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Communication over entanglement-breaking channels with unreliable entanglement assistance

Uzi Pereg *

ECE Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel

(Received 30 May 2023; accepted 27 September 2023; published 23 October 2023)

Entanglement assistance can improve communication rates significantly. Yet its generation is susceptible to
failure. The unreliable assistance model accounts for those challenges. Previous work provided an asymptotic
formula that outlined the tradeoff between the unassisted and excess rates from entanglement assistance. We de-
rive a full characterization for entanglement-breaking channels and show that combining entanglement-assisted
and unassisted coding is suboptimal. From a networking perspective, this finding is nontrivial and highlights a
quantum behavior arising from superposition.
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I. INTRODUCTION

Quantum entanglement has the potential to revolutionize
communication systems, as it can be used to transmit informa-
tion at speeds far beyond what is possible classically [1–3]. In
optical communications, generating preshared entanglement
between the transmitter and the receiver can be challeng-
ing due to photon absorption during transmission. Therefore,
practical systems rely on a back channel to confirm successful
entanglement generation [4]. However, this introduces de-
lays and further degrades entanglement resources. The author,
along with Deppe and Boche [5], proposed an alternative
approach for communication with unreliable entanglement
assistance. Our principle of operation provides reliability by
design, by adapting the communication rate based on the
availability of entanglement assistance, while eliminating the
need for feedback, repetition, or distillation.

A fundamental task in information theory is to deter-
mine the channel capacity, i.e., the ultimate transmission rate
of communication with a vanishing probability of decoding
error. The Holevo-Schumacher-Westmoreland (HSW) theo-
rem provides an asymptotic description of the capacity of a
quantum channel in the form of a multiletter regularized ex-
pression [6,7]. One may employ the HSW theorem to compute
lower bounds on the capacity and even obtain a complete
characterization in specific examples. However, in Shannon
theory, multiletter capacity formulas are generally consid-
ered an incomplete solution, for reasons of computability
[8], uniqueness [9], and insights on optimal coding [10]. In
the entanglement-assisted communication setting, where pre-
shared entanglement resources are available to the transmitter
and the receiver, a complete single-letter characterization
is well established [11] and can be viewed as the quan-
tum parallel of Shannon’s capacity theorem [12]. Therefore,
entanglement-assisted communication has favorable attributes
from both performance and analysis perspectives.
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Let us now consider communication with unreliable en-
tanglement assistance. Suppose that Alice wishes to send two
messages at rates R and R′. She encodes both messages using
her share of the entanglement resources, as she does not know
whether Bob will have access to the entangled resources.
Nevertheless, heralded entanglement generation guarantees
that Bob knows whether the procedure was successful or
not. Bob has two decoding procedures. If the entanglement
assistance has failed to reach Bob’s location, he performs a
decoding operation to recover the first message alone. Hence,
the communication system operates on a rate R. Whereas if
Bob has entanglement assistance, he decodes both messages,
hence the overall transmission rate is R + R′. In other words,
R is a guaranteed rate and R′ is the excess rate of information
that entanglement assistance provides.

The previous work [5] established an asymptotic regular-
ized formula for the capacity region, i.e., the set of all rate
pairs (R, R′) that can be achieved with a vanishing probability
of decoding error. The achievability scheme is inspired by the
classical network technique of superposition coding (SPC).
We refer to the quantum method as quantum SPC. The clas-
sical technique consists of layered codebooks, by which the
codewords are divided into so-called cloud centers and satel-
lites, representing the first and second layers, respectively. In
analogy, quantum SPC uses conditional quantum operations
that map quantum cloud centers to quantum satellite states.
Decoding is performed in two stages. First, Bob recovers the
cloud index, corresponding to the guaranteed information. If
the entanglement assistance is absent, then Bob quits after the
first step. Otherwise, if Bob has entanglement assistance, then
he continues to decode the satellite, i.e., the excess informa-
tion. Until now, it has remained unclear whether quantum SPC
is optimal.

Entanglement breaking is a fundamental property of a large
class of quantum channels, mapping any entangled state to
a separable state [13]. One example is the qubit depolar-
izing channel, which is entanglement breaking only when
the depolarization parameter is greater than or equal to 2/3
[14]. From a Shannon-theoretic perspective, entanglement-
breaking channels are much better understood, compared
to general quantum channels [15–20]. In particular, the
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unassisted capacity is characterized by the single-letter
Holevo information [15]. While an entanglement-breaking
channel cannot be used to generate entanglement, it may
facilitate the transmission of classical messages, and entangle-
ment assistance can increase the channel capacity for sending
classical information substantially [3]. Shor [15] established
the single-letter characterization of the unassisted capacity by
first showing that the Holevo information of an entanglement-
breaking channel is additive. The author [21] has recently
pointed out a more direct approach, proving a single-letter
converse proof “from scratch.”

