,Re), where Q,L,Re ≥ 0, is called
achievable if for every ε, δ > 0 and sufficiently large n, there
exists a (2nQ, 2nRe , n, ε, L+ δ) quantum masking code.

Next, we define the masking equivocation region with and
without entanglement assistance. A rate-leakage pair (Q,L) is
called achievable with entanglement assistance if (Q,L,Re)
is achievable for some Re ≥ 0. The entanglement-assisted
masking region R

ea
Q (N ) is defined as the set of achievable pairs

(Q,L) with entanglement assistance and CSI at the encoder.
Alternatively, one may fix the leakage rate and consider
the optimal transmission rate. The quantum capacity-leakage
function Cea

Q (N , L) is defined as the supremum of achievable
rates Q for a given leakage L. Note that Cea

Q (N ,∞) reduces to
the standard definition of the entanglement-assisted capacity,
without a masking requirement.

Furthermore, a rate-leakage pair (Q,L) is called achievable
without assistance if (Q,L,Re = 0) is achievable. The mask-
ing region RQ(N ) and quantum capacity-leakage function
CQ(N , L) without assistance are defined in a similar manner.

One may also consider the transmission of classical infor-
mation, where the message system is limited to states |m�
for m = 1, 2, . . . , 2nR. In this case, we denote the classical
masking regions and capacity-leakage functions by Rea

Cl(N ),
RCl(N ) and C

ea
Cl(N , L), CCl(N , L), respectively.

Note that CQ(N , L) and Cea
Q (N , L) have the units of

qubits per channel use, whereas the units of CCl(N , L) and
Cea

Cl(N , L) are classical bits per channel use.
Remark 2: Notice that with entanglement assistance,

the leakage rate (24) includes Bob’s share GB of the entangle-
ment resources, since the decoder has access to both Bn and
GB . This is another significant distinction from the classical
case. In the classical setting, the leakage constraint does not
need to include shared randomness, as it cannot help the
decoder. On the other hand, in our quantum model, we know
that Bob can extract quantum information by performing
measurements on GB , using the teleportation protocol for
example.

Remark 3: Observe that if L ≥ 2 ·H(C)φ, then the mask-
ing requirement trivially holds because I(Cn;BnGB)ρ ≤
2H(Cn)ρ = 2nH(C)φ. That is, if L ≥ 2H(C)φ, then
CQ(N , L) = CQ(N ,∞), and similarly for CCl(N , L),
Cea

Q (N , L), and Cea
Cl(N , L).

Remark 4: Note that quantum state-dependent channels
have in general a complicated behavior with respect to
quantum information transmission and we cannot necessarily
expect that the region of achievable rate-leakage pairs (Q,L)
without entanglement assistance is equal to the limit of achiev-
able rate-leakage pairs for Re → 0 [137].

E. Related Work

We briefly review known results for the case where there
is no masking requirement. First, consider a quantum channel
which is not affected by a channel state, i.e.NEA�→B(ρEA�) =
PA�→B(TrE(ρEA�)).

Theorem 1 (see [51], [52]): The entanglement-assisted
quantum capacity of a quantum channel PA�→B that does not
depend on a channel state, without a masking requirement,

is given by

C
ea
Q (P ,∞) = max

|φAA��
1
2
I(A;B)ρ (25)

with ρAB ≡ PA�→B(|φAA� ��φAA� |), where A is an auxiliary
system of dimension |HA| ≤ |HA� |.

Without assistance, a single letter characterization is an open
problem for a general quantum channel. Yet, a regularized
formula for the quantum capacity was given in [42]–[45],
in terms of the coherent information. Although calculation
of such a formula is intractable in general, it provides a
computable lower bound, and there are special cases where
the capacity can be computed exactly [46]. Define

CQ(P ,∞) = max
|φAA��

I(A�B)ρ (26)

with ρAB ≡ PA�→B(|φAA���φAA� |) and |HA| ≤ |HA� |.
Theorem 2 (see [42]–[46]): The quantum capacity of a

quantum channel PA�→B that does not depend on a channel
state, without assistance and without a masking requirement,
is given by

CQ(P ,∞) = lim
k→∞

1
k

CQ(P⊗k,∞). (27)

Furthermore, if PA�→B has a less noisy output, then

CQ(P ,∞) = CQ(P ,∞). (28)

A multi-letter characterization as in (27) is often referred
to as a regularized formula. We note that in some cases,
the entanglement-assisted capacity can be significantly higher
than the capacity without assistance. For example, the
entanglement-assisted quantum capacity of a qubit erasure
channel PA�→B(ρ) = (1−ε)ρ+ε|e��e|, where the erasure state
|e� is orthogonal to the qubit space, is C

ea
Q (P ,∞) = 1 − ε.

On the other hand, without assistance, the quantum capacity
is CQ(P ,∞) = 1− 2ε for 0 ≤ ε < 1

2 , and CQ(P ,∞) = 0 for
ε ≥ 1

2 [138].
Remark 5: Theorem 1 is an interesting example for a

general phenomenon in quantum information theory. As was
pointed out in [139], using entanglement resources has two
benefits:

1) Entanglement-assisted protocols can accomplish a perfor-
mance increase compared to unassisted protocols.

2) Introducing entanglement resources transforms the capacity
evaluation from an uncomputable task to an optimization
that can be easily performed (numerically).

Remark 6: Among other important aspects for the design
and development of communication systems, it is crucial
to evaluate the current performance, how close it is to the
optimum, and whether it is worth to invest in further devel-
opment of a particular technology [140], [141]. For those
purposes, given an estimate of the channel parameters, it can
be useful to calculate the capacity as a number, and the
general formula may be less interesting for such purposes.
At the time of writing, a realization of a full-scale quantum
communication system that approaches the Shannon-theoretic
limits does not exist, and we can only hope that future systems
of quantum communication will reach the level of maturity
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of classical commercial systems today, which already employ
sophisticated error correction codes with near-Shannon limit
performance [142], [143].

Remark 7: As Ahlswede remarked in [144], for the purpose
of computing the capacity, a regularized characterization as
in Theorem 2 is not necessarily a problem. Given a spe-
cific quantum channel, e.g. an optical fiber channel with
specific parameters, a practitioner is usually interested in
computing the channel capacity as a number (see previous
remark). Following Ahlswede’s argument in [144], given a
fixed channel PA�→B , if the sequence { 1

nCQ(P⊗n,∞)}n≥1

has a sufficiently high convergence rate, say exponentially fast,
then the quantum capacity can be approximated numerically
up to any desired precision.

Whereas, from a theoretical perspective, a single-letter for-
mula usually offers a lot more insight. We will come back to
this in Section V.

Next, we move to Dupuis’ result on a quantum state-
dependent channelNEA�→B with entanglement assistance and
CSI at the encoder. Denote the reduced density matrix of the
channel state system by φE � TrE0 C(φEE0 C).

Theorem 3 (see [78], [94]): The entanglement-assisted
quantum capacity of a quantum channel (NEA�→B , φEE0),
with CSI at the encoder and without a masking requirement,
is given by

C
ea
Q(N ,∞) = sup

ρAEA� : ρE=φE

1
2
[I(A;B)ρ − I(A;E)ρ] (29)

with ρAB ≡ NEA�→B(ρAEA�).

III. INFORMATION THEORETIC TOOLS

In this section, we present tools that will be useful in the
analysis. We begin with the decoupling theorem. We establish
an i.i.d. version of the decoupling theorem, so that we will not
have to worry about the one-shot setting in the achievability
proof for our capacity theorems.

We use the following definitions. An operator VA→B that
has 0-1 singular values is called a partial isometry. For
every pair of Hilbert spaces HA and HB with orthonormal
bases {|iA�} and {|jB�}, respectively, define the operator
opA→B(|ψAB�) by

opA→B(|iA� ⊗ |jB�) ≡ |jB��iA|. (30)

While the operation above depends on the choice of bases,
we will not specify those since it is not important for our
purposes. To generalize this definition to any state |ψAB�,
consider its decomposition |ψAB� =

∑
i,j ai,j |iA� ⊗ |jB�,

and define opA→B(|ψAB�) =
∑
i,j ai,jopA→B(|iA� ⊗ |jB�).

Before presenting the decoupling theorem, we give the fol-
lowing useful properties of opA→B(|ψAB�), as stated in [79].

Lemma 4 ( [79, Lemma 2.7]): For every pure states |ψAB�
and |θAC�,

opA→B(|ψAB�) · |θAC� = opA→C(|θAC�) · |ψAB�. (31)

Lemma 5 ( [79, Lemma 2.8]): For every pure state |ψAB�,√
|HA|opA→B(|ψAB�) · |ΦAA�� = |ψA�B�. (32)

We give our i.i.d. version of the decoupling theorem below.
Theorem 6 (The i.i.d. Decoupling Theorem): Let |ωABK�

be a pure state, and S, R, G1, G2 be quantum systems at state

|σSRG1G2� = |ΨSR� ⊗ |ΦG1G2� (33)

in the product Hilbert space H⊗2
S ⊗ H

⊗2
G . Let WSG1→An be

a full-rank partial isometry, and denote

|σAnRG2� = WSG1→An |σSRG1G2�. (34)

Define the quantum channel TA→K by

TA→K(ρA) = |HA|TrB [opA→BK(|ωABK�)(ρA)] . (35)

Then,∫
UAn

dUAn

∥∥T ⊗n
A→K(UAnσAnR)− ωK ⊗ σR

∥∥
1
≤√

|HS |
|HG|

2−nH(A|K)ω+nε(n) (36)

and∫
UAn

dUAn

∥∥T ⊗n
A→K(UAnσAnRG2)− ωK ⊗ σRG2

∥∥
1
≤√

|HS ||HG|2−nH(A|K)ω+nε(n) (37)

where the integral is over the Haar measure on all unitaries
UAn , and ε(n) tends to zero as n→∞.

