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Abstract—Network coordination is considered in three basic
settings, characterizing the generation of separable and classical-
quantum correlations among multiple parties. First, we consider
the simulation of a classical-quantum state between two nodes
with rate-limited common randomness (CR) and communication.
Furthermore, we study the preparation of a separable state
between multiple nodes with rate-limited CR and no communica-
tion. At last, we consider a broadcast setting, where a sender and
two receivers simulate a classical-quantum-quantum state using
rate-limited CR and communication. We establish the optimal
tradeoff between communication and CR rates in each setting.

Index Terms—Quantum communication, coordination, reverse
Shannon theorem.

I. INTRODUCTION

Coordination is essential in communication systems, as
it ensures that different components can work together in
harmony to achieve a common goal. For example, in sensor
networks, the sensors do not just share information in the
conventional sense, but also collaborate in the transmission
of data [1]. Furthermore, coordination plays a major role
in cooperative computing between distributed systems [2],
rate-distortion theory for secrecy systems [3], simulation of
distributed quantum measurements [4], and quantum non-
local games [5]. It is envisioned that quantum information
technology will enhance future communication systems from
different perspectives, such as efficiency [6], security [7], and
computing [8].

These advances motivate the study of coordination in quan-
tum networks.

Cuff et al. [9] studied classical coordination in various
communication networks with different topologies, and con-
sidered two coordination types, empirical coordination and
strong coordination. Empirical coordination requires that the
average frequency of joint actions in the network approaches
a desired distribution with high certainty. On the other hand,
strong coordination sets a requirement on the joint distribution
of all actions. Efficient coordination codes are constructed in
[10]. Source coding [11–14], state coordination [15], channel
simulation [16–21], and distributed source simulation [22, 23]
can be viewed as instances of network coordination. In par-
ticular, Bennet et al. [18] considered simulation of a quantum
channel, under the assumption that pre-shared entanglement
is available to the sender and the receiver, and derived the
quantum reverse Shannon theorem [24, 25]. The optimal
simulation rate turns out to be identical to the entanglement-
assisted quantum capacity [18].

The general problem of quantum coordination can be for-
mulated as follows. Consider a quantum network that consists
of m nodes, where Node i performs an encoding operation Ei
on a quantum system Ai, which is required to be in a certain
desired correlation with the rest of the network. In other words,
the goal is to simulate a particular joint state, ωA1A2···Am

.
In general, some of the nodes are not free to choose their
encoding, but rather their state is dictated by Nature, according
to a certain physical process. Node i can also send a sequence
of bits or qubits to Node j via a communication link of a
limited rate, Ri,j . The ultimate performance is defined by the
set of rates {Ri,j} that are necessary and sufficient in order
to simulate the quantum correlation.

Cuff et al. [9] introduced the classical version of this
problem, where the encoders, decoders, and rates are all
classical, and the goal is to simulate a prescribed probability
distribution. In the basic two-node setting, the simulation of
a joint distribution pXY requires a rate R1,2 ≥ C(X;Y ),
where C(X;Y ) is Wyner’s common information [26]. The
quantum analog was recently established by George et al.
[23], in the context of distributed source simulation. Under
the assumption that Alice and Bob share unlimited common
randomness (CR) a priori, simulation can be performed at a
lower rate, R1,2 ≥ I(X;Y ), where I(X;Y ) is the mutual
information. The capacity region describes the optimal tradeoff
between the communication and CR rates [27].

In this paper, we consider three coordination settings. First,
we consider the simulation of a classical-quantum state ωXB

between two nodes with rate-limited CR. We characterize the
optimal tradeoff between the required rate of description and
the amount of CR used. Our second model is a quantum no-
communication network. The network comprises three nodes,
where no-communication is allowed between the nodes, yet
CR is available at a classical rate R0. Thereby, only separable
states can be simulated. We show that a joint state ωABC can
be simulated at a CR rate of R0 ≥ I(ABC;U), where U is
an auxiliary classical random variable that satisfies a Markov
property. At last, we consider a broadcast setting, where
a sender and two receivers simulate a classical-quantum-
quantum (c-q-q) state using rate-limited CR and communica-
tion. We establish the optimal tradeoff between communication
and CR rate. In the analysis, we use random coding and apply
quantum resolvability results [28, 29].
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II. PROBLEM DEFINITIONS