Entanglement breaking channels and their properties have
been extensively studied in the literature [22–26]. Matsumoto
et al. [27] portrayed the relation between the additivity
property and the entanglement of formation. Wilde et al.
[18] proved the strong converse property for entanglement-
breaking channels. Entanglement-breaking multiple-access
channels and broadcast channels were considered in [28] and
[19], respectively. More recently, Müller-Hermes and Singh
[29] showed that, if the positive partial transposition (PPT)
condition holds for both the channel and its complemen-
tary, then the channel is entanglement breaking, and thus
antidegradable (see also [30,31]).

In this work, we establish full characterization of the ca-
pacity region with unreliable entanglement assistance for the
class of entanglement-breaking channels. Our main contribu-
tion is thus a converse result that complements the previous
achievability proof, and shows that quantum SPC is indeed
optimal for the class of entanglement-breaking channels. The
analysis relies on observations from another work by the au-
thor [21], Sec. III-D along with the geometric properties of
the rate region. To complete the characterization, we single-
letterize our capacity formula and show that the auxiliary
systems have bounded dimensions.

We also demonstrate our results for an entanglement-
breaking depolarizing channel. We show that quantum SPC
can outperform time division even in this simple point-to-
point setting. This is surprising because SPC is typically
useful in more complex network setups, and does not yield an
advantage in point-to-point communication. For example, in a
classical broadcast channel with degraded messages, where a
transmitter communicates with two receivers, SPC is unneces-
sary when the receivers’ outputs are identical, as the capacity
region can be attained using a simpler approach of time divi-
sion. That is, concatenating two single-user codes is optimal.
In our context, the system can be regarded as a quantum
broadcast channel with degraded messages where one receiver
has entanglement assistance and the other does not. Neverthe-
less, the output states of the receivers are identical (without
violating the no-cloning theorem, as we consider two alterna-
tive scenarios). The expectation would be that time division,
combining assisted and unassisted codes, achieves optimality.
However, this expectation is proven false as quantum SPC
can outperform time division, based on the combination of
a superposition code with a superposition state.

Illustrative metaphor

Communication with unreliable entanglement assistance
is not a mere combination of the entanglement-assisted and

unassisted settings. The protocol poses a challenge as Alice
must encode without knowledge of the availability of as-
sistance. The availability of entanglement is not associated
with a probabilistic model either. To illustrate the concept of
reliability, consider the following metaphor.

Imagine there are N travelers embarking on a journey
aboard a ship that may have a variable number of lifeboats.
The total capacity of the lifeboats is L, which determines how
many travelers can be accommodated in case of a shipwreck,
L � N . The ship’s speed is denoted as V ≡ V (N, L), while
the lifeboats’ speed is v0. If the ship does not sink, each
traveler will travel at speed V . To avoid a morbid narrative,
let us envision that, in the event of an unforeseen shipwreck,
(N − L) travelers will be safely rescued and brought back
to the starting point, while the journey continues with the
remaining travelers aboard the lifeboats. The speed of travel in
this scenario is calculated as the average speed of the lifeboats,
R = (L/N )v0.

In our metaphor, R represents the guaranteed speed for the
remaining travelers, while R′ = V − R indicates the excess
speed that the ship would have provided. Increasing the num-
ber of lifeboats improves the guaranteed speed but reduces the
excess speed, while decreasing the number of lifeboats has the
opposite effect. When planning for the worst-case scenario, it
is crucial to consider both speeds, R and R′, rather than just
the average speed.

One may consider the option of dividing the travelers
among a heavy ship and a light ship. Figuratively, our findings
show that if the journey is subject to a quantum evolution, then
we may outperform the division plan by allowing travelers to
be in a quantum superposition state between the two ships.

II. CODING WITH UNRELIABLE ASSISTANCE

A. Notation, information measures, and quantum channels

We use standard notation for quantum channels and
information measures, as in [9], Chap. 11. The letters
X,Y, Z, . . . , represent discrete random variables, on finite sets
X ,Y,Z, . . ., respectively. The distribution of X is specified
by a probability mass function (pmf) pX (x) on X . We use
xn = (xi )i∈[n] to denote a sequence of letters from X .

The state of a quantum system A is given by a density
operator on the Hilbert space HA. A measurement is speci-
fied by a collection of operators {Dj} that forms a positive
operator-valued measure (POVM), i.e., Dj � 0 and

∑
j D j =

1, where 1 is the identity operator. Given a bipartite state
ρAB, define the quantum mutual information by I (A; B)ρ =
H (ρA) + H (ρB) − H (ρAB), where H (ρ) ≡ −Tr[ρ log2(ρ)] is
the von Neumann entropy. The conditional quantum en-
tropy and mutual information are defined by H (A|B)ρ =
H (ρAB) − H (ρB) and I (A; B|C)ρ = H (A|C)ρ + H (B|C)ρ −
H (A, B|C)ρ , respectively.

A quantum channel NA→B is a completely-positive trace-
preserving (cptp) map. If the systems An = (A1, . . . , An) are
sent through n channel uses, then the input state ρAn undergoes
the tensor product mapping N⊗n

A→B. The channel is called
entanglement breaking if, for every input state ρAA′ , where A′
is an arbitrary reference system, the channel output is sep-
arable, i.e., (NA→B ⊗ 1)(ρAA′ ) = ∑

x∈X pX (x)ψx
B ⊗ ψx

A′ , for
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some pmf pX and pure states ψx
B and ψx

A′ . The Kraus rep-
resentation of an entanglement-breaking channel consists of
unit-rank Kraus operators. Furthermore, every entanglement-
breaking channel can be represented as a serial concatenation
of a measurement channel followed by a classical-quantum
channel [9], Corollary 4.6.1.

