



# Communication Over Entanglement-Breaking Channels With Unreliable Entanglement Assistance

Uzi Pereg ECE, Technion

International Zurich Seminar on Information and Communication | March 8, 2024



# **Motivation**



Quantum information technology will potentially boost future 6G systems from both communication and computing perspectives.

#### Progress in practice:

- Quantum key distribution for secure communication (511 km in optical fibers, 1200 km through space)
  - o commercially available: MagiQ, IDQuantique (82k\$)
  - o development: Toshiba, Airbus EuroQCI



|                               | anopiaonioo  |                   |                |               |
|-------------------------------|--------------|-------------------|----------------|---------------|
| Introduction<br>●○○○○○○○○○○○○ | Model<br>000 | Results<br>000000 | Example<br>000 | Summary<br>00 |
|                               |              |                   |                |               |

Uzi Pereg - Unreliable Entanglement Assistance

# **Motivation**



Quantum information technology will potentially boost future 6G systems from both communication and computing perspectives.

Progress in practice:

- Quantum key distribution for secure communication (511 km in optical fibers, 1200 km through space)
  - o commercially available: MagiQ, IDQuantique (82k\$)
  - development: Toshiba, Airbus EuroQCI



|                                             | 61           | lopidoniooni |                |               |
|---------------------------------------------|--------------|--------------|----------------|---------------|
| Introduction<br>●000000000000               | Model<br>000 | Results      | Example<br>000 | Summary<br>00 |
| Uzi Pereg – Unreliable Entanglement Assista | nce          |              |                | 2/30          |

# **Motivation: Entanglement Breaking**



 Entanglement breaking is a fundamental property of a large class of quantum channels, mapping any entangled state to a separable state.

- Examples: classical channels, measurement channels,...
- $\circ$  qubit depolarizing channels, parameter  $\geq 2/3$
- Entanglement-breaking channels are much better understood, compared to general quantum channels
  - single-letter formula [Shor, 2002]
  - strong converse



Entanglement resources are instrumental in a wide variety of quantum network frameworks:

- Physical-layer security (device-independent QKD, quantum repeaters) [Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]
- Sensor networks [Xia et al. 2021]
- Communication rate [Bennett et al. 1999] [Hao et al. 2021]

••••





Entanglement resources are instrumental in a wide variety of quantum network frameworks:

- Physical-layer security (device-independent QKD, quantum repeaters) [Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]
- Sensor networks [Xia et al. 2021]
- Communication rate [Bennett et al. 1999] [Hao et al. 2021]

•••





Entanglement resources are instrumental in a wide variety of quantum network frameworks:

- Physical-layer security (device-independent QKD, quantum repeaters) [Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]
- Sensor networks [Xia et al. 2021]

. . .

Communication rate [Bennett et al. 1999] [Hao et al. 2021]





Entanglement resources are instrumental in a wide variety of quantum network frameworks:

- Physical-layer security (device-independent QKD, quantum repeaters) [Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]
- Sensor networks [Xia et al. 2021]

. . .

Communication rate [Bennett et al. 1999] [Hao et al. 2021]



### Motivation: Entanglement (Cont.)



- In order to generate (heralded) entanglement in an optical communication system, the transmitter may prepare an entangled pair of photons locally, and then send one of them to the receiver.
- Such generation protocols are not always successful, as photons are easily absorbed before reaching the destination.



| Introduction                                   | Model | Results | Example | Summary |
|------------------------------------------------|-------|---------|---------|---------|
|                                                | 000   | 0000000 | 000     | 00      |
| Uzi Pereg – Unreliable Entanglement Assistance | 9     |         |         | 5/30    |

### Motivation: Entanglement (Cont.)



- In order to generate (heralded) entanglement in an optical communication system, the transmitter may prepare an entangled pair of photons locally, and then send one of them to the receiver.
- Such generation protocols are not always successful, as photons are easily absorbed before reaching the destination.



