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Abstract—The optimal coordination rates are determined in
three primary settings of multi-user quantum networks, thus
characterizing the minimal resources for simulating a joint quan-
tum state among multiple parties. We study the following models:
(1) a cascade network with limited entanglement, (2) a broadcast
network, which consists of a single sender and two receivers,
(3) a multiple-access network with two senders and a single
receiver. We establish the necessary and sufficient conditions on
the asymptotically-achievable communication and entanglement
rates in each setting. At last, we show the implications of our
results on nonlocal games with quantum strategies.

I. INTRODUCTION

State distribution and coordination are important in quantum
communication [1], computation [2], and cryptography [3].
The quantum coordination problem can be described as fol-
lows. Consider a network that consists of N nodes, where
Node i can perform an encoding operation Ei on a quantum
system Ai, and its state should be in a certain correlation with
the rest of the network nodes. The objective is to simulate
a specific joint state ωA1,A2,...,AN

. Node i can send qubits to
node j via a quantum channel at a limited rate Qi,j . The nodes
may also share limited entanglement resources, prior to their
communication. The optimal performance is characterized by
the quantum communication rates Qi,j that are necessary and
sufficient for simulating the desired quantum correlation. In
another paper by the authors [4], we consider networks with
classical communication links.

Instances of the network coordination problem include
channel/source simulation [5–9], state merging [10, 11], state
redistribution [12], entanglement dilution [13], randomness
extraction [14], source coding [15, 16], and many other.

Two-node classical coordination: In classical coordina-
tion, the goal is to simulate a joint probability distribution. In
the basic two-node network, as in Figure 1, a joint distribution
pXY can be simulated if and only if the classical commu-
nication rate R1,2 is above Wyner’s common information,
C(X;Y ) ≜ min I(U ;XY ), where the minimum is taken
over all auxiliary variables U that satisfy the Markov relation
X U Y , and I(U ;XY ) is the mutual information between
U and (X,Y ). One may also consider the case where the
nodes share classical correlation resources, a priori, in the
form of common randomness. Given a sufficient amount of
pre-shared common randomness, the desired distribution can
be simulated if and only if the classical communication rate is
above the mutual information, i.e., R1,2 ≥ I(X;Y ) [17, 18].

Two-node quantum coordination: In the quantum setting,
the goal is to simulate a joint state. A bipartite state ωAB can
be simulated if and only if the quantum communication rate
is above the von Neumann entropy [19], i.e., Q1,2 ≥ H(ωB).
Now, suppose that the nodes share entanglement resources,
prior to their communication, as illustrated in Figure 2. Given
sufficient entanglement, the desired state can be simulated
if and only if the quantum communication rate satisfies
Q1,2 ≥ 1

2I(A;B)ω , where I(A;B)ω is the quantum mutual
information, by the quantum reverse Shannon theorem [20].

Multi-node quantum coordination: Here, we consider
quantum coordination in three multi-party networks, motivated
by applications such as the quantum Internet and quantum
repeaters [21]. In each setting, we determine the optimal coor-
dination rates, characterizing the minimal resources required in
order to simulate a joint quantum state among multiple parties.
First, we examine a cascade network that consists of three
users, as depicted in Figure 3. Alice, Bob, and Charlie wish to
simulate a joint quantum state ωABC . Before communication
begins, each party shares entanglement with their nearest
neighbor, at a limited rate. Alice sends qubits to Bob at a rate
Q1,2, and thereafter, Bob sends qubits to Charlie at a rate Q2,3.
Next, we consider a broadcast network with one sender and
two receivers, where the receivers are provided with classical
sequences of information Xn and Y n. See Figure 4. In the
third setting, we consider a multiple-access network, with two
transmitters and a single receiver, as illustrated in Figure 5.