The proof of Theorem 6 is given in Appendix A, based on
the one-shot decoupling theorem along with arguments from
[79]. Intuitively, the theorem above shows that by choosing a
unitary UAn uniformly at random, we can decouple between
K and R provided that the dimensions satisfy

1
n

log
|HS |
|HG|

< H(A|K)ω − ε(n). (38)

Similarly, K and (R,G2) can be decoupled if

1
n

log(|HS ||HG|) < H(A|K)ω − ε(n). (39)

Uhlmann’s theorem [145] is often used along the decoupling
approach to establish the existence of proper encoding and
decoding operations.

Theorem 7 (Uhlmann’s Theorem [145] [79, Corollary 3.2]):
For every pair of pure states |ψAB� and |θAC� that satisfy
	ψA − θA	1 ≤ ε, there exists an isometry FB→C such that
	(�⊗ FB→C)ψAB − θAC	1 ≤ 2

√
ε.

Remark 8: We give a rough explanation, in the spirit of
[36, Section 24.10], to demonstrate how decoupling can be
useful in an achievability proof for quantum communication.
Consider a quantum channel PA�→B that does not depend on
a channel state, without entanglement assistance. Let |ΨMR�
be a purification of the message state ρM , where R is Alice’s
reference system. Suppose that |σRBnKnJ1� is a purification
of the joint state of Alice’s reference system R, the channel
output Bn, and Bob’s environment Kn, with a purifying
system J1. Observe that if the reduced state σRKnJ1 is
a product state, i.e. σRKnJ1 = ψR ⊗ ξKnJ1 , then it has
a purification of the form |ΨMR� ⊗ |ξKnJ1 J2�. Since all
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purifications are related by isometries [36, Theorem 5.1.1],
there exists an isometry DBn→MJ2 such that |ΨMR� ⊗
|ξKnJ1 J2� = DBn→MJ2 |σRBnKnJ1�. Tracing out R, Kn, J1,
and J2, it follows that there exists a decoding map DBn→M

that recovers the message state, i.e. ρM = DBn→M (ρBn).
Therefore, in order to show that there exists a reliable coding
scheme, it is sufficient to encode in such a manner that
approximately decouples between Alice’s reference system
and Bob’s environment, i.e., such that σRKnJ1 ≈ ψR⊗ξKnJ1 .

Remark 9: For our purposes, i.e. deriving an asymptotic
characterization, the precise value of ε(n), and the scale at
which it tends to zero as n → ∞, are insignificant. In our
achievability proof, our ultimate goal is to show that the
probability of error tends to zero given that the communication
and leakage rates Q and L are bounded appropriately. Taking
the logarithm of the dimensions and dividing by n, we obtain
bounds of the form Q ≤ I + ε(n) and L ≥ λ − ε(n),
where ε(n) tends to zero in some scale, and this is sufficient.
Nonetheless, in general, the scale is important in the study
of optimal error exponents and the finite blocklength regime
(see e.g. [146]), which is outside the scope of the present
work. Studying the behavior of ε(n) in the decoupling lemma
above is not likely to yield the optimal error exponents, and
this is why we do not bother to do so. As can be seen in
[146] and in many others works on this topic, the analysis of
error exponents and reliability functions requires very different
tools from those of the asymptotic Shannon theory. In basic
point-to-point classical models, the approach based on the
theory of error exponents may be regarded as superior to
the asymptotic methods, in the sense that it can determine
both the finite-blocklength behavior of an optimal code and
the asymptotic capacity, all at once [147]. However, in more
advanced settings, the analysis of error exponents often leads
to bounds, while the capacity can be determined precisely
using other tools, such as the ones that we have chosen here.

IV. MAIN RESULTS

We state our results on the quantum state-dependent channel
NEA�→B with masking.

A. Rate-Limited Entanglement Assistance

First, we consider communication with rate-limited entan-
glement assistance. We give an achievability result which
will be used in the sequel to prove the direct part for the
quantum masking region, both with and without entanglement
assistance.

Theorem 8: Let (NEA�→B , |φEE0 C�) be a quantum state-
dependent channel. Let ρEA�AC be any mixed state with
ρEC = φEC . Then, any rate point (Q,L,Re) such that

Q+Re ≤ H(A|EC)ρ (40)

Q−Re ≤ I(A�B)ρ (41)

L ≥ I(C;AB)ρ (42)

is achievable for transmission with rate-limited entanglement
assistance and CSI at the encoder, where the auxiliary system
A is arbitrary, with ρABC = NEA�→B(ρAEA�C). That is,

for every ε, δ > 0 and sufficiently large n, there exists a
(2nQ, 2nRe , n, ε, L+ δ) quantum masking code with CSI En0
at the encoder, and such that Cn is masked from the decoder.

The proof of Theorem 8 is given in Appendix B. The
theorem above provides an achievability result that takes into
account the tradeoff between communication and resource
rates. As a byproduct, the coding scheme executes state
merging [74], as Alice effectively sends her share GA to
Bob. Namely, as can be seen in Appendix B, we begin the
protocol with an entangled state ΨGAGB , where Alice has the
system GA and Bob has GB ; and when the protocol has been
completed, Bob ends up with the systems G�

A and G�
B at state

≈ ΨG�
AG

�
B

.

B. Entanglement-Assisted Masking Region

Next, we consider entanglement-assisted masking, where
Alice and Bob have unlimited entanglement resources. In this
section, we assume that the channel state systems are in
maximally correlated state

ϕEE0C =
∑
s∈S

q(s)|s��s|E ⊗ |s��s|E0 ⊗ |s��s|C (43)

where q(s) is a probability distribution, and {|s�E}, {|s�E0},
{|s�C} each form an orthonormal basis of the respective
Hilbert space. Notice that the state above is separable and
not entangled. We note that in general, one can always apply
the spectral theorem to an individual system and obtain a
decomposition of the form ϕE =

∑
q(s)|s��s|E , and similarly

for ϕE0 and ϕC . Yet, the assumption in (43) implies that
E, E0, and C have the same spectrum. In addition, if Alice
performs a projective measurement on the CSI systems in
the basis {|s�E0}s∈S , then the problem reduces to that of a
quantum channel that depends on a classical random variable
S ∼ q(s). Hence, this assumption holds in the special case
of a classical channel state. However, in our setting, Alice
may perform any quantum operation on the CSI systems En0 .
Thus, given the restriction (43), the setting is less general
than our original model, and yet it is more general than
that of a classical channel state. The masking problem given
entanglement assistance for a general quantum state ϕEE0 C

remains open.
We determine the entanglement-assisted masking region

and capacity-leakage function, for the transmission of either
quantum information or classical information. Define

Rea
Q (N ) =

⋃
ρEA�AC : ρEC=ϕEC{

(Q,L) : 0 ≤ Q ≤ 1
2 [I(A;B)ρ − I(A;EC)ρ]

L ≥ I(C;AB)ρ

}
(44)

and

Rea
Cl(N ) =

⋃
ρEA�AC : ρEC=ϕEC{

(R,L) : 0 ≤ R ≤ I(A;B)ρ − I(A;EC)ρ
L ≥ I(C;AB)ρ

}
(45)

with ρABC = NEA�→B(ρAEA�C).
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Theorem 9: Let (NEA�→B , ϕEE0 C) be a quantum state-
dependent channel with CSI at the encoder, with maxi-
mally correlated channel state systems, as in (43). Then,
the entanglement-assisted quantum masking region and clas-
sical masking region are given by

R
ea
Q (N ) = Rea

Q (N ) (46)

and

R
ea
Cl(N ) = Rea

Cl(N ) (47)

respectively.
The proof of Theorem 9 is given in Appendix C. The direct

part is based on Theorem 8. As can be seen in Appendix C,
the entanglement-assisted capacity can be achieved if the
entanglement rate is higher than 1

2I(A�B)ρ − 1
2H(A|EC)ρ.

The converse proof requires more attention. As we have three
channel state systems, namely, En0 , En, and Cn, we need
to choose the auxiliary system A such that both the com-
munication and leakage rate constraints are met. Thereby,
the assumption in (43) is only required for the converse proof.

Equivalently, we can characterize the capacity-leakage func-
tion with entanglement assistance. The following corollary is
an immediate consequence of Theorem 9.

Corollary 10: Given (NEA�→B, ϕEE0 C) as in Theorem 9,
the entanglement-assisted quantum capacity-leakage function
and classical capacity-leakage function are given by

C
ea
Q (N , L) = sup

ρAEA�C : I(C;AB)ρ≤L
ρEC=φEC

1
2
[I(A;B)ρ − I(A;EC)ρ]

(48)

and

C
ea
Cl(N , L) = sup

ρAEA�C : I(C;AB)ρ≤L
ρEC=φEC

[I(A;B)ρ − I(A;EC)ρ]

(49)

respectively, with ρABC = NEA�→B(ρAEA�C).
Remark 10: It was mentioned in Remark 5, point 2), that in

various settings entanglement assistance leads to a characteri-
zation that is easy to compute. Unfortunately, this goal was not
accomplished in the present work nor in the previous results
by Dupuis [94]. Clearly, the characterization of the masking
region and the capacity-leakage function has a single-letter
form with respect to the channel dependency. However, there
is no upper bound on the necessary dimension of the auxiliary
system A in Theorems 3, 8, and 9, and in Corollary 10. If
we could restrict the optimization to pure states |ψEA�AC�,
then we would argue that the dimension of A need not be
larger than the Schmidt rank of |ψEA�AC�, hence optimizing
over a Hilbert space of dimension |HA| = |HA� ||HE ||HC |
is sufficient. Note that one can always compute achievable
rates by choosing an arbitrary dimension, but the optimal rates
cannot be computed with absolute precision in general. Yet,
in analogy to Remark 7, for a fixed channel NEA�→B , state
ϕEE0 C , and leakage rate L, the values of (48) and (49)
can be approximated if there exists a computable function
to upper bound the dimension of the auxiliary system in the
optimization problem as a function of the required precision.