B. Coding and channel capacity

We define a code for communication with unreliable en-
tanglement resources. Alice and Bob’s entangled systems are
denoted TA and TB, respectively.

Definition 1. A (2nR, 2nR′
, n) code with unreliable entan-

glement assistance consists of the following: Two message
sets [2nR] and [2nR′

], where 2nR, 2nR′
are integers, an en-

tangled state �TA,TB , a collection of encoding maps Fm,m′
TA→An

for m ∈ [2nR] and m′ ∈ [2nR′
], and two decoding POVMs,

DBnTB = {Dm,m′ } and D∗
Bn = {D∗

m}.
Alice chooses two messages, m ∈ [2nR] and m′ ∈ [2nR′

].
She applies the encoding map to her share of the entangled
state, and then transmits An over n channel uses of NA→B.
Bob receives Bn. If the entanglement assistance is present, i.e.,
Bob has access to the resource TB, then he should recover both
messages. He performs a joint measurement DBnTB to obtain
an estimate (m̂, m̂′).

Otherwise, if entanglement assistance is absent, Bob does
not have TB. Hence, he performs the measurement D∗

Bn to
obtain an estimate ˆ̂m of the first message alone. The error
probability is

P(n)
e|m,m′ = 1 − Tr

[
D ◦ N⊗n

A→B ◦ Fm,m′
(�TA,TB )

]
(1)

in the presence of entanglement assistance, and

P∗(n)
e|m,m′ = 1 − Tr

[
D∗ ◦ N⊗n

A→B ◦ Fm,m′
(�TA )

]
(2)

without assistance. The encoded input remains the same in
both scenarios since Alice does not know whether entan-
glement is available or not. Therefore, the error depends on
(m, m′) in both cases. A rate pair (R, R′) is achievable if
there exists a sequence of (2nR, 2nR′

, n) codes with unreliable
entanglement assistance, such that max(P(n)

e|m,m′ , P∗(n)
e|m,m′ ) → 0

as n → ∞. The capacity region CEA*(N ) with unreliable en-
tanglement assistance is defined as the set of achievable rate
pairs.

III. RESULTS

Let NA→B be an entanglement-breaking channel (see
Sec. II A). Define the region

REA*(N ) =
⋃ {

(R, R′) : R � I (X ; B)ω
R′ � I (G2; B|X )ω

}
, (3)

where the union is over all auxiliary variables X ∼ pX , all
quantum states ϕG1G2 , and all encoding channels F (x)

G1→A,

ωXAG2 =
∑
x∈X

pX (x)|x〉〈x| ⊗ (
F (x)

G1→A ⊗ id
)
(ϕG1G2 ),

ωXBG2 = (id ⊗ NA→B ⊗ id)(ωXAG2 ), (4)

where id is the identity map. Intuitively, X represents the guar-
anteed information, and G1, G2 are Alice and Bob’s resources.

Since the entangled resources G1 and G2 are preshared, the
state is uncorrelated with the messages. Alice encodes the
excess information using the encoding channel F (x).

A. Capacity theorem

Our main results are stated below, characterizing the ca-
pacity region for communication over entanglement-breaking
channels with unreliable entanglement assistance. Previous
work [5] established a regularized characterization for the
capacity region, i.e., an asymptotic multiletter formula of the
form

⋃∞
K=1

1
K R(N⊗K ). Here, we provide a complete charac-

terization in the form of a single-letter formula.
Theorem 1. The capacity region of an entanglement-

breaking quantum channel NA→B with unreliable entangle-
ment assistance is given by

CEA*(N ) = REA*(N ), (5)

where REA*(N ) is as defined in (3).
The proof is given in Sec. IV B.
Remark 1. Single-letterization is highly valued in Shannon

theory for reasons of computability [8], uniqueness [9], and
insights on optimal coding [10]. See further discussion in
Sec. VI B. However, the result in Theorem 1 in itself is not
enough to claim that this is truly a single-letter characteri-
zation, as the computation of a rate region requires specified
dimensions. Thereby, we show in Sec. III C that the auxiliary
systems, X , G1, and G2, all have bounded dimensions. To-
gether, the results in Theorem 1 and Sec. III C complete the
characterization.

B. Equivalent characterization

Before we prove the capacity theorem, we establish useful
properties of the region REA*(N ), as defined in (3). We show
an equivalence to the region below

OEA*(N ) =
⋃{

(R, R′) : R � I (X ; B)ω
R + R′ � I (XG2; B)ω

}
, (6)

where the union is as in (3). This will be useful in the proof
for our main theorem in Sec. IV B, where we will show that
every achievable rate pair must lie within OEA*(N ).