We consider three coordination settings as described below.
We use standard notation in quantum information theory, as
in [30], X,Y, Z, . . . are discrete random variables on finite
alphabets X ,Y,Z, ..., respectively, xn = (xi)i∈[n] denotes a
sequence in Xn. A quantum state is described by a density
operator, ρA, on the Hilbert space HA. Denote the set of
all such operators by S(HA). A c-q channel is a map
NX→B : X → S(HB). The quantum mutual information
is defined as I(A;B)ρ = H(ρA) +H(ρB)−H(ρAB), where
H(ρ) ≡ −Tr[ρ log(ρ)], the conditional quantum entropy as
H(A|B)ρ = H(ρAB)−H(ρB), and I(A;B|C)ρ, accordingly.

A. Two-Node Network

Consider the two-node network in Figure 1. Alice and Bob
wish to simulate a c-q state ω⊗n

XB , using the following scheme.
Node 1 (Alice) receives a classical source sequence xn, drawn
by Nature according to a given PMF pX . The source sequence
is encoded into an index i at a rate R1. Node 2 (Bob) is
quantum. Both nodes have access to a CR element j at a given
rate R0, i.e., j is uniformly distributed over

[
2nR0

]
, and it is

independent of Xn.
Formally, a

(
2nR0 , 2nR1 , n

)
coordination code for the sim-

ulation of a c-q state ωXB consists of a classical encoding
channel, F : Xn × [2nR0 ] → [2nR1 ], and a c-q decoding
channel DIJ→Bn . The protocol works as follows. A classical
sequence xn ∼ pnX is generated by Nature. Given the sequence
xn and the CR element j, Alice selects a random index,

i ∼ F (·|xn, j) (1)

and sends it through a noiseless link. As Bob receives the
message i and the CR element j, he prepares the state

ρ
(i,j)
Bn = DIJ→Bn(i, j) . (2)

Hence, the resulting joint state is

ρ̂XnBn =
1

2nR0

∑
j∈[2nR0 ]

∑
xn∈Xn

(
pnX(xn) |xn⟩⟨xn|Xn

⊗
∑

i∈[2nR1 ]

F (i|xn, j)ρ
(i,j)
Bn

)
. (3)

Definition 1. A coordination rate pair (R0, R1) is achievable
for the simulation of ωXB , if for every ε > 0 and sufficiently
large n, there exists a

(
2nR0 , 2nR1 , n

)
code that achieves∥∥ρ̂XnBn − ω⊗n

XB

∥∥
1
≤ ε . (4)

The coordination capacity region of the two-node network,
R2-node(ω), with respect to the c-q state ωXB , is the closure
of the set of all achievable rate pairs.

The coordination capacity, C
(0)
2-node(ω), without CR, is the

supremum of rates R1 such that (0, R1) ∈ R2-node(ω). The
CR-assisted coordination capacity, C(∞)

2-node(ω), i.e., with unlim-
ited CR, is the supremum of rates R1 such that (R0, R1) ∈
R2-node(ω) for some R1 ≥ 0.

B. No-Communication Network

Consider a network that consists of three users: Alice,
Bob and Charlie, holding quantum systems A, B, and C,
respectively. The users cannot communicate, but they share
a CR element j at a rate R0, as illustrated in Figure 2. Given
j, each user prepares a quantum state separately.

A
(
2nR0 , n

)
coordination code for the no-communication

network consists of a CR set [2nR0 ], and three c-q encoding
channels, T (1)

J→An , T (2)
J→Bn , and T (3)

J→Cn . As Alice, Bob, and
Charlie receive a realization j of the CR element, each uses
their encoding map to prepare their respective state. prepares
a quantum state, ρjAn = T (1)

J→An(j), ρjBn = T (2)
J→An(j), and

ρjCn = T (3)
J→Cn(j), respectively. Hence,

ρ̂AnBnCn =
1

2nR0

∑
j∈[2nR0 ]

T (1)(j)⊗ T (2)(j)⊗ T (3)(j) .