C. Unassisted Masking Region

In this section, we consider masking without assistance.
We establish a regularized formula for the quantum masking
region and capacity-leakage function for the transmission of
quantum information. For the class of Hadamard channels,
we obtain single-letter inner and outer bounds, which coincide
in the standard case of a channel that does not depend on the
state. Define

RQ,in(N ) =
⋃

ρEA�AC : ρEC=φEC{
(Q,L) : 0 ≤ Q ≤ min{I(A�B)ρ, H(A|EC)ρ}

L ≥ I(C;AB)ρ

}
(50)

with ρABC = NEA�→B(ρAEA�C). Furthermore, given an
isometric extension UN

EA�→BK , define

RQ,out(UN ) =
⋃

ρEA�AC : ρEC=φEC{
(Q,L) : 0 ≤ Q ≤ H(A|CK)ρ

L ≥ I(C;AB)ρ

}
(51)

with ρABKC = UN
EA�→BK(ρAEA�C). Recall that we have

defined the class of Hadamard channels in Subsection II-C.2,
in terms of an isometric extension V H

EA�→BC1 K of a particular
form (see Definition 3). Our main result on channel state
masking without assistance is given below.

Theorem 11: Let (NEA�→B, |φEE0 C�) be a quantum state-
dependent channel with CSI at the encoder. Then,

1) the quantum masking region is given by

RQ(N ) =
∞⋃
k=1

1
k
RQ,in(N⊗k). (52)

2) For a Hadamard channel N H
EA�→B , the quantum masking

region is bounded by

RQ,in(N H) ⊆ RQ(N H) ⊆ RQ,out(V H). (53)

The proof of Theorem 11 is given in Appendix D. Our
converse proof is based on different arguments from those
in the classical converse proof by Merhav and Shamai [16].
In the classical proof, the derivation of the bounds on both
communication rate Q and leakage rate L begins with Fano’s
inequality. Here, on the other hand, entangled states may have
a negative conditional entropy; hence the leakage bound is
derived in a different manner, using the coherent information
bound on the rate. The direct part is a consequence of our
previous result on masking with rate-limited entanglement
assistance (see Theorem 8). We derive a single-letter outer
bound for Hadamard channels using the special properties of
those channels. To bound the communication rate Q, we only
need to use the fact that Hadamard channels are degradable.
As for the bound on the leakage rate L, here we observe
that for Hadamard channels, there exists a channel from the
output B to BC1K , i.e. the channel output combined with the
decoder’s environment.

Remark 11: Observe that for a pure input state ρEA�AC =
|ψEA�AC��ψEA�AC |, the extended output systems A,B,C,K
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are in a pure state as well, which in turn implies that

H(A|CK)ρ = H(ACK)ρ −H(CK)ρ
= H(B)ρ −H(AB)ρ = I(A�B)ρ (54)

where K is part of the output of the isometric extension
V H
EA�→BC1 K (see Definition 3). It follows that the quantum

masking region is bounded by

RQ(N ) ⊇ RQ,in(N ) ⊇⋃
|ψEA�AC� : ψEC=φEC

{
(Q,L) : 0 ≤ Q ≤ I(A�B)ρ

L ≥ I(C;AB)ρ

}
(55)

with ρABC = NEA�→B(|ψAEA�C��ψAEA�C |). In the trivial
case of a quantum channel PA�→B that does not depend on a
state, the masking region can be achieved with pure product
states |ψECAA�� = |φEC� ⊗ |θAA��, hence the inner bound
and the outer bound coincide, i.e.

RQ,in(P) = RQ,out(UP ) =⋃
|θAA��

{
(Q,L) : 0 ≤ Q ≤ I(A�B)ρ

L ≥ 0

}
. (56)

Then, if PA�→B is a Hadamard channel, the quantum masking
region is RQ(P) = RQ,in(P) = RQ,out(UP).

As an immediate consequence of Theorem 11, we obtain the
following characterization of the capacity-leakage function.

Corollary 12: Let (NEA�→B, |φEE0 C�) be a quantum
state-dependent channel with CSI at the encoder.

1) The quantum capacity-leakage function is given by

CQ(N , L) = lim
k→∞

1
k

sup
ρ

EkA�kAkCk : ρ
EkCk =φ⊗k

EC

L≥ 1
k I(C

k;AkBk)ρ

min{I(Ak�Bk)ρ, H(Ak|EkCk)ρ} (57)

with ρAkBkCk = N⊗k
EA�→B(ρAkEkA�kCk).

2) For a Hadamard channel N H
EA�→B , the quantum masking

region is bounded by

CQ,L(N H) ≥
sup

ρEA�AC : ρEC=φEC

L≥I(C;AB)ρ

min{I(A�B)ρ, H(A|EC)ρ} (58)

and

CQ,L(N H) ≤ sup
ρEA�AC : ρEC=φEC

L≥I(C;AB)ρ

H(A|CK)ρ (59)

with ρABC1 KC = VH
EA�→BC1 K(ρAEA�C).

The computational issues that were raised in Remarks 7
and 10 apply to the results in Theorem 11 and Corollary 12
as well.

D. Example: State-Dependent Dephasing Channel

To illustrate our results, we consider a quantum dephasing
channel that depends on a classical state and compute achiev-
able rate-leakage regions. Consider a pair of qubit dephasing
channels

P(s)
A�→B(ρ) = (1− εs)ρ+ εsZρZ, s = 0, 1 (60)

where Z is the phase-flip Pauli matrix, and ε0, ε1 are given
parameters, with 0 ≤ εs ≤ 1 for s ∈ {0, 1}. Suppose the
channel state systems E, C, and E0 contain a copy of a
classical random bit S ∼ Bernoulli(q), with 0 ≤ q ≤ 1

2 .
Then, the qubit state-dependent channel NEA�→B is defined
such that given an input state

ρEA� = (1− q)|0��0|E ⊗ σ0 + q|1��1|E ⊗ σ1 (61)

the output state is

NEA�→B(ρEA�) = (1 − q)P(0)
A�→B(σ0) + qP(1)

A�→B(σ1).
(62)

Observe that the dephasing channel can also be viewed as
a controlled phase-flip gate that is controlled by a classical
random bit. In particular, the state-dependent channel above is
“controlled” by a random variable WS such that given S = s,

Ws ∼ Bernoulli(εs). (63)

Consider the transmission of classical information while
masking the channel state sequence from the receiver. In the
special case of ε0 = 0 and ε1 = 1, we have WS = S. That is,
the channel acts as a controlled-Z gate where the channel state
system E (or S) is the controlling qubit. The entanglement-
assisted masking region in this case is

R
ea
Cl(N ) =

⋃
0≤λ≤1

{
(R,L) : 0 ≤ R ≤ 2

L ≥ 0

}
. (64)

To understand why, observe that given CSI at the encoder,
Alice can first perform the controlled phase-flip operation
on her entangled qubit, and then use the super-dense coding
protocol. Doing so, she effectively eliminates the phase flip
operation of the channel. Subsequently, Bob receives the
information perfectly, at rate of 2 classical bits per channel
use, regardless of the values of Sn. Hence, there is no leakage.

Now, let ε0 ≤ 1
2 ≤ ε1, and define

ε̄ = (1− q)ε0 + qε1 (65)

ε̂ = (1− q)ε0 + q(1− ε1). (66)

Without CSI, the channel can be reduced to a standard
dephasing channel that does not depend on a state, with the
average phase-flip parameter ε̄.

First, we use Theorem 9 to show that the entanglement-
assisted masking region is bounded by

R
ea
Cl(N ) ⊇ R0 ={
(R,L) : 0 ≤ R ≤ 2− h2(λ ∗ ε̄)
L ≥ h2(λ ∗ ε̄)− (1− q)h2(λ ∗ ε0)− qh2(λ ∗ ε1)

}
(67)
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where h2(x) = −x log2 x − (1 − x) log2(1 − x) is the
binary entropy function, and a ∗ b = (1 − a)b + a(1 − b).
To show achievability of the region above, suppose that Alice
performs phase-flip operation controlled by a random variable
Y ∼ Bernoulli(λ) which is statistically independent of S. That
is, ρEA�A = φE ⊗ ρA�A, with

ρA�A = [(1− λ)ΦAA� + λ(1⊗ Z)ΦAA�(1⊗ Z)]. (68)

Then, Bob receives the output of a phase-flip gate that is
controlled by (WS +Y ) mod 2, which is distributed accord-
ing to Bernoulli(λ ∗ ε̄) (see (65)). Thus, for the output state
ρSBA = NEA�→B(ρSEA�A), we have

I(A;B)ρ − I(A;S)ρ = I(A;B)ρ
= H(A)ρ +H(B)ρ −H(AB)ρ = 1 + 1− h2(λ ∗ ε̄) (69)

and

I(S;AB)ρ = H(AB)ρ −H(AB|S)ρ
= h2(λ ∗ ε̄)− [(1− q)h2(λ ∗ ε0) + qh2(λ ∗ ε1)]. (70)

We note that as Alice’s input is in a product state with the
channel state system E, this rate-leakage region can also be
achieved without CSI.

Next, we derive achievability of the following region,

R
ea
Cl(N ) ⊇ R1 ≡

⋃
0≤λ≤ 1

2{
(R,L) : 0 ≤ R ≤ 2− h2(λ ∗ ε̂)
L ≥ h2(λ ∗ ε̂)− (1 − q)h2(λ ∗ ε0)− qh2(λ ∗ ε1)

}
.

(71)

Therefore, higher communication rates can be achieved with
CSI at the encoder at the expense of leaking information on
the channel state sequence to the receiver. To obtain the region
above from Theorem 9, suppose that Alice performs phase-
flip operation controlled by the random variable S + Y , with
addition modulo 2, where Y ∼ Bernoulli(λ) is statistically
independent of S. Precisely,

ρEA�A = (1− q)|0��0| ⊗ [(1− λ)ΦAA�

+ λ(1 ⊗ Z)ΦAA�(1⊗ Z)]
+ q|1��1| ⊗ [(1− λ)(1⊗ Z)ΦAA�(1⊗ Z)
+ λΦAA� ]. (72)

Then, Bob receives the output of a phase-flip gate that is
controlled by (WS+S+Y ), which is distributed according to
Bernoulli(λ∗ ε̂) (see (66)). Hence, achievability for the region
R1 follows in a similar manner as for R0.