We give the intuition below. To show the equivalence
between the regions REA*(N ) and OEA*(N ), we use the
geometric properties of our regions, as illustrated in Fig. 1.
The region REA*(N ) is defined in (3) as a union of rect-
angles. In particular, the light-shaded rectangle in Fig. 1
corresponds to the bounds 0 � R � I (X ; B)ω and 0 � R′ �
I (G2; B|X )ω, for a fixed auxiliary variable, state, and encod-
ing channels. The corner point of the region is denoted by
P0 = [I (X ; B)ω, I (G2; B|X )ω]. Similarly, the region OEA*(N )
is a union of trapezoids, the corners of which are P0 and
P1 = [0, I (XG2; B)ω]. Hence, the dark shaded area in Fig. 1 is
the gap between the rectangle and the trapezoid, which the re-
gions REA*(N ) and OEA*(N ) are comprised of. Now, observe
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FIG. 1. Achievable rate regions.

that the point P1 belongs to another rectangle in REA*(N ),
taking Ḡ2 and X̄ to be (X, G2) and null, respectively. There-
fore, the convexity of the region REA*(N ) implies that
any convex combination Pλ = (1 − λ)P0 + λP1 must also lie
within REA*(N ), thereby REA*(N ) = OEA*(N ). The details
are given below.

We begin with the convexity of our original region.
Lemma 1. The rate region REA*(N ) is a convex set.
As explained above, the convexity of REA*(N ) implies

that the point Pλ in Fig. 1 is included within the union of
rectangles, i.e., Pλ ∈ REA*(N ). We obtain the following con-
sequence.

Corollary 1. For every λ ∈ [0, 1],

REA*(N ) ⊇
{

(R, R′) : R � (1 − λ)I (X ; B)ω
R′ � I (G2; B|X )ω + λI (X ; B)ω

}
.

(7)

The proof for the convexity properties in Lemma 1 and
Corollary 1 is given in Appendix. Next, we use those prop-
erties to establish equivalence.

Lemma 2 (Equivalence). REA*(N ) = OEA*(N ).
Proof. The inclusion REA*(N ) ⊆ OEA*(N ) is immediate

by the chain rule. It remains to show that every rate pair in the
region OEA*(N ), belongs to REA*(N ) as well.

Let (R, R′) ∈ OEA*(N ), hence

R � I (X ; B)ω, R + R′ � I (XG2; B)ω. (8)

By the first inequality, there exists 0 � λ � 1 such that

R = (1 − λ)I (X ; B)ω. (9)

By (8) and (9),

R′ � I (XG2; B)ω − R

= I (XG2; B)ω − I (X ; B)ω + λI (X ; B)ω

= I (G2; B|X )ω + λI (X ; B)ω. (10)

Hence, by Corollary 1, (R, R′) ∈ REA*(N ). �

C. Single letterization

As mentioned above, single letterization is highly valued in
Shannon theory (see Remark 1 and discussion in Sec. VI B).

We establish that our characterization is a single-letter for-
mula. Specifically, the auxiliary systems, X , G1, and G2, all
have bounded dimensions. Denote the channel input dimen-
sion by dA ≡ dim(HA).

Lemma 3. The union in (3) is exhausted by pure
states |φG1G2〉, cardinality |X | � d 2

A + 1, and dimensions
dim(HG1 ) = dim(HG2 ) � dA(d 2

A + 1).
The first part has already been stated in [5]. The quan-

tum dimension bound is new, see the proof in Sec. IV A
below.

IV. ANALYSIS

A. Single letterization

The first part of Lemma 3 has already been estab-
lished in our previous work [5], Lemma 2, using con-
vex analysis. Bounding the quantum dimensions is more
challenging.

Consider a pure state |ψG1G2〉. Since the Schmidt rank is
bounded by each dimension, we may assume without loss of
generality (w.l.o.g.) that G1 and G2 are qudits of the same
dimension d0, for some d0 > 0. We would like to show that
the union can be restricted such that encoded state ωx

G2A ≡
(id ⊗ F (x)

G1A)(|ψG2G1〉〈ψG2G1 |) remains pure.
Since every quantum channel has a Stinespring dila-

tion, there exists a unitary V (x) such that F (x)
G1→A(ρ) =

TrDE [V (x)(|0〉〈0|D ⊗ ρ)V (x)†], where V (x) maps from HD ⊗
HG1 to HE ⊗ HA, while D, E are reference systems with
appropriate dimensions. Since G1 is an arbitrary ancilla, we
may include the reference D within this ancilla, and simplify
as F (x)

G1→A(ρ) = TrE [U (x)ρU (x)†], where U (x) is a unitary from
HG1 to HE ⊗ HA.