Definition 2. A CR rate R0 is achievable for the simulation of
ωABC , if for every ε > 0 and sufficiently large n, there exists
a
(
2nR0 , n

)
coordination code that achieves∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ ε . (5)

The coordination capacity CNC(ω), for the no-communication
network, is the infimum of achievable rates R0. If there are
no achievable rates, we set CNC(ω) = +∞.

C. Broadcast Network

Consider the broadcast network in Figure 3. A sender, Alice,
and two receivers, Bob 1 and Bob 2, wish to simulate a c-q-q
state ωXB1B2 , using the following scheme. Alice receives a
classical source sequence xn ∈ Xn drawn by Nature, i.i.d.
according to a given PMF pX . Alice encodes the source
sequence into an index i at a rate R1. The other two nodes, of
Bob 1 and Bob 2, are quantum. The three nodes have access
to a CR element j at a rate R0. Similarly, a

(
2nR0 , 2nR1 , n

)
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Fig. 3. Broadcast Network. The CR element is omitted for simplicity.

coordination code consists of a classical encoding channel,
F : Xn × [2nR0 ] → [2nR1 ] , and two c-q decoding channels,
D(ℓ)

IJ→Bn
ℓ

, for ℓ ∈ {1, 2}. Given xn and the CR element j,
Alice generates i ∼ F (·|xn, j), and sends it to both Bob 1
and Bob 2, who then apply their decoding map.

The coordination capacity region of the broadcast network,
RBC(ω), with respect to the c-q state ωXB1B2

, is defined in a
similar manner as in Definition 1.

III. RESULTS

A. Two-Nodes Network

Consider a given c-q state ωXB that we wish to simulate.
We now state our main result. Define the following set of c-q
states. Let S2-node(ω) be the set of all c-q states

σXUB =
∑

(x,u)∈
X×U

pX,U (x, u) |x⟩⟨x|X ⊗ |u⟩⟨u|U ⊗ θuB (6a)

such that

σXB = ωXB (6b)

for |U| ≤ |X |2[dim(HB)]
2 + 1. Notice that given a classical

value U = u, there is no correlation between X and B.
Theorem 1. The coordination capacity region for the two-node
system described in Figure 1 is the set

R2-node(ω) =
⋃

S2-node(ω)

 (R0, R1) ∈ R2 :
R1 ≥ I(X;U)σ ,
R0 +R1 ≥ I(XB;U)σ

 . (7)

The proof for Theorem 1 is given in Subsection IV. The
following corollaries immediately follow.
Corollary 2 (Quantum Common Information [23]). The coor-
dination capacity without CR is

R
(0)
2-node(ω) = min

σXUB∈S2-node(ω)
I(XB;U)σ . (8)

Corollary 3. The CR-assisted coordination capacity, i.e., with
unlimited common randomness, is given by

R
(∞)
2-node(ω) ≜ min

σXUB∈S2-node(ω)
I(X;U)σ (9)

We note that in order to achieve the CR-assisted capacity,
a CR rate of R0 = I(U ;B|X) is sufficient. If B ≡ Y is
classical, then we may substitute U = Y , which yields the
capacity R

(∞)
2-node(ω) = I(X;Y ), and it can be achieved with

CR at rate R0 = H(Y |X) [27].

B. No-Communication Network

Consider a given quantum state ωABC that we wish to
simulate. We now state our main result. Define the following
set of c-q states. Let SNC(ω) be the set of all c-q states

σUABC =
∑
u∈U

pU (u) |u⟩⟨u|U ⊗ θuA ⊗ θuB ⊗ θuC (10a)

such that

σABC = ωABC (10b)

Given U = u, there is no correlation between A,B and C.

Theorem 4. The coordination capacity for the no-
communication network described in Figure 2 is

CNC(ω) = inf
σUABC∈SNC(ω)

I(U ;ABC)σ (11)

with the convention that an infimum over an empty set is +∞.