Similarly, without entanglement assistance, the quantum
masking region is bounded by

RQ(N ) ⊇
⋃

0≤λ≤ 1
2{

(Q,L) : 0 ≤ Q ≤ 1− h2(λ ∗ ε̂)
L ≥ h2(λ ∗ ε̂)− (1 − q)h2(λ ∗ ε0)− qh2(λ ∗ ε1)

}
.

(73)

V. SUMMARY AND CONCLUDING REMARKS

In this section, we summarize our results and compare
between the techniques in our work and in previous work. We
consider a quantum channel NEA�→B that depends on quan-
tum state |φEE0 C�, when the encoder has the CSI systems En0
and is required to mask the channel state systems Cn from
the decoder. First, we established an achievability result for
a setting where Alice and Bob share entanglement resources
at a limited rate Re. That is, before communication begins,
Alice and Bob are provided with 2nRe-dimension systems GA
and GB , respectively, in an entangled state ΨGAGB of their
choosing.

A significant distinction from the classical case is that the
leakage requirement

1
n
I(BnGB;Cn)ρ ≤ L (74)

includes Bob’s entangled share GB , since the decoder has
access to both the output systems and his part of the entangled
pairs. In the classical setting, shared randomness does not need
to be included in the leakage constraint as it cannot help the
decoder. On the other hand, we know that Bob can extract
quantum information by performing measurements on GB ,
using the teleportation protocol for example.

Given a small leakage constraint L → 0, we must ensure
that Bob’s systems BnGB are decoupled from the channel
state systems Cn. In this sense, masking can be viewed as
a decoupling problem, and thus it seems natural to solve the
problem using the decoupling approach. Here, we are most
interested in the asymptotic characterization of achievable
communication rates. Therefore, we have derived an asymp-
totic version of the decoupling theorem that can be applied
directly, without considering the one-shot counterpart. While
the derivation of our i.i.d. decoupling theorem, Theorem 6,
follows from the one-shot decoupling theorem using familiar
arguments, it provides an analytic tool that is easier to combine
with classical techniques, without a one-shot proxy.

We presented an achievability result for channel state mask-
ing with rate-limited entanglement assistance in Theorem 8,
taking into account the tradeoff between the entanglement
and communication resources. The proof of our achievability
theorem is based on the i.i.d. decoupling theorem along with
Uhlmann’s theorem [145]. To establish the masking require-
ment, we approximate the leakage rate using the decoupled
output state that results from the decoupling theorem, and
which approximates the actual output state. This approxima-
tion relies on the Alicki-Fannes-Winter inequality [131], [132],
as the decoupled state is close to the actual output state and
its leakage rate has a simpler bound.

We determined the entanglement-assisted masking equivo-
cation region and the capacity-leakage function in Theorem 9
and Corollary 10, respectively, under the assumption that the
channel state systems E, E0, and C are maximally correlated,
i.e.

ϕEE0C =
∑
s∈S

q(s)|s��s|E ⊗ |s��s|E0 ⊗ |s��s|C (75)
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where q(s) is a probability distribution and the vectors form
an orthonormal basis for each of the corresponding Hilbert
spaces. Analytically, the presence of three channel state sys-
tems poses a difficulty in choosing the auxiliary system A that
would satisfy both communication and leakage rate bounds.
This difficulty does not exist in the classical setting of Merhav
and Shamai [16], since in the classical setting, C, E, and E0

are simply copies of the same random variable. The direct
part follows from our achievability result with rate-limited
entanglement, and does not require the assumption above.

Next, we established a regularized formula for the quantum
masking region and capacity-leakage function without assis-
tance in Theorem 11 and Corollary 12, respectively. The direct
part here also follows from our achievability result with rate-
limited entanglement. Our converse proof is based on different
arguments compared to those of the classical proof by Merhav
and Shamai [16]. In both classical and quantum converse
proofs, the leakage rate is bounded by an expression of the
form

L+ δ ≥ 1
n

(I(Cn;MBn)ρ −H(M |Bn)ρ +H(M |BnCn)ρ)

(76)

(see (155) and Eq. (21) in [16]). The next step in the classical
proof in [16] is to use Fano’s inequality in order to bound
the second term by

H(M |Bn)ρ ≤ nεn (77)

and to eliminate the last term, as H(M |BnCn)ρ ≥ 0. In the
quantum setting, we can still write (77), but it would not lead
to the desired result because the last term H(M |BnCn)ρ is
negative and could not be eliminated (see Remark 12). Hence,
we bound the leakage rate in a different manner using the
coherent information bound on the communication rate.

We also derived single-letter inner and outer bounds for
Hadamard channels, using the special properties of those
channels, and showed that the bounds coincide in the standard
case of a channel that does not depend on a state. To bound
the communication rate Q, we only needed to use the fact
that Hadamard channels are degradable. To bound the leakage
rate L, we observed that for Hadamard channels, there exists
a channel from the channel output to the combined system of
the output and its environment.

A shortcoming of our results, as well as the previous
results by Dupuis [94], is that we do not have a bound on
the dimension of the auxiliary system A, as mentioned in
Remark 10. Although one can always compute an achievable
region by simply choosing the dimension of A, the optimal
rates cannot be computed exactly in general. If we could
restrict the optimization to pure states |ψEA�AC�, then we
would argue that the dimension of A need not be larger
than the Schmidt rank of |ψEA�AC�, hence optimizing over
a Hilbert space of dimension |HA| = |HA� ||HE ||HC | is suf-
ficient. A similar difficulty appears in other quantum models
such as the broadcast channel (see Discussion section in [76]),
wiretap channel [117, Remark 5], and squashed entanglement
[148, Section 1]. Considering the setting where entanglement
assistance is not available, we mentioned in Remark 7 that

regularization does not necessarily pose a problem for practical
purposes. Whereas, from a theoretical perspective, a single-
letter formula usually offers a lot more insight than a multi-
letter characterization since the latter is not unique (see e.g.
[36, Section 13.1.3]). Nonetheless, remarkable properties such
as super-activation [38] were derived from the multi-letter
characterization as well.
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APPENDIX A
PROOF OF THEOREM 6

We prove the i.i.d. decoupling theorem using the one-shot
counterpart in [79] along with arguments therein.

To this end, we need the following definitions from [149].
Define the conditional min-entropy by

Hmin(ρAB|σB) = − log inf {λ ∈ R : ρAB � λ · (�A ⊗ σB)}
Hmin(A|B)ρ = sup

σB

Hmin(ρAB|σB). (78)

where the supremum is over quantum states of the system B.
In general, the conditional min-entropy is bounded by

− log |HB| ≤ Hmin(A|B)ρ ≤ log |HA|. (79)

To see this, observe that if we choose σB = �B

|HB | , then
the matrix inequality ρAB � λ(�A ⊗ σB) holds for λ =
|HB|, hence Hmin(ρAB|σB) ≥ − log |HB |. As for the upper
bound, the matrix inequality implies that 1 = Tr(ρAB) ≤
λ|HA|Tr(σB) = λ|HA|, hence Hmin(ρAB|σB) ≤ log |HA|.
Furthermore, the lower bound is saturated when the joint state
of A and B is |ΦAB�, whereas the upper bound for a product
state �A

|HA| ⊗ ρB .
Then, define the smoothed min-entropy by

Hε
min(A|B)ρ = max

σAB : dF (ρAB ,σAB)≤ε
Hε

min(A|B)σ . (80)

for arbitrarily small ε > 0, where dF (ρ, σ) =√
1−

∥∥√ρ√σ∥∥2

1
is the fidelity distance between the states.

The theorem below follows from Lemma 2.3 and Theo-
rem 3.8 in [79].

Theorem 13 (The One-Shot Decoupling Theorem [79]): Let
ρAR be a quantum state, TA→K be a quantum channel, and
ζA�K = TA→K(ΦA�A). Then, for arbitrarily small ε > 0,∫

UA

dUA 	TA→K(UAρAR)− ζK ⊗ ρR	1 ≤

2−
1
2H

ε
min(A�|K)ζ− 1

2H
ε
min(A|R)ρ + 8ε (81)

where the integral is over the Haar measure on all unitaries
UA.

Now, in order to prove the i.i.d. decoupling theorem, we use
Theorem 13 as follows. To show (36), plug

A← An, ρAR ←WSG1→An(σSG1R), T ← T ⊗n. (82)
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Then, by Theorem 13,∫
UAn

dUAn

∥∥T ⊗n
A→K(UAnσAnR)− ζ⊗nK ⊗ σR

∥∥
1
≤

2−
1
2H

ε
min(A�n|Kn)ζ⊗n− 1

2H
ε
min(S,G1|R)σ + 8ε (83)

with arbitrarily small ε > 0, σAnR = WSG1→An(σSG1 R),
and

ζA�K = TA→K(ΦA�A)
= |HA|TrB [opA→BK(|ωABK�)(ΦA�A)]
= TrB (ωA�BK)
= ωA�K (84)

where the second line follows from Lemma 5. Hence, it fol-
lows that

Hε
min(A�n|Kn)ζ⊗n = Hε

min(An|Kn)ω⊗n

≥ n(H(A|K)ω − δ1(n)) (85)

where the last inequality is due to the quantum asymp-
totic equipartition property (see [150, Theorem 9] and [79,
Lemma 2.3]), and where δ1(n)→ 0 as n→∞. Thus, by (83)-
(85),∫

UAn

dUAn

∥∥T ⊗n
A→K(UAnσAnR)− ω⊗n

K ⊗ σR
∥∥

1
≤

2−n
1
2H(A|K)ω− 1

2H
ε
min(S,G1|R)σ+nδ2(n) (86)

where δ2(n) = δ1(n) + log(8ε)
n . Since SR and G1 G2 are in

a product state |ΨSR� ⊗ |ΦG1 G2� over H⊗2
S ⊗H

⊗2
G , we have

that

Hε
min(S,G1|R)σ ≥ Hmin(S|R)σ +Hmin(G1)Φ

≥ − log |HS |+ log |HG| (87)

where the last inequality holds by (79). Hence, (36) follows.
To show (37), apply Theorem 13 in the same manner with

(R,G2) instead of R, which yields∫
UAn

dUAn

∥∥T ⊗n
A→K(UAnσAnRG2)− ω⊗n

K ⊗ σR,G2

∥∥
1
≤

2−n
1
2H(A|K)ω− 1

2H
ε
min(S,G1|R,G2)σ+nδ2(n) (88)

with

Hε
min(S,G1|R,G2)σ ≥ Hmin(S|R)Ψ +Hmin(G1|G2)Φ

≥ − log |HS | − log |HG|. (89)

Thus, (37) follows as well. This completes the proof of
Theorem 6.