We would like the ancilla G2 to absorb the reference E
as well. Seemingly, this would contradict (3) as E could be
correlated with x. To resolve this difficulty, we show that the
encoding operation can be reflected to G2. Fix x ∈ X and
consider the purification |ω(x)

G2EA〉 ≡ (1 ⊗ U (x) )|ψG2G1〉.
Let Wi, j denote the Weyl operators on HG1

∼= HG2 , for
i, j ∈ {0, . . . , d0 − 1} [9], Sec. 3.7.2. By plugging a decompo-
sition of |ψG2G1〉 in the generalized Bell basis [9], Ex. 3.7.11,
and applying the mirror lemma, by which (1 ⊗ U )|	〉 =
(U T ⊗ 1)|	〉 for every qudit operator U [9], Ex. 3.7.12, we
obtain |ω(x)

G2EA〉 = ∑d0−1
i, j=0 αi, j (Wi, jF

(x)
G1→G2E ⊗ 1A)|	〉G1A, with

F (x)
G1→G2E = (U (x) )T . We see that (3) can thus be represented

as a union over all unitaries F (x)
G1→G2E ⊗ 1A.

In this formulation, both E and G2 are encoded by an
operation depending on x. Thus, we can extend the union to
Ḡ2 = (G2, E ). The bound on the guaranteed rate R remains.
As for the excess rate, I (Ḡ2; B|X )ω � I (G2; B|X )ω. Hence, it
suffices to consider pure states |ω(x)

G2A〉, the Schmidt rank of
which is bounded by dA. Thus, the region is exhausted with
d0 � |X |dA. �

B. Capacity proof

The direct part was proved in our earlier work [5]. We now
focus our attention on the converse. Suppose that Alice and
Bob share an unreliable resource �TATB . Alice first prepares
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FIG. 2. Achievable rate regions.

the classical correlation

πKMK ′M ′ ≡
⎛⎝ 1

2nR

2nR∑
m=1

|m〉〈m| ⊗ |m〉〈m|
⎞⎠

⊗
⎛⎝ 1

2nR′

2nR′∑
m′=1

|m′〉〈m′| ⊗ |m′〉〈m′|
⎞⎠ (11)

locally. She encodes by FMM ′TA→An , and transmits An. Bob
receives Bn in the state ωKK ′TBBn ≡ (id ⊗ N⊗nF )(π ⊗ �). He
decodes with either DBnTB→M̂M̂ ′ or D∗

Bn→M̃
, depending on the

availability of entanglement assistance.
Consider a sequence of codes (Fn, �n,Dn,D∗

n ) with van-
ishing errors. By continuity and data processing arguments [5,
Appendix C]

nR � I (K ; Bn)ω + nε∗
n, (12)

n(R + R′) � I (KK ′TB; Bn)ω + nεn, (13)

where εn, ε
∗
n → 0 as n → ∞.

Since the channel is entanglement breaking, it can be
represented by a measurement channel MA→Y , followed by
a preparation channel PY →B, where Y is classical [21], Sec.
III-D. Define the sequence of classical variables,

Xi ≡ (K,Y i−1), for i ∈ [n]. By the chain rule and the data
processing inequality, (12) and (13) imply

n(R − ε∗
n ) �

n∑
i=1

I (KBi−1; Bi )ω

�
n∑

i=1

I (KY i−1; Bi )ω

=
n∑

i=1

I (Xi; Bi )ω, (14)

and similarly,

n(R + R′ − εn) �
n∑

i=1

I (K ′TBXi; Bi )ω. (15)

Letting J be uniformly distributed index in [n], we
have R − ε∗

n � I (XJ ; BJ |J )ω � I (JXJ ; BJ )ω and R + R′
− εn � I (K ′TBJXJ ; BJ )ω with respect to ωJK ′TBXJ BJ ≡ 1

n

∑n
i=1|i〉〈i|J ⊗ ωK ′TBXiBi .

Taking G2 ≡ (K ′, TB), X ≡ (J, XJ ), A ≡ AJ , hence B ≡
BJ , we deduce that (R, R′) ∈ OEA∗(N ). This, in turn, implies
(R, R′) ∈ REA∗(N ), by Lemma 2. �

V. EXAMPLE

Consider the qubit depolarizing channel, N (ρ) = (1 −
ε)ρ + ε 1

2 , with ε ∈ [0, 1]. The unassisted capacity, C(N ), is
achieved with a symmetric distribution over {|0〉, |1〉} (see
[32]). On the other hand, the capacity with reliable entangle-
ment assistance CEA(N ) is achieved with an EPR state [33].
A classical mixture of those strategies yields the time division
region, CEA*(N ) ⊇ ⋃

0�λ�1{(R, R′ ) : R � (1 − λ)C(N )
R′ � λCEA(N ) }. We claim

that this is suboptimal.
Figure 2 depicts the capacity region for a parameter such

that the channel is entanglement breaking, ε = 0.7 (as op-
posed to [5], Example 1). The time-division bound is below
the red line, whereas the blue curve indicates the capacity
region that is achieved using a superposition state. Based
on Theorem 1, we establish that the capacity region of an
entanglement-breaking qubit depolarizing channel with unre-
liable entanglement assistance is given by

CEA*(N ) =
⋃

0�α� 1
2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(R, R′) : R � 1 − h2
(
α ∗ ε

2

)
R′ � h2(α) + h2

(
α ∗ ε

2

) − H
[

αε
2 , (1−α)ε

2 ,

1
2 − ε

4 −
√

ε2

16 − (1 − α)αε
(
1 − 3ε

4

) + 1−ε
4 ,

1
2 − ε

4 +
√

ε2

16 − (1 − α)αε
(
1 − 3ε

4

) + 1−ε
4

]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (16)

where H (p) ≡ −∑
i pi log2(pi ) is the Shannon entropy for a

classical probability vector p, the binary entropy function is
denoted by h2(x) ≡ H (x, 1 − x) for x ∈ [0, 1], and α ∗ β =
(1 − α)β + α(1 − β ) is the binary convolution operation.