### Motivation: Entanglement (Cont.)



- Therefore, practical systems require a back channel. In the case of failure, the protocol is to be repeated. The backward transmission may result in a delay, which in turn leads to a further degradation of the entanglement resources.
- In our previous work, we proposed a new principle of operation: The communication system operates on a rate that is adapted to the status of entanglement assistance. Hence, feedback and repetition are not required. [Pereg et al. 2023]

## **Unreliable Resources**



Reliability (very partial list):

- Unreliable channel
  - outage capacity [Ozarow, Shamai, and Wyner 1994]
  - automatic repeat request (ARQ) [Caire and Tuninetti 2001] [Steiner and Shamai 2008]
  - cognitive radio [Goldsmith et al. 2008]
  - Network connectivity [Simeone et al. 2012] [Sengupta and Tandon 2015]
- Unreliable cooperation [Steinberg 2014]
  - cribbing encoders [Huleihel and Steinberg 2016]

Model

conferencing decoders [Huleihel and Steinberg 2017]
 [Itzhak and Steinberg 2017] [Pereg and Steinberg 2020]

Introduction

Example

#### The Fundamental Problem

| Introduction                        | Model<br>000 | Results | Example<br>000 | Summary<br>00 |
|-------------------------------------|--------------|---------|----------------|---------------|
| Uzi Pereg – Unreliable Entanglement | Assistance   |         |                | 8/30          |

# Fundamental Problem: Noiseless Channel



#### Classical Bit-Pipe

The capacity of a classical noiseless bit channel is

classical bit transmission

#### Holevo Bound

The classical capacity of a noiseless qubit channel is

classical bit transmission

| Introduction                               | Model | Results | Example | Summary |
|--------------------------------------------|-------|---------|---------|---------|
| 0000000000000                              |       | 0000000 | 000     | 00      |
| Uzi Pereg – Unreliable Entanglement Assist | ance  |         |         | 9/30    |

# Fundamental Problem: Noiseless Channel + Assistance



# Theorem The classical common-randomness (CR) capacity of a noiseless bit-pipe is 1 classical bit transmission Holevo Bound The classical capacity of a noiseless qubit channel is

classical bit transmission

| Introduction                                   | Model<br>000 | Results | Example<br>000 | Summary<br>00 |
|------------------------------------------------|--------------|---------|----------------|---------------|
| Uzi Pereg – Unreliable Entanglement Assistance |              |         |                | 9/30          |

# Fundamental Problem: Noiseless Channel + Assistance



#### Theorem

The classical common-randomness (CR) capacity of a noiseless bit-pipe is

classical bit transmission

#### Theorem

The classical entanglement-assisted (EA) capacity of a noiseless qubit channel is

 $2 \frac{\text{classical bits}}{\text{transmission}}$ 

| Introduction<br>0000000000000           | Model     | Results | Example<br>000 | Summary<br>00 |
|-----------------------------------------|-----------|---------|----------------|---------------|
| Lizi Pereg – Linreliable Entanglement A | esistance |         |                | 9/30          |

Superdense Coding



|                                         | Model   | Results | Example | Summar |
|-----------------------------------------|---------|---------|---------|--------|
| Uzi Pereg – Unreliable Entanglement Ass | istance |         |         | 10/30  |



Superdense Coding



Helen Diller

Quantum Center

| Introduction<br>00000000000000      | Model      | Results<br>0000000 | Example<br>000 | Summar<br>00 |
|-------------------------------------|------------|--------------------|----------------|--------------|
| Uzi Pereg – Unreliable Entanglement | Assistance |                    |                | 11/30        |

We consider transmission with unreliable EA: The entangled resource may fail to reach Bob.

#### **Extreme Strategies**

- 1) Uncoded communication
  - Guaranteed rate: R = 1
  - Excess rate: R' = 0
- 2) Alice: Employ superdense encoder.

Bob: If EA is present, employ superdense decoder. If EA is absent, abort.