Remark 1. Since the CR is classical, it cannot be used in order
to create entanglement. Therefore, as Alice, Bob, and Charlie
do not cooperate with one another, it is impossible to simulate
entanglement. That is, we can only simulate separable states.

C. Broadcast Network

Consider a given c-q-q state ωXB1B2
that we wish to

simulate. Define the following set of c-q-q states. Let S2-BC(ω)
be the set of all c-q states

σXUB1B2 =
∑

(x,u)∈
X×U

pXU (x, u) |x⟩⟨x|X ⊗ |u⟩⟨u|U ⊗ θuB1
⊗ ηuB2

such that

σXB1B2 = ωXB1B2 .

Note that given X , B1, and B2 are uncorrelated given U = u.

Theorem 5. The coordination capacity region of the broadcast
channel in Figure 3 network is the set

RBC(ω) =
⋃

SBC(ω)

 (R0, R1) ∈ R2 :
R0 ≥ I(X;U)σ
R0 +R1 ≥ I(XB1B2;U)σ

 . (12)

Remark 2. Since Alice’s encoding is classical, she cannot
distribute entanglement. Therefore, as Bob 1 and Bob 2 do
not cooperate with one another, it is impossible to simulate
entanglement between Bob 1 and Bob 2. That is, we can only
simulate states such that ωB1B2 is separable, as in the no-
communication model (see Remark 1).

IV. TWO NODE ANALYSIS

Consider the two node network in Figure 1. Our proof for
Theorem 1 is based on quantum resolvability [28, 29].

Theorem 6 (see [28, 29]). Consider an ensemble,
{pX , ρxA}x∈X , and a random codebook that consists of
2nR independent sequence, Xn(m), m ∈ [2nR], each is i.i.d.



∼ pX . If R > I(X;A)ρ, then for every δ > 0 and sufficiently
large n,

E

∥∥∥∥∥∥ρ⊗n
A − 1

2nR

2nR∑
m=1

ρ
Xn(m)
An

∥∥∥∥∥∥
1

 ≤ δ , (13)

where ρx
n

An ≡
⊗n

k=1 ρ
xk

A , and the expectation is over all
realizations of the random codebook.

A. Achievability proof

Assume (R0, R1) is in the interior of R2-node(ω). We need
to construct a code that consists of an encoding channel
F (i|xn, j) and a c-q decoding channel DIJ→Bn , such that
the error requirement in (4) holds.

By the definition of S2-node(ω), there exists a c-q state

σUXB =
∑
u∈U

pU (u) |u⟩⟨u|U ⊗ σu
XB (14)

such that

σu
XB =

∑
x∈X

pX|U (x|u) |x⟩⟨x|X ⊗ θuB , u ∈ U (15)

σXB = ωXB , (16)
R1 ≥ I (X;U)σ , R0 +R1 ≥ I (XB;U)σ . (17)

Classical codebook generation: Select a random codebook
C = {un(i, j)} by drawing 2n(R0+R1) i.i.d. sequences accord-
ing to the distribution pnU (un) =

∏n
k=1 pU (uk). Reveal the

codebook to Alice and Bob.
Let (i, j) be a pair of random indices, uniformly distributed

over [2nR1 ]× [2nR0 ]. Define the following PMF

P̃XnIJ(x
n, i, j) ≡ 1

2n(R0+R1)
pnX|U (xn|un (i, j)) . (18)

Encoder: We define the encoding channel F as the condi-
tional distribution above, i.e., F = P̃I|XnJ .

Decoder: As Bob receives i from Alice, and the random el-
ement j, he prepares the output state DIJ→Bn(i, j) = θ

un(i,j)
Bn .