Proof. By Theorem 1, it suffices to evaluate the region
REA*(N ), as defined in (3).

We begin with the converse part and show that the set on
the right-hand side of (16) is an outer bound on REA*(N ).
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Consider a rate pair (R, R′) ∈ REA*(N ). Hence, R � I (X ; B)ω
and R′ � I (G2; B|X )ω, or, equivalently,

R � H (B)ω − H (B|X )ω, (17a)

R′ � H (G2|X )ω + H (B|X )ω − H (G2B|X )ω, (17b)

for some pure input state |φG1G2〉, variable X ∼ pX , and en-
coder F (x)

G1→A (see Lemma 3).
Based on the analysis in Sec. IV A, it suffices to consider an

encoder that produces a pure state |ω(x)
G2A〉, for x ∈ X . Consider

a Schmidt decomposition∣∣ω(x)
G2A

〉 =
√

1 − αx|θ0x〉 ⊗ |ψ0x〉 + √
αx|θ1x〉 ⊗ |ψ1x〉,

with αx ∈ [0, 1]. Since the encoding channel is applied to G1

alone, the reduced state of G2 remains unchanged. Thereby,
the eigenvalues (1 − αx, αx ) must be independent of x. That
is, αx ≡ α for x ∈ X , hence

H (G2|X )ω = h2(α). (18)

Furthermore, the depolarizing channel is unitarily covariant,
i.e., N (UρU †) = UN (ρ)U † for every unitary U on HA.
Thus,

H (B|X )ω = H[N (φ̃A)] = h2

(
α ∗ ε

2

)
, (19)

where |φ̃G2A〉 = (1 − α)|00〉 + α|11〉, and similarly,

H (G2B|X )ω = H ((id ⊗ N )(φ̃G2A))

= H

(
αε

2
,

(1 − α)ε

2
,

1

2
− ε

4

±
√

ε2

16
− (1 − α)αε

(
1 − 3ε

4

)
+ 1 − ε

4

)
(20)

(see [34]). As the output entropy is bounded by H (B)ω � 1,
the converse follows from (17) to (20).

Achievability follows as in [5], Example 1. Instead
of a classical mixture, we now use quantum superpo-
sition. Set |φG1G2〉 ≡ √

1 − α|00〉 + √
α|11〉, pX = ( 1

2 , 1
2 ),

F (x)(ρ) ≡ XxρXx, where X is the bit-flip Pauli operator.
Thus, α = 0 and α = 1

2 achieve the unassisted capacity and
entanglement-assisted capacity, respectively. The resulting re-
gion is the set on the right-hand side of (16). �

VI. SUMMARY AND DISCUSSION

We address communication over an entanglement-breaking
quantum channel, given unreliable entanglement assistance.
Previous work established a multiletter asymptotic formula
and presented the quantum “superposition coding” (SPC)
achievable region [5]. Here, we show that the region is optimal
for entanglement-breaking channels, and we single-letterize
the formula, providing a complete characterization of the
capacity region. Furthermore, we derive a closed-form ex-
pression for the qubit depolarizing channel, with a parameter
ε � 2

3 . It is further demonstrated that the capacity region is
strictly larger than the time-division rate region. From a net-
working perspective, this finding is nontrivial and highlights a
quantum behavior arising from superposition.

We conclude with a discussion on the application in a
dynamic communication network, the importance of single-
letterization, the role of entanglement breaking channels, and
the challenges posed by unreliable entanglement resources:
the underlying motivations, the concept of “hard decision
decoding,” the links to classical models, surprising behavior,
and the expected impact.

A. Dynamic communication and entanglement resources

In a dynamic communication network, information is not
necessarily transmitted between two particular nodes at every
point in time. In principle, in the “quiet” period of time,
entanglement can be generated between those nodes. While
entanglement can be harnessed to generate shared random-
ness, its potential utility extends far beyond that [35,36]. This
motivates using entanglement to enhance various communica-
tion networks and applications, such as the Internet of Things
(IoT) [37–40].

Superdense coding [41] is a fundamental communication
protocol, where a pair of classical bits is transmitted using
just one instance of a noiseless qubit channel and a maximally
entangled pair. This means that entanglement assistance effec-
tively doubles the rate at which classical messages can be sent
over a noiseless qubit channel.