We consider transmission with unreliable EA: The entangled resource may fail to reach Bob.

#### **Extreme Strategies**

Introduction

Uzi Pereg - Unreliable Entanglement Assistance

- 1) Uncoded communication
  - Guaranteed rate: R = 1
  - Excess rate: R' = 0
- 2) Alice: Employ superdense encoder.
  - Bob: If EA is present, employ superdense decoder.

Model

If EA is absent, abort.

- Guaranteed rate: R = 0
- Excess rate: R' = 2



Results

We consider transmission with unreliable EA: The entangled resource may fail to reach Bob.

#### **Extreme Strategies**

Introduction

- 1) Uncoded communication
  - Guaranteed rate: R = 1
  - Excess rate: R' = 0
- 2) Alice: Employ superdense encoder.

Bob: If EA is present, employ superdense decoder. If EA is **absent**, abort.

Model

- Guaranteed rate: R = 0
- Excess rate: R' = 2



Uzi Pereg – Unreliable Entanglement Assistance



#### **Time Division**

- Guaranteed rate:  $R = 1 \lambda$
- Excess rate:  $R' = 2\lambda$
- ★ Is this optimal?

| Introduction                                 | Model | Results | Example | Summary |
|----------------------------------------------|-------|---------|---------|---------|
|                                              | 000   | 0000000 | 000     | 00      |
| Uzi Pereg – Unreliable Entanglement Assistar | ce    |         |         | 13/30   |



- Full capacity characterization for entanglement-breaking channels
- Closed-form capacity formula for the depolarizing channel
- Time division is suboptimal.
  - \* From a networking perspective, this finding is nontrivial and highlights a quantum behavior arising from superposition.

#### Illustration



Metaphor: *N* travelers are embarking on a long journey on a ship. Overall, the lifeboats on the ship can accommodate *L* travelers,  $0 \le L \le N$ . In the event that the ship sinks, (N - L) travelers will be rescued and brought back to their starting point, and the journey will continue with the remaining travelers in the lifeboats.



Port of Haifa, Israel

| Introduction<br>○○○○○○○○○○○●            | Model   | Results | Example<br>000 | Summar<br>00 |
|-----------------------------------------|---------|---------|----------------|--------------|
| Uzi Pereg – Unreliable Entanglement Ass | istance |         |                | 15/30        |

## Illustration



Metaphor: *N* travelers are embarking on a long journey on a ship. Overall, the lifeboats on the ship can accommodate *L* travelers,  $0 \le L \le N$ . In the event that the ship sinks, (N - L) travelers will be rescued and brought back to their starting point, and the journey will continue with the remaining travelers in the lifeboats.

| # life boats: $L$                                 | many | few  |
|---------------------------------------------------|------|------|
| Guaranteed: $R = \frac{L}{N} v_{\text{lifeboat}}$ | high | low  |
| Excess: $R' = v_{ship} - R$                       | low  | high |

| Introduction<br>○○○○○○○○○○○●              | Model      | Results<br>0000000 | Example<br>000 | Summary<br>00 |
|-------------------------------------------|------------|--------------------|----------------|---------------|
| I Izi Pereg – I Inreliable Entanglement / | Assistance |                    |                | 15/30         |

# Illustration



Metaphor: *N* travelers are embarking on a long journey on a ship. Overall, the lifeboats on the ship can accommodate *L* travelers,  $0 \le L \le N$ . In the event that the ship sinks, (N - L) travelers will be rescued and brought back to their starting point, and the journey will continue with the remaining travelers in the lifeboats.

| # life boats: $L$                                 | many | few  |
|---------------------------------------------------|------|------|
| Guaranteed: $R = \frac{L}{N} v_{\text{lifeboat}}$ | high | low  |
| Excess: $R' = v_{ship} - R$                       | low  | high |

- Division plan: Divide the passengers between a light ship and a heavy ship  $\Rightarrow$  $(R, R') = (1 - \lambda)(R_{\text{light}}, R'_{\text{light}}) + \lambda(R_{\text{heavy}}, R'_{\text{heavy}}).$
- Figuratively, our results show that if the journey is subject to a quantum evolution, then we
  may outperform the division plan by allowing travelers to be in a quantum superposition
  state between a heavy ship and a light ship.