Error analysis: Let δ > 0. The encoder sends i ∼
F (·|xn, j). Given J = j, by the classical resolvability the-
orem, Cuff [27] has shown that R1 ≥ I (X;U)σ guarantees

E
∥∥∥P̃JXn − pJ × pnX

∥∥∥
1
≤ δ (19)

for sufficiently large n, where P̃JXn is as in (18). Recall that
P̃JXn is random, since the codebook C is random. Hence, the
expectation is over all realizations of C . The resulting state is

ρ̂XnBn =
1

2nR0

∑
j,xn

(
pnX(xn) |xn⟩⟨xn|Xn

⊗
∑

i∈[2nR1 ]

P̃I|XnJ(i|xn, j)θ
un(i,j)
Bn

)
(20)

According to (19), the probability distributions P̃J,Xn and
pJ × pnX are close on average. Then, let

τ̂XnBn ≡
∑
j,xn

P̃JXn(jxn) |xn⟩⟨xn|Xn

⊗
∑

i∈[2nR1 ]

P̃I|XnJ(i|xn, j)θ
un(i,j)
Bn . (21)

By (19), it follows that

E ∥τ̂XnBn − ρ̂XnBn∥1 ≤ δ . (22)

Observe that

τ̂XnBn =
∑
i,j,xn

P̃IJXn(i, j, xn) |xn⟩⟨xn|Xn ⊗ θ
un(i,j)
Bn

=
1

2n(R0+R1)

∑
i,j,xn

pnX|U (x
n|un(i, j)) |xn⟩⟨xn|Xn ⊗ θ

un(i,j)
Bn

=
1

2n(R0+R1)

∑
i,j

σ
un(i,j)
XnBn (23)

where the second equality is due to the definition of P̃ in (18),
and the last line follows from (15).

Thus, according to the quantum resolvability theorem, The-
orem 6, when applied to the joint system XB, we have

E
∥∥σ⊗n

XB − τ̂XnBn

∥∥
1
≤ δ (24)

for sufficiently large n. Therefore, by the triangle inequality,

E
∥∥ω⊗n

XB − ρ̂XnBn

∥∥
1

≤ E
∥∥ω⊗n

XB − τ̂XnBn

∥∥
1
+ E∥τ̂XnBn − ρ̂XnBn∥1 ≤ 2δ (25)

by (16), (22) and (24).

B. Converse proof

Let (R0, R1) be an achievable rate pair. Then, there exists
a sequence

(
2nR0 , 2nR1 , n

)
coordination codes such that the

joint quantum state ρ̂XnBn satisfies∥∥ω⊗n
XB − ρ̂XnBn

∥∥
1
≤ εn (26)

where εn tends to zero as n → ∞.
Fix an index k ∈ {1, . . . , n}. By trace monotonicity [30],

taking the partial trace over Xj , Bj , j ̸= k, maintains the
inequality. Thus,

∥ωXB − ρ̂XkBk
∥1 ≤ εn . (27)

Then, by the AFW inequality [31],∣∣∣H (XnBn)ρ̂ − nH (XB)ω

∣∣∣ ≤ nβn , (28)

and ∣∣∣H (XkBk)ρ̂ −H (XB)ω

∣∣∣ ≤ βn , (29)

for k ∈ [n], where βn tends to zero as n → ∞. Therefore, by
the triangle inequality,∣∣∣∣∣H (XnBn)ρ̂ −

n∑
k=1

H (XkBk)ρ̂

∣∣∣∣∣ ≤ 2nβn . (30)

Now, we have

n(R0 +R1) ≥ H(IJ) (31)
≥ I(XnBn; IJ)ρ̂ (32)



since the conditional entropy is nonnegative for classical and
c-q states, and the CR element J is statistically independent of
the source Xn. Furthermore, by entropy sub-additivity [30],

I(XnBn; IJ)ρ̂ ≥ H(XnBn)ρ̂ −
n∑

k=1

H(XkBk|IJ)ρ̂

≥
n∑

k=1

I(XkBk; IJ)ρ̂ − 2nβn (33)

where the last inequality follows from (30). Defining a time-
sharing variable K ∼ Unif[n], this can be written as

R0 +R1 + 2βn ≥ I(XKBK ; IJ |K)ρ̂ (34)

with respect to the extended state:

ρ̂KIJXKBK
=

1

n

n∑
k=1

|k⟩⟨k| ⊗ ρ̂IJXkBk
. (35)