We further discuss the implications of our results on nonlo-
cal quantum games. In particular, coordination in the broadcast
network in Figure 4 can be viewed as a sequential game,
where a coordinator (the sender) provides the players (the
receivers) with quantum resources. In the course of the game,
the referee sends questions, Xn and Y n, to each player, and
they respond with Bn and Cn. In order to win the game with
a certain probability, the communication rates must satisfy the
constraints with respect to an appropriate correlation.

In the analysis, we use different techniques for each setting.
For the cascade network, we use state redistribution [12]. In
the broadcast network, we assume that Alice does not have
prior correlation with Bob and Charlie’s resources Xn and Y n.
Therefore, the of state redistribution [12] and side information
[22] are not suitable. Instead, we use a quantum version of
binning. In the analysis of the multiple-access network, we
use the Schumacher compression protocol and the isometric



relation that is dictated by the network topology.
The full version of this paper can be found in [23].

II. MODELS AND RESULTS

We introduce three quantum coordination models and pro-
vide the required definitions. A quantum state is specified
by a density operator, ρA, on the Hilbert space HA. Let
∆(HA) denote the set of all such density operators. Then,
An = A1 · · ·An is a sequence such that ρAn ∈ ∆(H⊗n

A ). A
quantum channel EA→B is a CPTP map.

A. Cascade network

Consider the cascade network with rate-limited entangle-
ment, as depicted in Figure 3. Alice can send qubits to Bob at
a rate Q1,2 and Bob can send qubits to Charlie at a rate Q2,3.
Moreover, Alice and Bob as well as Bob and Charlie share
entanglement resources at rates E1,2 and E2,3 respectively.

Alice, Bob, and Charlie would like to simulate a joint
state ω⊗n

ABC , where ωABC ∈ ∆(HA ⊗ HB ⊗ HC). Before
communication begins, each party shares bipartite entangle-
ment with their nearest neighbor,

∣∣ΨTAT ′
B

〉
is shared between

Alice and Bob, while
∣∣ΘT ′′

BTC

〉
between Bob and Charlie.

The coordination protocol begins with Alice preparing the
state of her output An and a “quantum description” M1,2.
She sends M1,2 to Bob. As Bob receives M1,2, he encodes
the output Bn and his own quantum description, M2,3, and
then sends M2,3 to Charlie. Upon receiving M2,3, Charlie
encodes Cn. The transmissions M1,2 and M2,3 are limited
to the quantum communication rates Q1,2 and Q2,3, while the
pre-shared resources to the entanglement rates E1,2 and E2,3.
Definition 1. A (2nQ1,2 , 2nQ2,3 , 2nE1,2 , 2nE2,3 , n) coordina-
tion code for the cascade network in Figure 3 consists of:
1) Two bipartite states

∣∣ΨTAT ′
B

〉
and

∣∣ΘT ′′
BTC

〉
on Hilbert

spaces of dimension 2nE1,2 and 2nE2,3 , respectively.
2) two Hilbert spaces, HM1,2

and HM2,3
, of dimension 2nQ1,2

and 2nQ2,3 , respectively, and
3) three encoding maps, ETA→AnM1,2

, FM1,2T ′
BT

′′
B→BnM2,3

,
DM2,3TC→Cn , for Alice, Bob, and Charlie, respectively.

Alice applies the encoding map ETA→AnM1,2 on her share
TA of the entanglement resources. This results in the out-
put state ρ

(1)
AnM1,2T ′

B
= ETA→AnM1,2

(ΨTAT ′
B
). She sends

M1,2 to Bob. He uses M1,2 along with his share T ′
BT

′′
B of

the entanglement resources to encode by ρ
(2)
AnBnM2,3TC

=

FM1,2T ′
BT

′′
B→BnM2,3

(ρ
(1)
AnM1,2T ′

B
⊗ ΘT ′′

B TC
). Bob sends M2,3

to Charlie, whose encoding results in the final joint state,
ρ̂AnBnCn = DM2,3TC→Cn(ρ

(2)
AnBnM2,3TC

). The objective is
that ρ̂AnBnCn is arbitrarily close to the desired state ω⊗n

ABC .
Definition 2. A rate tuple (Q1,2, Q2,3, E1,2, E2,3) is achiev-
able, if ∀ ε, δ > 0 and large n, there exists
a (2n(Q1,2+δ), 2n(Q2,3+δ), 2n(E1,2+δ), 2n(E2,3+δ), n) coordina-
tion code satisfying

∥∥ρ̂AnBnCn − ω⊗n
ABC

∥∥
1
≤ ε.