Communication Scheme (1)

Alice chooses two messages, m and m'.



| Introduction                           | Model    | Results | Example | Summary |
|----------------------------------------|----------|---------|---------|---------|
|                                        | ●○○      | 000000  | 000     | 00      |
| Uzi Pereg – Unreliable Entanglement As | sistance |         |         | 16/30   |



Communication Scheme (2)

Input: Alice prepares  $\rho_{A^n}^{m,m'} = \mathcal{F}^{m,m'}(\Psi_{G_A})$ , and transmits  $A^n$ . Output: Bob receives  $B^n$ .



| Introduction Model Results Example Summary<br>000000000000000000000000000000000000 |
|------------------------------------------------------------------------------------|
|                                                                                    |



#### Decoding with Entanglement Assistance

If EA is *present*, Bob performs a measurement D to estimate m, m'.



| Introduction                            | Model    | Results | Example | Summary |
|-----------------------------------------|----------|---------|---------|---------|
|                                         | ●○○      | 0000000 | 000     | 00      |
| Uzi Pereg – Unreliable Entanglement Ass | sistance |         |         | 16/30   |



#### Decoding without Assistance

If EA is absent, Bob performs a measurement  $\mathcal{D}^*$  to estimate *m* alone.



| Introduction                          | Model<br>●○○ | Results | Example<br>000 | Summary<br>00 |
|---------------------------------------|--------------|---------|----------------|---------------|
| Uzi Pereg – Unreliable Entanglement A | ssistance    |         |                | 16/30         |

# Coding with Unreliable Assistance (Cont.)



#### Capacity Region

- (R, R') is achievable with unreliable entanglement assistance if there exists a sequence of  $(2^{nR}, 2^{nR'}, n)$  codes such that the error probabilities (with and without assistance) tend to zero as  $n \to \infty$ .
- The capacity region  $\mathcal{C}_{\mathsf{EA}*}(\mathcal{N})$  is the closure of the set of achievable rate pairs.

| Introduction Model Results Example Summary | Lizi Pereg – Linreliable Entanglement A | ssistance | 000000  | 000     | 17/30   |
|--------------------------------------------|-----------------------------------------|-----------|---------|---------|---------|
|                                            | Introduction                            | Model     | Results | Example | Summary |

# Coding with Unreliable Assistance (Cont.)



#### **Capacity Region**

- (R, R') is achievable with unreliable entanglement assistance if there exists a sequence of  $(2^{nR}, 2^{nR'}, n)$  codes such that the error probabilities (with and without assistance) tend to zero as  $n \to \infty$ .
- The capacity region  $\mathcal{C}_{\mathsf{EA}*}(\mathcal{N})$  is the closure of the set of achievable rate pairs.

#### **Entanglement-Breaking Channels**



#### Definition

A quantum channel  $\mathcal{N}_{A \to B}$  is called **entanglement breaking** if for every input state  $\rho_{AA'}$ , where A' is an arbitrary reference system, the channel output  $\mathcal{N}_{A \to B}(\phi_{AE})$  is separable, i.e.,

$$\mathcal{N}_{A \to B}(\phi_{AE}) = \sum_{y \in \mathcal{Y}} p_Y(y) \psi_B^y \otimes \psi_E^y$$

| Introduction                           | Model<br>○○● | Results | Example<br>000 | Summary<br>00 |
|----------------------------------------|--------------|---------|----------------|---------------|
| Lizi Pereg – Unreliable Entanglement A | sistance     |         |                | 18/30         |