APPENDIX B
PROOF OF THEOREM 8

The achievability proof is based on the i.i.d. decoupling
theorem along with Uhlmann’s theorem. To establish the
masking requirement, we approximate the leakage rate using
the decoupled output state that results from the decoupling
theorem, and which approximates the actual output state. This
approximation relies on the Alicki-Fannes-Winter inequality

[131], [132], as the decoupled state is close to the actual output
state and its leakage rate is easier to evaluate.

Consider a quantum state-dependent channel NEA�→B with
state information at the encoder and masking from the decoder,
given rate-limited entanglement assistance. The elements of
the coding scheme are displayed in Figure 2, where the
quantum systems of Alice and Bob are marked in red and
blue, respectively; the channel state systems En and Cn are
marked in brown; and the purifying systems are marked in
green. Before we step into the formal proof, we describe the
coding scheme in a nutshell. The quantum message is stored in
a system M , which is purified by a reference system R. Alice
and Bob’s entanglement resources are in the quantum systems
GA and GB , respectively. Now, Alice encodes the quantum
message using her share of the entanglement resources, GA,
along with her access to the side information systems, En0 ,
which in turn are entangled with the channel state systems
En and Cn. To this end, she applies an encoding isometry and
transmits the systems A�n over n channel uses of the isometric
extension of the channel, UN

EA�→BK , where K is the receiver’s
environment. Bob receives the channel output systems Bn

and decodes by applying an isometry to Bn and GB . We
will show that there exist encoding and decoding isometries,
FMGAEn

0 →A�nJn and DBnGB→M̂G�
AG

�
BJ

nKnJ� , respectively,
that recover the quantum message state and satisfy the leakage
requirement, where Jn and J � are purifying reference systems.
In our proof, the decoupling approach is used such that both
Bob’s environment and the channel state systems En and Cn

are decoupled from Alice’s purifying reference system (see
Remark 8). To show the leakage requirement, we approximate
the leakage rate using the decoupled output state that results
from the decoupling theorem, as the decoupled state is close to
the actual output state and its leakage rate is easier to evaluate.
The details are given below.

Let |θACEA�J � be any pure state with θCE = φCE , where A
is an arbitrary system. In the proof below, we will use auxiliary
quantum systems An such that the channel input systems A�n

are entangled with An. Given a quantum message state ρM ,
let
R be a reference system that purifies the message system

M , i.e. such that the systems M and R have a pure joint state
|ΨMR�, with |HR| = |HM | = 2nQ.

Suppose that Alice and Bob share an entangled state
|ΦGAGB � of dimension |HGA | = |HGB | = 2nRe . Then,
the joint state is

|ψRMGAGB � ≡ |ΨRM � ⊗ |ΦGA,GB �. (90)

Let UN
EA�→BK be an isometric extension of the channel

NEA�→B , with

UN
EA�→BK(ρEA�) = UN

EA�→BKρEA�(UN
EA�→BK)† (91)

and let

|ωACBKJ� = UN
EA�→BK |θACEA�J �. (92)

Denote

Δ1(n) ≡ 2−n[H(A|EC)ω−Q−Re−ε]/2 (93)

Δ2(n) ≡ 2−n[H(A|KJ)ω−Q+Re−ε]/2 (94)
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Fig. 2. Coding scheme for a state-dependent quantum channel NEA�→B with state information at the encoder and masking from the decoder, given
rate-limited entanglement assistance. The quantum systems of Alice and Bob are marked in red and blue, respectively; the channel state systems En and Cn

are marked in brown; and the purifying systems are marked in green. The quantum message is stored in a 2nQ-dimension system M , which is purified by
the reference system R of the same dimension, while Alice and Bob’s entanglement resources are in the quantum systems GA and GB , respectively, each
of dimension 2nRe . The input state is thus |ΨRM � ⊗ |ΦGA,GB

� ⊗ |φE0 EC�⊗n. Alice encodes the quantum message using her share of the entanglement
resources, GA, along with her access to the side information systems En

0 , which are entangled with the channel state systems En and Cn. To this end, she
applies the encoding isometry FMGAEn

0 →A�nJn , where Jn are purifying reference systems. Then, she transmits the systems A�n over n channel uses of the
isometric extension UN

EA�→BK
of the channel NEA�→B , where K is the receiver’s environment. Bob receives the channel output systems Bn, combines

them with his share GB of the entanglement resources, and applies the decoding isometry DBnGB→M̂G�
A

G�
B

JnKnJ� . Using the i.i.d. decoupling theorem

and Uhlmann’s theorem, it is shown that the resulting state is close in trace distance to |Ψ
M̂R� ⊗ |ΦGAGB

� ⊗ |ξJnKnJ� �. Given L ≥ I(C; AB)ω + δ,
it is shown that the leakage requirement 1

n
I(Cn; BnGB)ρ ≤ L is satisfied as well.

where ε > 0 is arbitrarily small. Observe that Δ1(n) tends
to zero exponentially as n → ∞ provided that Q + Re <
H(A|EC)θ − ε. As for Δ2(n), given a pure quantum state
|ωACBKJ�, we have H(AKJ)ω = H(BC)ω and H(KJ)ω =
H(BCA)ω , hence

H(A|KJ)ω = H(BC)ω −H(BCA)ω
= −H(A|BC)ω
≥ −H(A|B)ω
= I(A�B)ω (95)

where the last inequality holds since conditioning does not
increase entropy [36, Theorem 11.4.1]. Thus, Δ2(n) ≤
2−n(I(A�B)ω−Q+Re−ε), which tends to zero exponentially as
n→∞ provided that Q−Re < I(A�B)ω − ε.

First, we show that there exist encoding and decoding
operations such that the decoding error vanishes. Consider a
full-rank partial isometry WMGA→An , i.e. an operator with
0-1 singular values and rank 2n(Q+Re), and let

ΠA→CEA�J ≡ |HA|opA→CEA�J(|θACEA�J�). (96)

Then, define a quantum channel TA→KJ by

TA→KJ(ρA) = TrC,B
(
UN
EA�→BK (ΠA→CEA�J(ρA))

)
.

(97)

According to the first part of Theorem 6, the i.i.d. decoupling
theorem, applying a random unitary UAn decouples between
the systems (Kn, Jn) and R in the sense that∫

UAn

dUAn

∥∥TAn→KnJn(UAnWMGA→AnψRMGA)

−ω⊗n
KJ ⊗ ψR

∥∥
1
≤ 2−n[H(A|KJ)ω−Q+Re−ε1(n)]/2 (98)

with TAn→KnJn ≡ T ⊗n
A→KJ , where ε1(n) tends to zero as

n→∞.
Similarly, the second part of Theorem 6 with
T �
A→CE(ρA) = TrA�J [ΠA→CEA�J(ρA)] yields∫

UAn

dUAn

∥∥∥TrA�nJn

[
ΠAn→CnEnA�nJnUAn

WMGA→AnψMGAGBR

]
− ψGBR ⊗ φ⊗nCE

∥∥∥
1

≤ 2−n[H(A|CE)ω−Q−Re−ε2(n)]/2 (99)
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with ΠAn→CnEnA�nJn ≡ Π⊗n
A→CEA�J , where ε2(n) tends to

zero as n → ∞. Thus, it can be inferred from (98)-(99) that
there exists a unitary UAn such that both of the following
inequalities hold,∥∥TAn→KnJn(UAnWMGA→AnψRMGA)

−ω⊗n
KJ ⊗ ψR

∥∥
1
≤ Δ2(n) (100)

and∥∥∥TrA�nJn

[
ΠAn→CnEnA�nJn · UAnWMGA→AnψMGAGBR

]
−ψGBR ⊗ φ⊗nEC

∥∥∥
1
≤ Δ1(n) (101)

where Δ1(n) and Δ2(n) are as defined in (93)-(94). In words,
there exists a unitary UAn that decouples both (Kn, Jn) from
R, and also (Cn, En) from (GB , R). The existence of a
unitary that satisfies both inequalities simultaneously follows
from the union of events bound and Markov’s inequality, as
Pr (f1(U) > Δ1 ∨ f2(U) > Δ2) ≤ Ef1(U)

Δ1
+ Ef2(U)

Δ2
. We note

that such a unitary UAn need not be unique.
According to Uhlmann’s theorem, (101) implies that there

exists an isometry FMGAEn
0 →A�nJn such that∥∥ΠAn→CnEnA�nJn · UAnWMGA→AnψMGAGBR

−FMGAEn
0 →A�nJn(ψGBRMGA ⊗ φ⊗nE0EC

)
∥∥

1
≤ 2

√
Δ1(n)

(102)

(see Figure 2). Hence, by applying the isometric extension
of the channel and using the triangle inequality and the
monotonicity of the trace distance under quantum channels,
we obtain∥∥∥TAn→KnJn(UAnWMGA→AnψRMGA)

− TrCnBnGB

(
(UN

EA�→BK)⊗nFMGAEn
0 →A�nJn

(ψGBRMGA ⊗ φ⊗nE0EC
)
)∥∥∥

1
≤ 2

√
Δ1(n). (103)

Together with (100), this implies that∥∥∥TrCnBnGB

(
(UN

EA�→BK)⊗nFMGAEn
0 →A�nJn

(ψGBRMGA ⊗ φ⊗nE0EC
)
)
− ω⊗n

KJ ⊗ ψR
∥∥∥

1

≤ 2
√

Δ1(n) + Δ2(n). (104)

Next, by Uhlmann’s theorem, there exists a decoding operator
DBnGB→M̂G�

AG
�
BJ

� such that∥∥∥DBnGB→M̂G�
AG

�
BJ

�(UN
EA�→BK)⊗nFMGAEn

0 →A�nJn

(ψ⊗n
GBRMGA

⊗ φ⊗nE0EC
)− ξKnJnJ� ⊗ ψMGAGBR

∥∥∥
1

≤ 2
√

2
√

Δ1(n) + Δ2(n) (105)

for some ξKnJnJ� . By tracing out Kn, Jn, Cn, G�
A, G�

B , and
J �, we have that there exist an encoding map FMGAEn

0 →A�n

and a decoding map DBnGB→M̂ such that the estimation error
is bounded by

e(n)(F ,Φ,D, ρM ) =∥∥∥DBnGB→M̂N
⊗n
EA�→BFMGAEn

0 →A�n(ψ⊗n
GBRMGA

⊗ φ⊗nE0E
)

−ΨRM

∥∥∥
1
≤ 2

√
2
√

Δ1(n) + Δ2(n). (106)

As for the leakage requirement, let δ > 0 be arbitrarily
small. Observe that the joint state of the output systems is
given by

|σGBRKnJnBnCn�
= (UN

EA�→BK)⊗nFMGAEn
0 →A�nJn(ψ⊗n

GBRMGA
⊗ φ⊗nE0EC

).