Remark 1. Coordination in the cascade network can also be
represented as a resource inequality [24], Q1,2[q → q]A→B +
E1,2[qq]AB +Q2,3[q → q]B→C + E2,3[qq]BC ≥ ⟨ωABC⟩.
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Fig. 1. Classical two-node network
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The optimal coordination rates are established below.



Theorem 1. Let |ωRABC⟩ be a purification of ωABC . A rate
tuple (Q1,2, Q2,3, E1,2, E2,3) is achievable for coordination in
the cascade network in Figure 3, if and only if

Q1,2 ≥ 1

2
I(BC;R)ω , (1)

Q1,2 + E1,2 ≥ H(BC)ω , (2)

Q2,3 ≥ 1

2
I(C;RA)ω , (3)

Q2,3 + E2,3 ≥ H(C)ω . (4)

The proof outline is provided in Section IV. The full proof
can be found in [23].

B. Broadcast network

Consider the broadcast network in Figure 4. Consider a
classical-quantum state, ωXYABC , associated with a given
ensemble of states

{
pXY ,

∣∣∣σ(x,y)
ABC

〉}
in ∆(HA ⊗HB ⊗HC).

Alice, Bob, and Charlie wish to simulate ωXYABC . The clas-
sical sequences Xn and Y n are drawn from a common source
p⊗nXY , and given to Bob and Charlie, respectively. Initially,
Alice encodes her output An with two quantum descriptions,
M1,2 and M1,3, which she transmits to Bob and Charlie,
respectively. Bob uses M1,2 and Xn to encode the output
Bn. Similarly, Charlie receives M1,3 and Y n, and encodes
his output Cn. Achievable rates are defined accordingly.
Remark 2. Broadcasting a quantum state among multiple
receivers is impossible by the no-cloning theorem. However,
in our broadcast network, Alice sends two different “quantum
messages” M1,2 and M1,3, i.e., Alice broadcasts correlation.
Remark 3. Alice has no access to Xn nor Y n. Therefore,
coordination can only be achieved for states ωXYABC such
that there is no correlation between A and XY , on their own,
i.e., ωXYA = ωXY ⊗ ωA. Furthermore, standard techniques,
such as state redistribution [12] and quantum source coding
with side information [22], are not suitable. Instead, we
introduce a quantum version of binning.

The optimal coordination rates are established below.
Theorem 2. A rate pair (Q1,2, Q1,3) for the broadcast network
in Figure 4 is achievable if and only if

Q1,2 ≥ H(B|X)ω , Q1,3 ≥ H(C|Y )ω . (5)

The proof outline for Theorem 2 is provided in Section V,
and the full proof in [23].

C. Multiple access network

Consider the multiple-access network in Figure 5. Al-
ice, Bob, and Charlie would like to simulate a pure state
|ωABC⟩⊗n. Alice can send qubits to Bob at a rate of Q1,3 and
Bob to Charlie at a rate of Q2,3. A (2nQ1,3 , 2nQ2,3 , n) code
is defined accordingly. Alice and Bob apply the respective
encoding map, EAn→AnM1,3

and FBn→BnM2,3
, to prepare

ρ
(1)
AnM1,3

⊗ ρ
(2)
BnM2,3

. As Charlie receives M1,3 and M2,3, and
applies DM1,3M2,3→Cn to produce the final state, ρ̂AnBnCn .
Achievable rates are defined accordingly.