#### **Main Result**



Let  $\mathcal{N}_{A \rightarrow B}$  be a quantum channel. Define

$$\mathcal{R}_{\mathsf{EA}^{\star}}(\mathcal{N}) = igcup_{p_{X}, \varphi_{G_{1}G_{2}}, \mathcal{F}^{(\chi)}} \left\{ egin{array}{c} (R, R') : R \leq & l(X; B)_{
ho} \ R' \leq & l(G_{2}; B|X)_{
ho} \end{array} 
ight\}$$

where the union is over all auxiliary variables  $X \sim p_X$ , bipartite states  $\varphi_{G_1G_2}$ , and quantum encoding channels  $\mathcal{F}_{G_1 \to A}^{(x)}$ , with

$$\rho_{XG_2A} = \sum_{x \in \mathcal{X}} p_X(x) |x\rangle \langle x| \otimes (\mathsf{id} \otimes \mathcal{F}_{G_1 \to A}^{(x)})(\varphi_{G_1 G_2}),$$
  
$$\rho_{XG_2B} = (\mathsf{id} \otimes \mathcal{N}_{A \to B})(\rho_{XG_2A}).$$

Introduction Model Results Example Summary



#### Theorem

The capacity region of an entanglement-breaking quantum channel  $\mathcal{N}_{A \to B}$  with unreliable entanglement assistance is given by

$$\mathcal{C}_{\mathsf{EA}^{\star}}(\mathcal{N}) = \mathcal{R}_{\mathsf{EA}^{\star}}(\mathcal{N})$$

U. Pereg, "Communication over entanglement-breaking channels with unreliable entanglement assistance," *Physical Review A*, vol. 108.4, 042616, October 2023.

| Introduction Model Results Example Summary | Lizi Pereg – Unreliable Entanglement As | ssistance |         |         | 20/30   |
|--------------------------------------------|-----------------------------------------|-----------|---------|---------|---------|
|                                            |                                         | Model     | Results | Example | Summary |



#### Theorem

The capacity region of an entanglement-breaking quantum channel  $\mathcal{N}_{A \to B}$  with unreliable entanglement assistance is given by

 $\mathcal{C}_{\mathsf{EA}^\star}(\mathcal{N}) = \mathcal{R}_{\mathsf{EA}^\star}(\mathcal{N})$ 

- Single-letterization is highly valued in Shannon theory
  - computability [Körner, 1987]
  - / uniqueness [Wilde, 2017]
  - / insights on optimal coding [El Gamal and Kim, 2011]

## Achievability [Pereg et al., 2023]



- based on a quantum version of "Superposition Coding":



| Introduction                                   | Model | Results | Example | Summary |
|------------------------------------------------|-------|---------|---------|---------|
| 0000000000000                                  | 000   | ○○●○○○○ | 000     | 00      |
| Uzi Pereg – Unreliable Entanglement Assistance | 9     |         |         | 21/30   |





- the main contribution.

Proof is based on the technique from [Pereg, 2022] and geometric properties.

| Uzi Pereg - Unreliable Entanglement Ass | istance |                    |                | 22/30         |
|-----------------------------------------|---------|--------------------|----------------|---------------|
| Introduction                            | Model   | Results<br>○○○●○○○ | Example<br>000 | Summary<br>00 |
|                                         |         |                    |                |               |

## **Convexity Properties**



Similar properties as for the broadcast channel with degraded message sets:



| Introduction                                   | Model | Results | Example | Summary |
|------------------------------------------------|-------|---------|---------|---------|
| 000000000000                                   | 000   | 0000000 | 000     | 00      |
| Uzi Pereg – Unreliable Entanglement Assistance |       |         |         | 23/30   |

## **Convexity Properties**



Similar properties as for the broadcast channel with degraded message sets:



Uzi Pereg - Unreliable Entanglement Assistance

#### **Converse Proof**



Every entanglement-breaking can be represented by a measurement channel, followed by a preparation channel:  $\mathcal{N}_{A \to B} = \mathcal{P}_{Y \to B} \circ \mathcal{M}_{A \to Y}$ . Thus, by DPI,

$$n(R-\varepsilon_n^*) \leq \sum_{i=1}^n I(M,B^{i-1};B_i)_{\omega} \leq \sum_{i=1}^n I(M,Y^{i-1};B_i)_{\omega} \equiv \sum_{i=1}^n I(X_i;B_i)_{\omega},$$

and similarly,

$$n(R+R'-arepsilon_n)\leq \sum_{i=1}^n I(M',G_B^{(n)},X_i;B_i)_\omega$$
.

Then, introduce a time-sharing variable  $\sim \text{Unif}[n]$ , as usual.

| Introduction                                   | Model | Results<br>○○○○○●○ | Example<br>000 | Summary<br>00 |
|------------------------------------------------|-------|--------------------|----------------|---------------|
| Uzi Pereg – Unreliable Entanglement Assistance |       |                    |                |               |

#### **Single Letterization**



Denote the input dimension by  $d_A \equiv \dim(\mathcal{H}_A)$ .

#### Lemma

The union is exhausted by pure states  $|\phi_{G_1G_2}\rangle$ , cardinality  $|\mathcal{X}| \leq d_A^2 + 1$ , and dimensions  $\dim(\mathcal{H}_{G_1}) = \dim(\mathcal{H}_{G_2}) \leq d_A(d_A^2 + 1)$ .

- The first part has already been stated in [Pereg et al., 2023].
- The quantum dimension bound is new.
   Using the mirror lemma, the encoding on G<sub>1</sub> is reflected onto G<sub>2</sub>.

#### **Example: Depolarizing Channel**



#### Qubit depolarizing channel

$$\mathcal{N}(
ho) = (\mathsf{1} - arepsilon) 
ho + arepsilon rac{\mathbb{1}}{2} \ , \ \ arepsilon \in \left[rac{2}{3}, \mathsf{1}
ight]$$

Capacity Formula with Unreliable Entanglement Assistance

$$\mathcal{C}_{\mathsf{EA}^*}(\mathcal{N}) = \bigcup_{0 \le \alpha \le \frac{1}{2}} \left\{ \begin{array}{cc} (R, R') : R & \le 1 - h_2 \left(\alpha * \frac{\varepsilon}{2}\right) \\ R' & \le h_2(\alpha) + h_2 \left(\alpha * \frac{\varepsilon}{2}\right) - H\left(\frac{\alpha \varepsilon}{2}, \frac{(1-\alpha)\varepsilon}{2}, \beta_+, \beta_-\right) \end{array} \right\}$$

with  $\beta_{\pm} \equiv \frac{1}{2} - \frac{\varepsilon}{4} \pm \sqrt{\frac{\varepsilon^2}{16}} - (1 - \alpha)\alpha\varepsilon(1 - \frac{3\varepsilon}{4}) + \frac{1-\varepsilon}{4}$ , where  $H(\mathbf{p}) \equiv -\sum_i p_i \log(p_i)$  is the Shannon entropy,  $h_2(x) \equiv H(x, 1 - x)$ ,  $\alpha * \beta = (1 - \alpha)\beta + \alpha(1 - \beta)$ .

| Introduction                                   | Model | Results | Example | Summary |
|------------------------------------------------|-------|---------|---------|---------|
|                                                | 000   | 0000000 | ●OO     | 00      |
| Uzi Pereg – Unreliable Entanglement Assistance |       |         |         |         |



#### **Converse Part**

follows from our capacity theorem + observations from [Leung and Watrous, 2017].