(107)

By (102), 	σ − η	1 ≤ 2
√

Δ1(n), with

|ηGBRKnJnBnCn�
= (UN

EA�→BK)⊗nΠAn→CnEnA�nJn

(UAnWMGA→AnψMGAGBR)
(a)
=

(
UN
EA�→BK |HA|opA→CEA�J (|θACEA�J�)

)⊗n
(UAnWMGA→AnψMGAGBR)

(b)
= (|HA|opA→CBKJ(|ωACBKJ�))⊗n

(UAnWMGA→AnψMGAGBR) (108)

where (a) follows from the definition of ΠAn→CnEnA�nJn in
(96), and (b) follows from the definitions of opA→B(·) and
|ωACBKJ� in (30) and (92), respectively. Next, by Lemma 4,
we have

|ηGBRKnJnBnCn�
=

(
|HA|nopAn→GBR

(UAnWMGA→AnψMGAGBR)
)

|ωACBKJ�⊗n. (109)

Hence,

ηGBRBnCn = Π�
An→GBR(ω⊗n

ABC) (110)

with Π�
An→GBR

≡ |HA|nopAn→GBR
(UAnWMGA→An

ψMGAGBR).
By the Alicki-Fannes-Winter inequality, the mutual informa-

tion is continuous in the joint state [131], [132]. In particular,
	σ − η	1 ≤ 2

√
Δ1(n) implies that

|I(Cn;BnGB)σ − I(Cn;BnGB)η|
≤ 4n log |HB|

√
Δ1(n) + 2(1 +

√
Δ1(n)) (111)

(see [36, Theorem 11.10.3]). Since Δ1(n) tends to zero as
n → ∞, it follows that for sufficiently large n, the leakage
rate is bounded by

	(n)(F ,Ψ,D, ρM ) =
1
n
I(Cn;BnGB)σ

≤ 1
n
I(Cn;BnGB)η + δ

≤ 1
n
I(Cn;BnGBR)η + δ

≤ 1
n
I(Cn;AnBn)ω⊗n + δ

= I(C;AB)ω + δ (112)

where the third inequality follows from (110) and the data
processing theorem for the quantum mutual information [36,
Theorem 11.9.4]. Thus, the secrecy requirement holds with
leakage rate L provided that I(C;AB)ω ≤ L− δ.
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APPENDIX C
PROOF OF THEOREM 9

Given unlimited supply of entanglement resources, a qubit is
exchangeable with two classical bits. This follows by applying
the teleportation protocol and the super-dense coding protocol
(see [47, Sections 1.3.7, 2.3]). Therefore, the characterization
of the classical masking region follows from that of the quan-
tum masking region, and vice versa. In particular, we prove
the theorem by showing achievability for the quantum masking
region, and the converse part for the classical masking region.
As can be seen below, the maximal correlation assumption in
(43) is only required for the converse proof.

A. Achievability Proof

First, consider the direct part for the quantum masking
region. Let (Q,L) ∈ Rea

Q (N ). Then, for some ρEA�AC with
ρEC = φEC , we have Q ≤ 1

2 [I(A;B)ρ − I(A;EC)ρ] and
L ≥ I(C;AB)ρ. We need to show that there exists Re ≥ 0
such that (Q,Re, L) is achievable.

As mentioned in Remark 1, given a mixed state ϕEE0 C ,
we can simply consider the channel ÑẼA�→B , with the aug-
mented channel state system Ẽ = (T,E), as defined in (10),
where |φTEE0 C� is a purification of the mixed state ϕEE0 C .
Given the maximal correlation assumption (43), the standard
purification is

|φTEE0C� =
∑
s∈S

√
q(s)|s�T ⊗ |s�E ⊗ |s�E0 ⊗ |s�C . (113)

Let ρTEA�AC be an extension of ρEA�AC with ρTEC = φTEC .
Then, we can write

ρCTEAA� =
∑
s∈S

q(s)|s��s|C ⊗ |s��s|T ⊗ |s��s|E ⊗ ρsAA�

(114)

for some ρsAA� . Since the eigenvalues of ρCEAA� are the
same as those of ρCTEAA� , it follows that I(A;TEC)ρ =
I(A;EC)ρ.

We now claim that the inequalities (40)-(42) hold for

Re ≡
1
2
H(A|ẼC)ρ −

1
2
I(A�B)ρ. (115)

Indeed,

Q+Re ≤
1
2
[I(A;B)ρ − I(A; ẼC)ρ]

+
1
2
H(A|ẼC)ρ −

1
2
I(A�B)ρ

= H(A|ẼC)ρ. (116)

and

Q−Re ≤
1
2
[I(A;B)ρ − I(A; ẼC)ρ]

− 1
2
H(A|ẼC)ρ +

1
2
I(A�B)ρ

= I(A�B)ρ (117)

since I(A;D)ρ = H(A)ρ −H(A|D)ρ, and due to the defini-
tion of the coherent information as I(A�B)ρ ≡ −H(A|B)ρ.

We also need to verify that Re ≥ 0. Let |θACẼA�J � be
a purification of ρACẼA� and define |ωACBKJ� as in (92).
Since the state of ACBKJ is pure, we have H(A|KJC)ω =
−H(A|B)ω = I(A�B)ρ, hence

0 ≤ I(A;KJ |C)ω = H(A|C)ρ − I(A�B)ρ. (118)

As H(A|C)ρ = H(A|ẼC)ρ, (118) implies that the assignment
of Re in (115) is non-negative as required. It follows that
the conditions of Theorem 8 are satisfied, hence (Q,Re, L) is
achievable. We deduce that Rea

Q (N ) ⊇ Rea
Q (N ).

Given unlimited amount of entanglement resources, if Alice
can send nQ qubits to Bob with estimation error ε and leakage
rate L, then she can send 2nQ classical bits with the same error
and leakage rate using the superdense coding protocol [47,
Section 2.3]. Thus, for the transmission of classical bits, rate-
leakage pairs (R,L) such that R ≤ I(A;B)ρ − I(A;E,C)ρ
and L ≥ I(C;AB)ρ are achievable. We deduce that Rea

Cl(N ) ⊇
Rea

Cl(N ) as well.

B. Converse Proof

Next, we move to the converse part. While extending the
classical arguments, we need to be careful since conditional
entropies can be negative in the quantum setting, and since we
have three channel state systems, C, E, and E0. This poses
a challenge in defining the auxiliary system A that would
satisfy both communication and leakage rate bounds. Here,
we will use the assumption that the channel state systems are
maximally correlated, as in (43).

Again, due to the superdense coding protocol, if Alice
cannot send nR classical bits to Bob with estimation error
ε and leakage rate L, then she cannot send 1

2nR qubits with
the same error and leakage rate. Thus, it suffices to consider
the classical masking region.

Suppose that Alice and Bob are trying to distribute random-
ness. An upper bound on the rate at which Alice can distribute
randomness to Bob also serves as an upper bound on the rate
at which they can communicate classical bits. In this task,
Alice and Bob share an entangled state ΨGAGB . Alice first
prepares a maximally corrleated state

πMM � ≡ 1
2nR

2nR∑
m=1

|m��m|M ⊗ |m��m|M � . (119)

locally, where M and M � are classical registers that store the
message. Denote the joint state at the beginning by

ψMM �GAGBEn
0 E

nCn = πMM � ⊗ΨGAGB ⊗ φ⊗nE0EC
(120)

where En are the channel state systems, En0 are the CSI
systems that are available to Alice, and Cn are the systems
that are masked from Bob (see Figure 1). Then, Alice applies
an encoding channel FM �GAEn

0 →A�n to the classical system
M �, her share GA of the entangled state ΨGAGB , and the CSI
systems En0 . The resulting state is

ρMA�nGBEnCn ≡ FM �GAEn
0 →A�n(ψMM �GAEn

0GBEnCn).
(121)

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on August 31,2024 at 11:03:36 UTC from IEEE Xplore.  Restrictions apply. 