Remark 4. As Charlie acts on M1,3 and M2,3, which are
encoded separately, we have ρ̂AnBn = ρ

(1)
An ⊗ ρ

(2)
Bn . Therefore,

one can only simulate states ωABC such that ωAB = ωA⊗ωB .
Hence, there exists an isometry VC→C1C2

such that

(1⊗ VC→C1C2
) |ωABC⟩ = |ωAC1

⟩ ⊗ |ωBC2
⟩ (6)

where |ωAC1
⟩ and |ωBC2

⟩ are respective purifications [25,
Theorem 5.1.1]. If ωABC cannot be decomposed as in (6),
then coordination is impossible in this network.

The optimal coordination rates are given below.
Theorem 3. Let |ωABC⟩ be a pure state as in (6). Then, a
rate pair (Q1,3, Q2,3) for coordination in the multiple-access
network in Figure 5 is achievable if and only if

Q1,3 ≥ H(A)ω , Q2,3 ≥ H(B)ω . (7)

The proof outline for Theorem 3 is provided in Section VI,
and the full proof in [23].

III. NONLOCAL GAMES

The broadcast network model can represent a nonlocal game
[26], where quantum coordination between the players could
provide an advantage. First, we discuss the single-shot game,
and then move on to sequential games with an asymptotic
payoff. Consider Figure 4. Assume that B and C are classical,
while A is void. Here, Alice is a coordinator that generates
correlation between the players, Bob and Charlie. In the
sequential game, we denote the number of rounds by n.

Single shot game (n = 1): A referee provides two
queries X and Y , drawn at random, one for Bob and the
other for Charlie. The players, provide responses, B and C,
respectively. They win the game if the tuple (X,Y,B,C)
satisfies a particular condition. A well known example is the
CHSH game [27], where X,Y,B,C ∈ {0, 1}, and the winning
condition is X ∧Y = B⊕C. Using classical correlations, the
game can be won with probability (w.p.) of at most 0.75. If
the players, Bob and Charlie, share a bipartite state ρM1,2M1,3

,
then they can generate a quantum correlation,

PBC|XY (b, c|xy) = Tr
[(
F

(x)
b ⊗D(y)

c

)
ρM1,2M1,3

]
(8)

by performing local measurements {F (x)
b } and {D(y)

c }. In
particular, in the CHSH game, if the coordinator, Alice,
generates an EPR pair,

∣∣ΦM1,2M1,3

〉
= 1√

2
(|00⟩ + |11⟩), then

their chance of winning improves to cos2
(
π
8

)
≈ 0.8535. Here,

(Q1,2, Q1,3) = (1, 1) is optimal. In the Slofstra-Vidick game
[28], winning w.p. (1− e−T ) requires Q1,j ∝ T .

Sequential game: The players repeat the game n times,
and they can thus use a coordination code. Let S (γ) denote
the set of correlations that win w.p. γ. Based on our results,
the game can be won w.p. γ if and only if Alice can send
qubits to Bob and Charlie at rates Q1,2 and Q1,3 that satisfy
the constraints in Theorem 2 for PBC|XY ∈ S (γ).

IV. CASCADE NETWORK ANALYSIS

Consider the cascade network in Figure 3.



A. Achievability proof

The proof for the direct part exploits state redistribution:
Consider two parties, Alice and Bob. Let their systems be
described by the joint state ψABG, where A and B belong
to Alice, and G belongs to Bob. Let the state |ψABGR⟩ be a
purification. They wish to redistribute so that B is transferred
from Alice to Bob. Alice can send quantum descriptions at
rate Q and they share entanglement at a rate E. Then, by the
state redistribution theorem [12], the optimal rates satisfy

Q ≥ 1

2
I(B;R|G)ψ , (9)

Q+ E ≥ H(B|G)ψ . (10)

We go back to the coordination setting for the cascade network
(see Figure 3). Suppose that Alice prepares the desired state
|ωAB̄C̄R̄⟩⊗n locally, where B̄n, C̄n, R̄n are her ancillas. Let
ε > 0 be arbitrarily small. By the state redistribution theorem
[12], Alice can transmit B̄nC̄n to Bob at communication rate
Q1,2 and entanglement rate E1,2 that satisfy (1)-(2). That
is, there exist a bipartite state ΨTAT ′