B. Single letterization

In Shannon theory, the efficiency of communication across
noisy channels is described by the concept of channel ca-
pacity. The capacity is defined as the maximum transmission
rate that permits an error probability that tends to zero in the
limit of an infinite blocklength. Remarkably, Shannon [12]
proved that the capacity of a classical channel WY |X admits
a single-letter formula, i.e., a nonasysmtotic expression. The
significance of such single letterization is attributed to the
following:

(1) Computability. Shannon’s capacity formula is gener-
ally considered to be “easy to compute” in the sense that
given the channel statistics, there are efficient algorithms,
such as the Blahut-Arimoto algorithm [42,43] that can solve
this convex optimization problem numerically, up to a given
precision and provided that the input and output dimensions
are not too large. On the other hand, a multiletter formula, of
the form

lim
n→∞

1

n
f (W ⊗n), (21)

is difficult to compute since the dimensions of W ⊗n grow
exponentially with n.

(2) Uniqueness. A multiletter formula does not uniquely
characterize the capacity of a channel for a given task [9]. For
instance, the capacity of a classical channel can be expressed
as [9], Sec. 13.1.3

lim
n→∞

1

n
fc(W ⊗n) = f1(W ), (22)

where

fc(W ) = H (X ) − cH (X |Y ) (23)
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for every constant c � 1. The multiletter formulas
lim 1

n f1(W ⊗n) and lim 1
n f5(W ⊗n) have a different form,

and yet, both describe the channel capacity. Hence, such a
multiletter description is not unique.

(3) Optimal coding. Single-letter formulas provide valu-
able insights into optimal coding strategies in various settings.
For instance, the characterization for the multiple access
channel captures coding techniques such as time sharing
and successive-cancellation decoding [44–46]. For parallel
Gaussian channels, the capacity formula leads to the water
filling power allocation [47–49], among other applications.

Unfortunately, a single-letter characterization for the ca-
pacity of a quantum channel is an open problem [21,50].
Nevertheless, it is important to note that multiletter characteri-
zations remain significant [51], Remark 7. In many examples,
the capacity can be evaluated exactly based on the multiletter
result [9,50]. Furthermore, there are interesting phenomena
that can be observed even when a single-letter expression for
the capacity is not available [52,53].

In the entanglement-assisted communication setting,
where preshared entanglement resources are available to the
transmitter and the receiver, a complete single-letter character-
ization is well established, and can be viewed as the quantum
parallel of Shannon’s capacity theorem [11] [51, Remark 5].
The characterization with entanglement assistance provides
a computable upper bound for unassisted communication as
well. Therefore, entanglement-assisted communication has
favorable attributes from both performance and analysis
perspectives.

C. Entanglement breaking channels

Entanglement breaking is a fundamental property of a large
class of quantum channels (see Sec. II A), including measure-
ment channels and classical-quantum (c-q) channels [13]. The
qubit depolarizing channel is entanglement breaking if and
only if the depolarization parameter is greater than or equal
to 2/3 [14].

While an entanglement-breaking channel cannot be used
to generate entanglement, it may facilitate the transmission of
classical messages, and entanglement assistance can increase
the channel capacity for sending classical information sub-
stantially [3]. Furthermore, the capacity without assistance is
solved as well. Shor [15] established the single-letter charac-
terization of the unassisted capacity by first showing that the
Holevo information of an entanglement-breaking channel is
additive.

Here, we used a more direct approach, which was recently
pointed out by the author [21] (see also [19]), proving a single-
letter converse proof “from scratch.” The proof is based on the
representation of an entanglement breaking channel as a serial
concatenation of a measurement channel and a c-q channel,
along with the data-processing inequality (see capacity proof
in Sec. IV B).

D. Unreliable entanglement resources

Communication with unreliable entanglement assistance
was proposed by the author, along with Deppe and Boche
[5]. The model accounts for the practical challenges and low

efficiency of entanglement generation in current implemen-
tations and experiments [54]. The framework is inspired by
classical approaches for unreliable cooperation resources in
the classical literature [55–61]. The focus in our quantum
setting, however, is on a point-to-point quantum channel and
the reliability of correlation resources.

Our principle of operation provides reliability by design,
by adapting the communication rate based on the availability
of entanglement assistance, while eliminating the need for
feedback, repetition, or distillation. As illustrated in the In-
troduction, and as opposed to other models in the literature
[62], the availability of entanglement is not associated with
a probabilistic model either. Here, the receiver is aware of the
availability or absence of entanglement resources through her-
alded entanglement generation. The receiver performs “hard
decision decoding” [63], deciding whether the entanglement
resources are usable or not at all.

Drawing a parallel with the classical cooperation model
[56], the unreliable assistance model is based on the engineer-
ing aspects and the architecture of modern communication
networks. We anticipate that future quantum communication
networks will adhere to similar reliability principles. In par-
ticular, we envision that in a large quantum communication
network, the availability of entanglement resources will not
be guaranteed in advance. Specifically, the accessibility of en-
tanglement resources will depend on factors such as weather
conditions, the operational status of quantum repeaters, or the
willingness of peers to provide assistance. In such a network,
the transmitter and the receiver are aware of the possibility that
entanglement assistance will be available, yet its confirmation
remains uncertain until reception.