PEREG et al.: QUANTUM CHANNEL STATE MASKING 2261

After Alice sends the systems A�n through the channel, Bob
receives the systems Bn at state

ρMBnGBCn ≡ N⊗n
EA�→B(ρMEnA�nGBCn). (122)

Then, Bob performs a decoding channel DBnGB→M̂ , produc-
ing

ρMM̂Cn ≡ DBnGB→M̂ (ρMBnGBCn). (123)

Consider a sequence of codes (Fn,Ψn,Dn) for randomness
distribution, such that

1
2

∥∥ρMM̂ − πMM �
∥∥

1
≤ αn (124)

1
n
I(Cn;BnGB)ρ ≤ L+ βn (125)

where αn, βn tend to zero as n→∞. By the Alicki-Fannes-
Winter inequality [131], [132] [36, Theorem 11.10.3], (124)
implies that

|H(M |M̂)ρ −H(M |M �)π | ≤ nεn (126)

where εn tends to zero as n → ∞. Now, observe that
H(πMM � ) = H(πM ) = H(πM �) = nR, hence I(M ; M̂)π =
nR. Also, H(ρM ) = H(πM ) = nR implies that I(M ;M �)π−
I(M ; M̂)ρ = H(M |M̂)ρ −H(M |M �)π . Therefore, by (126),

nR = I(M ; M̂)π
≤ I(M ; M̂)ρ + nεn

≤ I(M ;BnGB)ρ + nεn (127)

where the last line follows from (123) and the quantum data
processing inequality [47, Theorem 11.5].

As in the classical setting, the chain rule for the quantum
mutual information states that I(A;B,C)σ = I(A;B)σ +
I(A;C|B)σ for all σABC (see e.g. [36, Property 11.7.1]). As
a straightforward consequence, this leads to the Ciszár sum
identity,

n∑
i=1

I(Ani+1;Bi|Bi−1)σ =
n∑
i=1

I(Bi−1;Ai|Ani+1)σ (128)

for every sequence of systems An and Bn. Returning to (127),
we apply the chain rule and rewrite the inequality as

nR ≤ I(GBM ;Bn)ρ + I(M ;GB)ρ − I(GB ;Bn)ρ + nεn

≤ I(GBM ;Bn)ρ + I(M ;GB)ρ + nεn

= I(GBM ;Bn)ρ + nεn (129)

where the equality holds since the systems M and GB are in
a product state. The chain rule further implies that

I(GBM ;Bn)ρ =
n∑
i=1

I(GBM ;Bi|Bi−1)ρ

≤
n∑
i=1

I(GBMBi−1;Bi)ρ

=
n∑
i=1

I(GBMBi−1Cni+1;Bi)ρ

−
n∑
i=1

I(Bi;Cni+1|GBMBi−1)ρ

=
n∑
i=1

I(GBMBi−1Cni+1;Bi)ρ

−
n∑
i=1

I(Bi−1;Ci|GBMCni+1)ρ (130)

where the last line follows from the quantum version
of the Csiszár sum identity in (128). Since the sys-
tems Ci and (GB ,M,Cni+1) are in a product state,
I(Bi−1;Ci|GBMCni+1)ρ = I(GBMCni+1B

i−1;Ci)ρ. There-
fore, defining

Ai = (GB ,M,Bi−1, Cni+1) (131)

we obtain

I(GBM ;Bn)ρ ≤
n∑
i=1

I(Ai;Bi)ρ −
n∑
i=1

I(Ai;Ci)ρ. (132)

Next, we claim that based on our assumption that ϕE0 EC

is as in (43), we have I(Ai;Ci)ρ = I(Ai;EiCi)ρ. To see this,
consider the joint state of the systems Ai, Ci, and Ei,

ρMBi−1GBCn
i+1CiEi

=
∑
sn∈Sn

qn(sn)
1

2nR

2nR∑
m=1

|m��m|M

⊗N⊗i−1
EA�→B

(
|si−1��si−1|Ei−1 ⊗ ρm,s

n

A�i−1GB

)
⊗|sni+1��sni+1|Cn

i+1
⊗ |si��si|Ci ⊗ |si��si|Ei (133)

with ρm,s
n

A�nGB
≡ FM �GAEn

0 →A�n(|m��m|M � ⊗ ΨGAGB

⊗|sn��sn|En
0
). Observing that the eigenvalues of the state

ρAiCiEi are the same as those of ρAiCi , it follows that
H(AiCiEi)ρ = H(AiCi)ρ and H(CiEi)ρ = H(Ci)ρ, thus,

I(Ai;Ci)ρ = I(Ai;EiCi)ρ. (134)

Now, let Y be a classical random variable with a uniform
distribution over {1, . . . , n}, in a product state with the pre-
vious quantum systems, i.e. Cn, En, En0 , M , M �, GA, GB ,
A�n, and Bn. Then, by (129), (132), and (134),

R− εn

≤ 1
n

n∑
i=1

[I(Ai;Bi)ρ − I(Ai;EiCi)ρ]

= I(AY ;BY |Y )ρ − I(AY ;EY CY |Y )ρ
= I(AY , Y ;BY )ρ − I(Y ;BY )ρ
− I(AY , Y ;EY CY )ρ + I(Y ;EY CY )ρ
≤ I(AY , Y ;BY )ρ − I(AY , Y ;EY CY )ρ + I(Y ;EY CY )ρ
= I(AY , Y ;BY )ρ − I(AY , Y ;EY CY )ρ (135)

with ρY AY EY CY A�
Y

= 1
n

∑n
i=1 |i��i| ⊗ ρAiEiCiA�

i
and

ρY AY CY BY = NEA�→B(ρY AY CY EY A�
Y
), where the last

equality holds since En and Cn are in a product state φ⊗nEC ,
hence I(Y ;EY CY )ρ = H(EY CY )ρ − H(EY CY |Y )ρ =
H(EC)φ −H(EC)φ = 0. Thus, defining

A ≡ (AY , Y ), E ≡ EY , C ≡ CY , A� ≡ A�
Y (136)

and B such that ρABC = NEA�→B(ρAEA�C), we have that

R− εn ≤ I(A;B)ρ − I(A;EC)ρ. (137)
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We have thus shown the desired bound on the coding rate.
As for the leakage rate, by (125),

n(L+ βn) ≥ I(Cn;BnGB)ρ
= I(Cn;BnGBM)ρ − I(Cn;M |BnGB)ρ
= I(Cn;BnGBM)ρ −H(M |BnGB)ρ
+H(M |CnBnGB)ρ. (138)

Note that the conditional entropy of a classical-quantum state
ρXA =

∑
x∈X pX(x)|x��x| ⊗ ρxA is always nonnegative,

since H(A|X)ρ =
∑

x pX(x)H(ρxA) ≥ 0 and H(X |A)ρ ≥
H(X |A,X) = 0, as conditioning cannot increase quantum
entropy [47, Theorem 11.15]. Since M is classical, the last
term in the RHS of (138) is nonnegative, i.e.

H(M |Cn, Bn, GB)ρ ≥ 0. (139)

Furthermore, we have by (127) that the second term is bounded
by

H(M |BnGB)ρ = H(M)π − I(M ;BnGB)ρ ≤ nεn (140)

Thus, by (138)-(140),

n(L+ βn + εn) ≥ I(Cn;BnGBM)ρ

=
n∑
i=1

I(Ci;BnGBM |Cni+1)ρ

≥
n∑
i=1

I(Ci;BiBi−1GBM |Cni+1)ρ. (141)

Then, since Ci and Cni+1 are in a product state, I(Ci;Cni+1)ρ =
0, hence

L+ βn + εn

≥ 1
n

n∑
i=1

I(Ci;BiBi−1GBMCni+1)ρ

=
1
n

n∑
i=1

I(Ci;AiBi)ρ = I(CY ;AY BY |Y )ρ

= I(CY ;AY Y BY )ρ = I(C;AB)ρ (142)

where the first equality is due to our definition of Ai in (131),
the second holds as the classical variable Y is uniformly
distributed over {1, . . . , n}, the third since I(CY ;Y )ρ =
H(CY )ρ − H(CY |Y )ρ = H(C)φ − H(C)φ = 0, and the
last equality follows from (136). This concludes the proof of
Theorem 9.

APPENDIX D
PROOF OF THEOREM 11

Let NEA�→B be a quantum state-dependent channel with
state information at the encoder and masking from the decoder,
as in Theorem 9. We now consider quantum communication
without assistance. The converse proof without assistance is
based on different considerations from those in the classical
converse proof by Merhav and Shamai [16]. In the classical
proof, the derivation of the bounds on both the communication
and leakage rates begins with Fano’s inequality, followed by
arguments that do not hold in our model since conditional

quantum entropies can be negative. Hence, we bound the leak-
age rate in a different manner using the coherent information
bound on the communication rate. The direct part is a con-
sequence of our previous result on masking with rate-limited
entanglement assistance (see Theorem 8). In the second part,
we derive a single-letter outer bound for Hadamard channels
using the special properties of those channels. To bound the
communication rate Q, we only need to use the fact that
Hadamard channels are degradable. As for the bound on the
leakage rate L, here we observe that for Hadamard channels,
there also exists a channel from the output B to BC1K , i.e.
the channel output combined with the decoder’s environment.

Part 1

Achievability of rate-leakage pairs in RQ(N ) immediately
follows from Theorem 8, taking Re = 0. To show that rate-
leakage pairs in 1

kRQ(N⊗k) are achievable as well, employ
the coding scheme in the proof of Theorem 8 in Appendix B
for the product channel N⊗k, where k is arbitrarily large.