B
and encoding maps,

E(1)

B̄nC̄nTA→M1,2
and F (1)

M1,2T ′
B→BnC̃n

, such that∥∥∥τ (1)
R̄nAnBnC̃n

− ω⊗n
RABC

∥∥∥
1
≤ ε, (11)

for sufficiently large n, where

τ
(1)

R̄nAnBnC̃n
= (F (1) ◦ E(1))

(
ω⊗n
RABC ⊗ΨTAT ′

B

)
. (12)

Similarly, C̄n can be compressed and transmitted with rates
as in (3)-(4). Namely, there exists ΘT ′′

BTC
and encoding maps,

F (2)

C̄nT ′′
B→M2,3

and D(2)
M2,3TC→Cn , such that∥∥∥τ (2)R̄nAnBnCn − ω⊗n

R̄ABC

∥∥∥
1
≤ ε, (13)

where τ (2)
R̄nAnBnCn = (D(2) ◦ F (2))

(
ω⊗n
R̄AB̄C̄

⊗ΘT ′′
BTC

)
. The

coding operations are described below.
Encoding:

A) Alice prepares |ωAB̄C̄R̄⟩⊗n locally. She applies E(1), and
sends M1,2 to Bob.

B) Bob receives M1,2 and applies F (2) ◦ F (1).
C) Charlie receives M2,3 from Bob and applies D(2).

Error analysis: The joint state after Alice’s encoding is
ρ
(1)
AnM1,2T ′

B
= E(1)(ω⊗n

AB̄C̄
⊗ΨTAT ′

B
). After Bob encodes,

ρ
(2)
AnBnM2,3TC

= F (2)(τ
(1)

AnBnC̃n
⊗ΘT ′′

B TC
) (14)

(see (12)). According to (11), τ (1) and ω⊗n are close in trace
distance. By trace monotonicity under quantum channels,∥∥∥ρ(2)AnBnM2,3TC

−F (2)(ω⊗n
ABC̃

⊗ΘT ′′
B TC

)
∥∥∥
1
≤ ε. (15)

As Charlie receives and encodes, the final state is ρ̂AnBnCn =
D(2)(ρ

(2)
AnBnM2,3TC

). Hence, by trace monotonicity,∥∥∥ρ̂AnBnCn − τ
(2)
AnBnCn

∥∥∥
1
≤ ε . (16)

(see (13)). Thus, by (13), (16), and the triangle inequality,∥∥ρ̂AnBnCn − ω⊗n
ABC

∥∥
1
≤ 2ε. This proves achievability.

B. Converse proof

Let (Q1,2, Q2,3, E1,2, E2,3) be an achievable rate tuple.
Suppose that Alice prepares the state |ωRĀB̄C̄⟩⊗n locally, and
then performs the coordination protocol. Then, there exists a
sequence of codes such that∥∥ρ̂RnAnBnCn − ω⊗n

RABC

∥∥
1
≤ εn . (17)

Consider Alice’s communication and entanglement rates,
Q1,2 and E1,2. Now,

2n(Q1,2 + E1,2)≥I(M1,2T
′
B ;A

nRn)ρ(1) (18)

since I(A;B)ρ ≤ 2 log dim(HA) in general. We may view
the entire encoding operation of Bob and Charlie as a black
box whose input and output are (M1,2, T

′
B) and (Bn, Cn),

respectively. Then, by the data processing inequality,

I(M1,2T
′
B ;A

nRn)ρ(1) ≥ I(BnCn;AnRn)ρ̂

≥ I(BnCn;AnRn)ω⊗n − nαn

= n[I(BC;AR)ω − αn] , (19)

where αn → 0 when n → ∞. The second inequality follows
from (17) and the AFW inequality [29]. Since |ωRABC⟩ is
pure, we have I(BC;AR)ω = 2H(BC)ω . Therefore, Q1,2 +
E1,2 ≥ H(BC)ω − 1

2αn.
To show the bound on Q1,2, observe that a lower bound

on the communication rate with unlimited entanglement also
holds with limited resources. Thus, Q1,2 ≥ 1

2I(BC;R)ω
follows from the entanglement-assisted capacity theorem [17].
The bound on Bob’s rates follows in a similar manner.