The model exhibits unexpected behavior, highlighting that
communication with unreliable entanglement assistance is
not a mere combination of the entanglement-assisted and
unassisted settings. We showed that, for an entanglement-
breaking depolarizing channel, quantum SPC outperforms
time division even in this simple point-to-point setting. This
is surprising because SPC is typically useful in more com-
plex network setups, and does not yield an advantage in
point-to-point communication. For example, in a classical
broadcast channel with degraded messages, where a trans-
mitter X communicates with two receivers, Y1 and Y2, SPC
is unnecessary when the receivers’ outputs are identical, i.e.,
Y1 = Y2, as the capacity region can be attained using a sim-
pler approach of time division. That is, concatenating two
single-user codes is optimal. In our context, the system can be
regarded as a quantum broadcast channel with degraded mes-
sages where one receiver has entanglement assistance and the
other does not. Nevertheless, the output states of the receivers
are identical (without violating the no-cloning theorem, as we
consider two alternative scenarios). The expectation would be
that time division, combining assisted and unassisted codes,
achieves optimality. However, this expectation is proven false
as quantum SPC can outperform time division, based on the
combination of a superposition code with a superposition
state.

We expect that the present work will have a significant
impact due to its relevance to practical systems, the interest-
ing and unexpected properties, and the potential applicability
of our reliability principles across a wide variety of tasks
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and protocols that rely on preestablished entanglement. These
range between research areas such as communication, dis-
tributed computing, complexity theory, and cryptography,
among others.
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APPENDIX: CONVEXITY PROPERTIES

In Sec. III B, we presented convexity properties of the
region REA∗(N ), as defined in (3). Since the derivation is
technical, we delegated the proof to the Appendix.

1. Proof of Lemma 1

Let λ ∈ [0, 1]. Consider two rate pairs, (Ru, R′
u), u ∈ {1, 2},

that belong to the rate region REA*(N ). Then, we have Ru �
I (X ; B|U = u)ω and R′

u � I (G(u)
2 ; B|X,U = u)ω for some

conditional distribution pX |U , entangled state ϕG(u)
1 G(u)

2
, and

encoding channel F (x,u)
G(u)

1 →A
.

Consider the joint state

ϕĀ0Ā1
= ϕG(1)

1 G(1)
2

⊗ ϕG(2)
1 G(2)

2
. (A1)

Given u ∈ {1, 2}, define an encoding channel F̄ (x,u)
Ā0→A

that maps

from Ā0 to A, such that

F̄ (x,1)
Ā0→A

≡ F (x,1)
G(1)

1 →A
◦ TrG(2)

1
, (A2)

F̄ (x,1)
Ā0→A

≡ F (x,1)
G(1)

1 →A
◦ TrG(2)

1
. (A3)

The system A is then sent through the channel NA→B. We
note that if U = 1, then the output is uncorrelated with G(2)

2 .
Similarly, for U = 2, there is no correlation with G(1)

2 .

Therefore,

I (Ā1; B|X,U = u)ω = I
(
G(u)

2 ; B|X,U = u
)
ω

(A4)

for u ∈ {1, 2}.
Let U ∼ Bernoulli(λ), with λ ∈ [0, 1]. Observe that the

convex combinations of the rates satisfy

Rλ ≡ (1 − λ)R1 + λR2 � I (X ; B|U )ω � I (XU ; B)ω, (A5)

and

R′
λ ≡ (1 − λ)R′

1 + λR′
2 � I (Ā1; B|XU )ω, (A6)

with respect to the following states

ωXUĀ1A =
∑

(x,u)∈X×U
pU (u)pX |U (x|u)|x, u〉〈x, u|

⊗ (id ⊗ F̄ (x,u)
Ā0→A

)(ϕĀ1Ā0
), (A7)

ωXUĀ1B = (id ⊗ NA→B)(ωXUĀ1A). (A8)

As we substitute the auxiliary variable X̄ ≡ (X,U ) in (3), we
observe that the pair (Rλ, R′

λ) is in the rate region REA*(N ) as
well. Thereby, the region is a convex set. �

2. Proof of Corollary 1

The proof for Corollary 1 follows from the convexity prop-
erty in Lemma 1. It suffices to consider the boundaries of the
two regions in (7).

Consider (R1, R′
1) = [I (X ; B)ω, I (G2; B|X )ω]. Next, we

claim that the rate pair (R2, R′
2) = [0, I (XG2; B)ω] belongs to

REA*(N ) as well. To see this, set

X̃ ≡ ∅, Ã1 ≡ (X, G2), Ã0 ≡ A, and

ϕÃ1Ã0
≡ ωXG2A. (A9)

As for the convex combination of (R1, R′
1) and (R2, R′

2), we
have

Rλ ≡ (1 − λ)R1 + λR2 = (1 − λ)I (X ; B)ω (A10)

and

R′
λ ≡ (1 − λ)R′

1 + λR′
2

= (1 − λ)I (G2; B|X )ω + λI (XG2; B)ω

= I (G2; B|X )ω + λ[I (XG2; B)ω − I (G2; B|X )ω]

= I (G2; B|X )ω + λI (X ; B)ω (A11)

by the chain rule for the quantum mutual information. By
Lemma 1, the pair (Rλ, R′

λ) belongs to the region REA∗(N ),
hence the corollary follows from (A10) to (A11) �.
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