Next, we move the converse part. Suppose that Alice and
Bob are trying to generate entanglement between them. An
upper bound on the rate at which Alice and Bob can generate
entanglement also serves as an upper bound on the rate at
which they can communicate qubits, since a noiseless quantum
channel can be used to generate entanglement by sending one
part of an entangled pair. In this task, Alice locally prepares
a maximally entangled state,

|ΦMM � � = 1√
2nQ

2nQ∑
m=1

|m�M ⊗ |m�M � . (143)

Denote the joint state at the beginning by

|θMM �En
0 E

nCn� = |ΦMM � � ⊗ |φE0EC�⊗n (144)

where En are the channel state systems, En0 are the CSI
systems that are available to Alice, and Cn are the systems
that are masked from Bob. Then, Alice applies an encoding
channel FM �En

0 →A�n to the quantum system M � and the CSI
systems En0 . The resulting state is

ρMA�nEnCn ≡ FM �En
0 →A�n(θMM �En

0 E
nCn). (145)

After Alice sends the systems A�n through the channel, Bob
receives the systems Bn in the state

ρMBnCn ≡ N⊗n
EA�→B(ρMEnA�nCn). (146)

Then, Bob performs a decoding channel DBn→M̂ , producing

ρMM̂Cn ≡ DBn→M̂ (ρABnCn). (147)

Consider a sequence of codes (Fn,Dn) for entanglement
generation, such that

1
2

∥∥ρMM̂ − ΦMM �
∥∥

1
≤ αn (148)

1
n
I(Cn;Bn)ρ ≤ L+ βn (149)

where αn, βn tend to zero as n→∞.
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By the Alicki-Fannes-Winter inequality [131], [132]
[36, Theorem 11.10.3], (148) implies that |H(M |M̂)ρ −
H(M |M �)Φ| ≤ nεn, or equivalently,

|I(M�M̂)ρ − I(M�M �)Φ| ≤ nεn (150)

where εn tends to zero as n→∞. Observe that I(M�M �)Φ =
H(M)Φ −H(MM �)Φ = nQ− 0 = nQ. Thus,

nQ = I(M�M �)Φ
≤ I(M�M̂)ρ + nεn

≤ I(M�Bn)ρ + nεn (151)

where the last line follows from (147) and the data processing
inequality for the coherent information [36, Theorem 11.9.3].
In addition,

nQ = H(M)Φ = H(M)θ
= H(M |EnCn)θ
= H(M |EnCn)ρ (152)

where the second line follows since M and
(En, Cn) are in a product state. Hence, Q ≤
1
n min{I(M�Bn)ρ, H(M |EnCn)ρ} + εn. Let An be
quantum systems such that for some isometry WM→An ,

ρAnA�nEnCn = WM→AnρMA�nEnCnW †
M→An . (153)

Since the von Neumann entropy is isometrically invariant [36,
Property 11.1.5], it follows that

Q ≤ 1
n

min{I(An�Bn)ρ, H(An|EnCn)ρ}+ εn. (154)

As for the leakage rate, by (149),

n(L + βn)
≥ I(Cn;Bn)ρ
= I(Cn;MBn)ρ − I(Cn;M |Bn)ρ
= I(Cn;MBn)ρ −H(M |Bn)ρ +H(M |BnCn)ρ (155)

= I(Cn;MBn)ρ + I(M�Bn)ρ +H(M |BnCn)ρ
≥ I(Cn;MBn)ρ + n(Q− εn) +H(M |BnCn)ρ (156)

where the last line follows from (151). Since

H(M |BnCn)ρ ≥ − log |HM | = −nQ (157)

(see [36, Theorem 11.5.1]), we have

L+ βn + εn ≥
1
n
I(Cn;MBn)ρ (158)

=
1
n
I(Cn;AnBn)ρ. (159)

This completes the proof for the regularized capacity-leakage
characterization.

Remark 12: We note that in the classical converse proof in
[16], the authors obtain an inequality that is similar to (155)
(see Eq. (21) in [16]). The next step in their proof is to use
Fano’s inequality in order to bound the second term by

H(M |Bn)ρ ≤ nεn (160)

and to eliminate the third term, as H(M |BnCn)ρ ≥ 0.
In the quantum setting, we can still write (160), however,
the last term is negative and could not be eliminated, as
H(M |BnCn)ρ ≤ H(M |Bn)ρ ≤ −n(Q− εn) < 0.

Part 2

Suppose that N H
EA�→B is a Hadamard channel with an

isometric extension V H
EA�→BC1 K (see Definition 3). The

direct part follows from Theorem 8 as in part 1. It remains to
prove the single-letter converse part.

Returning to the entanglement generation protocol which
we started with in part 1, we now define

Ai = (M,Bi−1,Ki−1, Ci−1, Cni+1). (161)

For every i ∈ {1, . . . , n}, consider the spectral representation

ρMEiA�iCn
i+1

=
∑
xi∈Xi

pXi(xi)ψ
xi

MEiA�iCn
i+1

(162)

where pXi(xi) is a probability distribution and
{|ψxi

MEiA�iCn
i
�}xi∈Xi form an orthonormal basis, hence

ρMBiCi
1K

iCn
i+1

=
∑
xi∈Xi

pXi(xi)ψ
xi

MBiCi
1K

iCn
i+1

(163)

where |ψxi

MBiCi
1K

iCn
i+1
� = (V H

EA�→BC1 K)⊗i|ψxi

MEiA�iCn
i+1
�.

By (20), we also have ρMBiKiCi
1C

n
i+1

= ρMBiKiCiCn
i+1

, hence

ρMBiKiCn =
∑
xi∈Xi

pXi(xi)ψ
xi

MBiKiCn (164)

with |ψxi

MBiCiKiCn
i+1
� = (V H

EA�→BCK)⊗i|ψxi

MEiA�iCn
i+1
�.

Given a sequence of codes (Fn,Dn) that satisfy (148)-(149),

n(Q− εn) ≤ −H(M |Bn)ρ
≤ −H(M |BnXn)ρ
= H(Bn|Xn)ρ −H(MBn|Xn)ρ (165)

where the first inequality is due to (151), and the second
inequality holds since conditioning does not increase entropy
[36, Theorem 11.4.1]. By (164), the state of M,Bn,Kn, Cn is
pure when conditioned on Xn = xn, hence H(MBn|Xn)ρ =
H(KnCn|Xn)ρ. Thus, we can write the last bound as

n(Q− εn)
≤ H(Bn|Xn)ρ −H(KnCn|Xn)ρ
= H(BnXn)ρ −H(KnCnXn)ρ

=
n∑
i=1

[H(BiXi|Bi−1X i−1)ρ

−H(KiCiXi|Ki−1Ci−1X i−1)ρ]

=
n∑
i=1

[
H(BiXi)ρ −H(KiCiXi)ρ

−
(
I(BiXi;Bi−1X i−1)ρ − I(KiCiXi;Ki−1Ci−1X i−1)ρ

) ]
≤

n∑
i=1

[
H(BiXi)ρ −H(KiCiXi)ρ

]
(166)

where the last inequality holds since Hadamard channels are
degradable (see Subsection II-C), and thus

I(BiXi;Bi−1X i−1)ρ ≥ I(KiC1,iXi;Ki−1Ci−1
1 X i−1)ρ

= I(KiCiXi;Ki−1Ci−1X i−1)ρ
(167)
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by the data processing theorem for the quantum mutual
information [36, Theorem 11.9.4] and due to (20).

Now, according to (164), the state of M,Bi,Ki, Cn is pure
for a given Xi = xi, hence

H(Bi|Xi)ρ = H(MBi−1KiCn|Xi)ρ
= H(AiKiCi|Xi) (168)

(see (161)). Then, (166) implies

n(Q− εn) ≤
n∑
i=1

H(Ai|CiKiXi)ρ

≤
n∑
i=1

H(Ai|CiKi)ρ (169)

since conditioning does not increase entropy.
Defining Y to be a classical random variable of uniform dis-

tribution over {1, . . . , n}, in a product state with the previous
systems, we have

Q− εn ≤
1
n

n∑
i=1

H(Ai|CiKi)ρ

= H(AY |CYKY Y )ρ
≤ H(A|CK)ρ (170)

with ρY AY EY CY A�
Y

= 1
n

∑n
i=1 |i��i| ⊗ ρAiEiCiA�

i
,

ρY AY CY BY KY = UN
EA�→BK(ρY AY CY EY A�

Y
), and then

A ≡ (AY , Y ), E ≡ EY , C ≡ CY , A� ≡ A�
Y (171)

and B,C1,K such that ρABC1 KC =
V H
EA�→BC1 K(ρAEA�C).
As for the leakage rate, we begin with an observation

that follows from our definition of Hadamard state-dependent
channels in Subsection II-C. Observe that given a Hadamard
channel which is extended by VEA�→C1 KB , there exists a
channel from B to BC1 K . Specifically, if we define a channel
LB→BC1 K as the mapping ψxB �→ ψxB⊗ηxC1 K , then we have

ρABC1KC = LB→BC1K(ρABC) (172)

or explicitly,

VEA�→C1KB(ρAEA�C) = (LB→BC1K ◦ NEA�→B)(ρAEA�C)
(173)

for all ρAA�EC with ρEC = φEC .
By (151),

n(L+ βn)
≥ I(Cn;MBn)ρ + n(Q− εn) +H(M |BnKnCn)ρ
≥ I(Cn;MBn)ρ − nεn (174)

since H(M |BnKnCn)ρ ≥ − log |HM | = −nQ (see [36,
Theorem 11.5.1]). Next, we apply the chain rule and write

n(L+ βn + εn) ≥ I(Cn;BnM)ρ

=
n∑
i=1

I(Ci;BnM |Cni+1)ρ

≥
n∑
i=1

I(Ci;BiBi−1M |Cni+1)ρ

=
n∑
i=1

I(Ci;BiBi−1MCni+1)ρ (175)

where the last equality holds since Ci and Cni+1 are in a
product state, hence I(Ci;Cni+1)ρ = 0. Using the fact that
there exists a channel from Bi−1 to Bi−1Ci−1

1 Ki−1 (see
(172)), along with the data processing theorem for the quantum
mutual information, we deduce that

I(Ci;BiMBi−1Cni+1)ρ ≥ I(Ci;BiMBi−1Ki−1Ci−1
1 Cni+1)ρ

= I(Ci;BiMBi−1Ki−1Ci−1Cni+1)ρ
= I(Ci;AiBi)ρ (176)

where the first equality follows from our definition of a
Hadamard state-dependent channel (see (20)), and the last line
is due to (161). Thus, by (175) and (176),

L+ βn + εn ≥
1
n

n∑
i=1

I(Ci;AiBi)ρ = I(CY ;AY BY |Y )ρ

= I(CY ;Y AY BY )ρ = I(C;AB)ρ (177)

where the first equality holds as the classical variable Y
is uniformly distributed over {1, . . . , n}, the second since
I(CY ;Y )ρ = H(CY )ρ−H(CY |Y )ρ = H(C)φ−H(C)φ = 0,
and the last equality follows from (171). This concludes the
proof of Theorem 11.
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