Observe that by (27) and the triangle inequality,

∥ωXB − ρ̂XKBK
∥1 =

∥∥∥∥∥ωXB − 1

n

n∑
k=1

ρ̂XkBk

∥∥∥∥∥
1

≤ εn . (36)

Thus, by the AFW inequality,

I(XKBK ;K)ρ̂ = H(XKBK)ρ̂ −
1

n

n∑
k=1

H(XkBk)ρ̂ ≤ nγn ,

where γn tends to zero. Together with (34), it follows that

R0 +R1 + 2βn + γn ≥ I(XKBK ; IJK)ρ̂ (37)

By similar arguments,

R1 + 2βn + γn ≥ I(XK ; IJ) (38)

To complete the converse proof, we identify U , X , and
B with (I, J,K), XK , and BK , respectively. Observe
that given (i, j, k), the joint state of XK and BK is(∑

xk∈X pXk|IJ(xk|i, j) |xk⟩⟨xk|XK

)
⊗ ρ

(i,j)
Bk

, where pXn|IJ
is the a posteriori probability distribution. Thus, there X and
B are uncorrelated when conditioned on U , as required.

The bound on |U| follows by applying the Caratheodory the-
orem to the real-valued parameteric representation of density
matrices, as in [32, App. B].

V. NO-COMMUNICATION NETWORK ANALYSIS

Consider the no-communication network in Figure 2, of a
quantum state ωABC . To prove Theorem 4, we use similar
tools. The achievability proof is straightforward, and it is thus
omitted. Then, consider the converse part. Assume that R0 is
achievable. Therefore, there exists a sequence of (2nR0 , n) of
coordination codes such that for sufficiently large values of n,∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ εn , (39)

where εn → 0 as n → ∞.
Applying the chain rule,

nR0 ≥ H(J) (40)
≥ I(AnBnCn; J)ρ̂ (41)

=

n∑
k=1

I(AkBkCk; J |Ak−1Bk−1Ck−1)ρ̂ (42)

According to similar considerations leading to (30), we have

I(AkBkCk;A
k−1Bk−1Ck−1)ρ̂ ≤ βn . (43)

Hence, by (42),

nR0 ≥
n∑

k=1

I(AkBkCk; JA
k−1Bk−1Ck−1)− nβn

≥
n∑

k=1

I(AkBkCk; J)− nβn

≥ n

(
inf

σUABC∈SNC(ω)
I(U ;ABC)σ − 2βn

)
(44)

taking U ≡ J , as the encoders are uncorrelated given J .

VI. SUMMARY AND DISCUSSION

We study coordination in three network models, two-node
network simulating a c-q state, no-communication network
simulating a separable state, and a broadcast network simulat-
ing c-q-q state. Our findings generalize classical results from
[27] and [9], and also quantum results from [23]. The no-
communication and broadcast networks can easily be extended
to m encoders and decoders, respectively. The results are rel-
evant for various applications, where the network nodes could
represent classical-quantum sensors, computers performing a
joint computation task, or players in a nonlocal game.
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APPENDIX

Consider coordination in broadcast network, as in Fig-
ure 3 in the main text, of a classical-quantum-quantum state
ωXB1B2

. To prove the capacity theorem, Theorem 5, we use
similar tools as in Section IV.

A. Achievability proof

Assume (R0, R1) is in the interior of RBC(ω). We need
to construct a code that consists of an encoding channel
F (i|xn, j) and a two c-q decoding channels DIJ→Bn

1
and

DIJ→Bn
2

,such that∥∥∥ω⊗n
XB − 1

2nR0

∑
j∈[2nR0 ]

∑
xn∈Xn

pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
i∈[2nR1 ]

F (i|xn, j)DIJ→Bn
1
(i, j)⊗DIJ→Bn

2
(i, j)

∥∥∥
1
≤ ε .