V. BROADCAST ANALYSIS

Consider the broadcast network in Figure 4. We show
achievability by using a quantum version of the binning
technique. Define the average states,

σ
(x)
AB =

∑
y∈Y

pY |X(y|x)σ(x,y)
AB , σ

(y)
AC =

∑
x∈X

pX|Y (x|y)σ(x,y)
AC ,

and consider a spectral decomposition of the reduced states,

σ
(x)
B =

∑
z∈Z

pZ|X(z|x) |ψx,z⟩⟨ψx,z| , (20)

σ
(y)
C =

∑
w∈W

pW |Y (w|y) |ϕy,w⟩⟨ϕy,w| . (21)

We can also assume that the different bases are orthogonal
to each other by requiring that Bob and Charlie encode on a
different Hilbert space for every value of (x, y).

We use the type class definitions and notations in [25, Chap.
14]. In particular, TX

n

δ denotes the δ-typical set with respect
to pX , and TZ

n|xn

δ is the conditional δ-typical set with respect
to pXZ , given xn ∈ TX

n

δ .
Classical Codebook Generation: For every sequence

zn ∈ Zn, assign an index m1,2(z
n), uniformly from [2nQ1,2 ].

A bin B1,2(m1,2) is defined as the subset of sequences that are
assigned the index m1,2. Define the bins B1,3(m1,3) similarly.



Encoding:
A) Alice prepares ω⊗n

AB̄C̄
locally, without any correlation with

Xn and Y n (see Remark 3). She applies the encoding
channel E(1)

B̄n→M1,2
⊗ E(2)

C̄n→M1,3
, where

E(1)(ρ) =
∑

xn∈Xn

p⊗nX (xn)
∑

zn∈Zn

⟨ψxn,zn | ρ1 |ψxn,zn⟩ |m1,2(z
n)⟩⟨m1,2(z

n)| , (22)

and E(2) is define similarly. She transmits M1,2 and M1,3.
B) Bob applies the following encoding channel,

F (xn)
M1,2→Bn(ρM1,2) =

2nQ1∑
m1,2=1

⟨m1,2| ρM1,2 |m1,2⟩

· 1∣∣∣TZn|xn

δ ∩B1,2(m1,2)
∣∣∣

∑
zn∈TZn|xn

δ

∩B1,2(m1,2)

|ψxn,zn⟩⟨ψxn,zn |

(23)

C) Charlie’s decoder is defined in a similar manner.
Error analysis: We focus on Bob’s error. Consider a

given codebook C1,2 = {m1,2(z
n)}. Alice encodes M1,2 by

E(1)(ω⊗n
AB) =

∑
x̃n∈Xn

p⊗nX (x̃n)
∑

zn∈Zn

⟨ψx̃n,zn |ω⊗n
AB |ψx̃n,zn⟩ |m1,2(z

n)⟩⟨m1,2(z
n)| , (24)

where |ψ⟩xn,zn ≡ ⊗n
i=1 |ψ⟩xi,zi

. By the weak law of large
numbers, this state is ε1-close in trace distance to ρ(1)AnM1,2

=∑
xn∈TXn

δ
p⊗nX (xn)ρ

(1|xn)
AnM1,2

where we have defined

ρ
(1|xn)
AnM1,2

=
∑

zn∈TZn|xn

δ

⟨ψxn,zn |σ(xn)

AnB̄n |ψxn,zn⟩

|m1,2(z
n)⟩⟨m1,2(z

n)| . (25)

Let xn ∈ TX
n

δ . By the definition of Bob’s encoding channel,

F (xn)(ρ
(1|xn)
AnM1,2

) =
∑

zn∈TZn|xn

δ

⟨ψxn,zn |σ(xn)

AnB̄n |ψxn,zn⟩⊗

1∣∣∣TZn|xn

δ ∩B1,2(m1,2(zn))
∣∣∣

∑
z̃n∈TZn|xn

δ

∩B1,2(m1,2(z
n))

|ψxn,z̃n⟩⟨ψxn,z̃n | .