Achievability: Quantum Superposition State

#### Set

 $\ket{\phi_{G_1G_2}} \equiv \sqrt{1-lpha} \ket{0} \otimes \ket{0} + \sqrt{lpha} \ket{1} \otimes \ket{1}$ 

and

$$p_X = \left(rac{1}{2},rac{1}{2}
ight) \quad,\quad \mathcal{F}^{(x)}(
ho) \equiv \Sigma^x_X 
ho \Sigma^x_X$$

| Introduction                                   | Model | Results | Example | Summary |
|------------------------------------------------|-------|---------|---------|---------|
|                                                | 000   | 0000000 | OOO     | 00      |
| Uzi Pereg – Unreliable Entanglement Assistance |       |         |         |         |

#### Example: Depolarizing Channel (Cont.)



Figure: Capacity region for  $\varepsilon = 0.7$ .

Helen Diller

Quantum Center

TECHNION

| Introduction                                   | Model | Results | Example<br>○○● | Summary<br>00 |
|------------------------------------------------|-------|---------|----------------|---------------|
| Uzi Pereg – Unreliable Entanglement Assistance |       |         |                |               |

### **Summary and Concluding Remarks**



- We considered communication over an entanglement-breaking quantum channel  $\mathcal{N}_{A \to B}$ , where Alice and Bob are provided with *unreliable* entanglement assistance.
- Our model resembles a broadcast channel  $\mathcal{N}_{A \to B_1 B_2}$  when both receivers have the same output<sup>1</sup>, yet only one has entanglement assistance.
  - ♠ In the classical case:  $B_1 \equiv B_2 \Rightarrow$  time division is optimal
  - Surprisingly, in the quantum case, time division is suboptimal.
- Our optimal scheme combines quantum superposition states + superposition coding. Thereby, our findings highlight a quantum behavior arising from superposition.

<sup>1</sup>While this is intuitive, it is physically impossible by the no-cloning theorem.

| Introduction                                   | Model | Results | Example | Summary |
|------------------------------------------------|-------|---------|---------|---------|
|                                                | 000   | 0000000 | 000     | ●0      |
| Uzi Pereg – Unreliable Entanglement Assistance |       |         |         |         |

# **Summary and Concluding Remarks**



- We considered communication over an entanglement-breaking quantum channel  $\mathcal{N}_{A \to B}$ , where Alice and Bob are provided with *unreliable* entanglement assistance.
- Our model resembles a broadcast channel N<sub>A→B1B2</sub> when both receivers have the same output<sup>1</sup>, yet only one has entanglement assistance.
  - In the classical case:  $B_1 \equiv B_2 \Rightarrow$  time division is optimal
  - Surprisingly, in the quantum case, time division is suboptimal.
- Our optimal scheme combines quantum superposition states + superposition coding. Thereby, our findings highlight a quantum behavior arising from superposition.

#### <sup>1</sup>While this is intuitive, it is physically impossible by the no-cloning theorem.

| Introduction                                   | Model | Results | Example<br>000 | Summary<br>●○ |
|------------------------------------------------|-------|---------|----------------|---------------|
| Uzi Pereg – Unreliable Entanglement Assistance |       |         |                |               |

# **Summary and Concluding Remarks**



- We considered communication over an entanglement-breaking quantum channel  $\mathcal{N}_{A \to B}$ , where Alice and Bob are provided with *unreliable* entanglement assistance.
- Our model resembles a broadcast channel N<sub>A→B1B2</sub> when both receivers have the same output<sup>1</sup>, yet only one has entanglement assistance.
  - In the classical case:  $B_1 \equiv B_2 \Rightarrow$  time division is optimal
  - Surprisingly, in the quantum case, time division is suboptimal.
- Our optimal scheme combines quantum superposition states + superposition coding. Thereby, our findings highlight a quantum behavior arising from superposition.

<sup>&</sup>lt;sup>1</sup>While this is intuitive, it is physically impossible by the no-cloning theorem.

# Summary and Concluding Remarks (Cont.)

 Security: Eve steals resource [Lederman and Pereg, 2024] arXiv:2401.12861 [quant-ph]



Thank you