(45)

According to the definition of SBC(ω) (see Subsection III-C),
there exists a c-q state σXUB1B2

that can be written as

σXUB1B2 =
∑

(x,u)∈X×U

pX,U (x, u) |x⟩⟨x|X

⊗ |u⟩⟨u|U ⊗ θuB1
⊗ ηuB2

(46)

and satisfy

σXB1B2
= ωXB1B2

(47)

We will also consider conditioning on U = u, and denote

σu
XB1B2

=
∑
x∈X

pX|U (x|u) |x⟩⟨x|X ⊗ θuB1
⊗ ηuB2

. (48)

Classical codebook generation: Select a random codebook
CBC = {un(i, j)} by drawing 2n(R0+R1) i.i.d. sequences
according to the distribution pnU . Reveal the codebook.

Encoder: Define the encoding channel as F = P̃I|XnJ ,
where P̃XnIJ be a joint distribution as in (18).

Decoders: As Bob 1 and Bob 2 receive i from Alice, and
the random element j, they prepare the following output states,

D(1)
IJ→Bn

1
(i, j) = θ

un(i,j)
B1

, (49)

D(2)
IJ→Bn

2
(i, j) = η

un(i,j)
B2

. (50)

Error analysis: Let δ > 0. The encoder sends i ∼
F (·|xn, j). As in Subsection IV-A, given j, if R1 ≥
I (X;U)σ , then

E
∥∥∥P̃JXn − pJ × pnX

∥∥∥
1
≤ δ (51)

for sufficiently large n. As P̃JXn depends on the random
codebook CBC, the expectation is over all realizations of CBC.
The resulting state is

ρ̂XnBn
1 Bn

2
=

1

2nR0

∑
j∈[2nR0 ]

∑
xn∈Xn

(
pnX(xn) |xn⟩⟨xn|Xn

⊗
∑

i∈[2nR1 ]

F (i|xn, j)DIJ→Bn
1
(i, j)⊗DIJ→Bn

2
(i, j)

)
=

1

2nR0

∑
j,xn

(
pnX(xn) |xn⟩⟨xn|Xn

⊗
∑

i∈[2nR1 ]

P̃I|XnJ(i|xn, j)θ
un(i,j)
B1

⊗ η
un(i,j)
B2

)
. (52)

According to (51), the probability distributions P̃JXn and pJ×
pnX are close on average. Then, let

τ̂XnBn
1 Bn

2
≡
∑
j,xn

P̃JXn(j, xn) |xn⟩⟨xn|Xn

⊗
∑

i∈[2nR1 ]

P̃I|XnJ(i|xn, j)θ
un(i,j)
B1

⊗ η
un(i,j)
B2

.

(53)

Then, it follows that

E
∥∥τ̂XnBn

1 Bn
2
− ρ̂XnBn

1 Bn
2

∥∥
1
≤ δ , (54)

by (51). Observe that

τ̂XnBn
1 Bn

2

=
∑
i,j,xn

P̃IJXn(i, j, xn) |xn⟩⟨xn|Xn ⊗ θ
un(i,j)
B1

⊗ η
un(i,j)
B2

=
1

2n(R0+R1)

∑
i,j,xn

pnX|U (x
n|un(i, j)) |xn⟩⟨xn|Xn

⊗ θ
un(i,j)
B1

⊗ η
un(i,j)
B2

=
1

2n(R0+R1)

∑
i,j

σ
un(i,j)
XnBn

1 Bn
2
, (55)

where the second equality is due to the definition of P̃ in (18),
and the last line follows from (48).

Thus, according to the quantum resolvability theorem 6,
when applied to the joint system XB1B2, we have

E
∥∥∥σ⊗n

XBn
1 Bn

2
− τ̂XnBn

1 Bn
2

∥∥∥
1
≤ δ (56)

for sufficiently large n. Therefore, by the triangle inequality,

E
∥∥ω⊗n

XB1B2
− ρ̂XnBn

1 Bn
2

∥∥
1

≤ E
∥∥∥ω⊗n

XBn
1 Bn

2
− τ̂XnBn

1 Bn
2

∥∥∥
1
+ E

∥∥τ̂XnBn
1 Bn

2
− ρ̂XnBn

1 Bn
2

∥∥
1

≤ 2δ (57)

by (47), (54) and (56).