(26)

Based on the classical result [30, Chapter 10.3], the random
codebook C1,2 satisfies that

Pr
C1,2

(
∃z̃n ∈ T

Zn|xn

δ ∩B1,2(m1,2(z
n)) : z̃n ̸= zn

)
≤ ε2

given zn ∈ T
Zn|xn

δ , for sufficiently large n, provided that
the codebook size is at least 2n(H(Z|X)+ε3), i.e., if Q1,2 >

H(Z|X) + ε3 = H(B|X)ω + ε3. Observe that if TZ
n|xn

δ ∩
B1,2(m1,2(z

n)) consists of the sequence zn alone, then the
overall state in (26) is identical to the post-measurement state
after a typical subspace measurement on Bn, with respect to
T
Zn|xn

δ . Based on the gentle measurement lemma [31], this
state is ε4-close to σ(xn)

AB , for sufficiently large n.

Using the triangle inequality and the total expectation for-
mula, we show that EC1,2

∥∥ω⊗n
XAB − ρ̂XnAnBn

∥∥ ≤ ε1+ε2+ε4.
By symmetry, Charlie’s error tends to zero as well, provided

that Q1,3 ≥ H(C|Y )ω + ε5. The achievability proof follows
by taking n → ∞ and then εj , δ → 0. The converse proof
follows the lines of [12], and it is thus omitted.

VI. MULTIPLE-ACCESS ANALYSIS

Consider the multiple-access network in Figure 5. Coor-
dination is only possible if (6) holds for some isometry V
(see Remark 4). Thus, assume so. Achievability follows from
the Schumacher compression protocol [32] straightforwardly.
Alice and Bob prepare ω⊗n

AC1
⊗ω⊗n

BC2
, compress and send Cn1

and Cn2 , and Charlie applies (V †)⊗n. The details are omitted.
As for the converse, consider a sequence of codes such that∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ εn vanish. Applying V ⊗n yields∥∥σ̂AnBnCn

1 C
n
2
− ω⊗n

AC1
⊗ ω⊗n

BC2

∥∥
1
≤ εn . (27)

Thus,

2nQ1,3 ≥ I(M1,3;A
n|M2,3)ρ(1)⊗ρ(2)

(a)
= I(M1,3M2,3;A

n)ρ(1)⊗ρ(2)

(b)

≥ I(Cn;An)ρ̂
(c)
= I(Cn1 C

n
2 ;A

n)σ̂
(d)

≥ I(Cn1 C
n
2 ;A

n)ω − nαn
(e)
= 2nH(A)ω − nαn , (28)

since (a) I(M2,3;A
n)ρ(1)⊗ρ(2) = 0, (b) the data processing

inequality, (c) the von Neumann entropy is isometrically
invariant, (d) the AFW inequality [29], and (e) the mutual
information is with respect to |ωAC1

⟩⊗n ⊗ |ωBC2
⟩⊗n, and

therefore H(A)ω = H(C1)ω . The bound on Bob’s rate follows
by symmetry. Further details are given in [23].

VII. SUMMARY

We considered quantum coordination in three models. In
the cascade network, three users simulate a joint state using
limited communication and entanglement rates. Next, we
considered a broadcast network, where a sender broadcasts
correlation to two receivers. We discussed the implications
of our results on nonlocal games. At last, we considered
a multiple-access network with two senders and a single
receiver. We observed that the network topology dictates the
type of states that can be simulated. Our results extend various
results in the literature and can be generalized to more than
three nodes.
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