B. Converse proof
Let (R0, R1) be an achievable coordination rate pair for the

simulation of a c-q-q state ωXB1B2 in the broadcast setting.
Then, there exists a sequence of

(
2nR0 , 2nR1 , n

)
coordination

codes such that the joint quantum state ρ̂XnBn
1 Bn

2
satisfies∥∥∥ω⊗n

XBn
1 Bn

2
− ρ̂XnBn

1 Bn
2

∥∥∥
1
≤ εn , (58)

where εn tends to zero as n → ∞. Fix an index k ∈
{1, . . . , n}. By trace monotonicity [30], taking the partial trace
over Xj , B1j , B2j , for j ̸= k, maintains the inequality, thus

∥ωXB1B2
− ρ̂XkB1kB2k

∥1 ≤ εn (59)

for k ∈ [n]. Hence,∥∥∥∥∥ρ̂XBn
1 Bn

2
−

n⊗
k=1

ρ̂XkB1kB2k

∥∥∥∥∥
1

≤
∥∥ρ̂XBn

1 Bn
2
− ω⊗n

XB1B2

∥∥
1
+

n∏
k=1

∥ωXB1B2
− ρ̂XkB1kB2k

∥1

≤ 2εn , (60)

where the second line follows from the triangle inequality
and the last from (58)-(59). According to the AFW inequality
[31] and the entropy chain rule, and since conditioning cannot
increase entropy, we have∣∣∣∣∣H (XnBn

1B
n
2 )ρ̂ −

n∑
k=1

H (XkB1kB2k)ρ̂

∣∣∣∣∣ ≤ nβn (61)

for k ∈ [n], where βn tends to zero as n → ∞. Now, we also
have

n(R0 +R1) ≥ H(IJ)

≥ I(XnBn
1B

n
2 ; IJ)ρ̂ , (62)

since the conditional entropy is nonnegative for classical and
c-q-q states, and the CR element J is statistically independent
of the source Xn. Furthermore, by entropy sub-additivity [30],

I(XnBn
1B

n
2 ; IJ)ρ̂

≥ H(XnBn
1B

n
2 )ρ̂ −

n∑
k=1

H(XkB1kB2k|IJ)ρ̂

≥
n∑

k=1

I(XkB1kB2k; IJ)ρ̂ − nβn (63)

where the last inequality follows from (61).
Defining a time-sharing variable K ∼ Unif[n], this can be

written as

R0 +R1 + βn ≥ I(XKB1KB2K ; IJ |K)ρ̂ (64)

with respect to the extended state

ρ̂KIJXkB1kB2k
=

1

n

n∑
k=1

|k⟩⟨k| ⊗ ρ̂IJXkB1kB2k
. (65)

Observe that

∥ωXB1B2 − ρ̂XKB1KB2K
∥1

=

∥∥∥∥∥ωXB1B2
− 1

n

n∑
k=1

ρ̂XkB1kB2k

∥∥∥∥∥
1

≤ εn (66)

based on (59). Thus, by the AFW inequality,

I(XKB1KB2K ;K)ρ̂ =

H(XKB1KB2K)ρ̂ −
1

n

n∑
k=1

H(XkB1kB2k)ρ̂ ≤ nγn ,

(67)

where γn tends to zero as n → ∞. Together with (63), it
implies

R0 +R1 + βn + γn ≥ I(XKB1KB2K ; IJK)ρ̂ . (68)

By similar arguments,

R1 + βn + γn ≥ I(XK ; IJ) . (69)

To complete the converse proof, we identify U , X , and
B1B2 with (I, J,K), XK , and B1KB2K , respectively. Ob-
serve that given (i, j, k), the joint state of XK and B1KB2K

is(∑
xk∈X

pXk|IJ(xk|i, j) |xk⟩⟨xk|XK

)
⊗ ρ

(i,j)
B1K

⊗ ρ
(i,j)
B2K

, (70)

where pXn|IJ is the a posteriori probability distribution.
Thus, there is no correlation between X , B1, and B2 when
conditioned on U , as required.
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