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Motivation: Key Agreement

• Physical-layer security requires the communication of private information to
be secret, regardless of computational capabilities.

◦ Secret-key agreement is a promising method to achieve this goal, whereby the
sender and receiver generate a secret key before communication takes place.

◦ In practice, quantum key distribution (QKD) is the most mature application of
quantum information theory

• In some noise models, communication can also be secured without key
assistance.
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Motivation: Layered Secrecy

• The Layered Secrecy model describes a network in which multiple users have
di�erent credentials to access con�dential information.

• For example: a WiFi network of an agency, in which a user is allowed to
receive �les up to a certain security clearance, but should be kept ignorant of
classi�ed �les that require a higher security level [Zou et al., 2015].

∗ The agency can set the channel quality on a clearance basis by assigning more
communication resources to users with a higher security rank.

• In some models, this structure allows the provision of secrecy in hindsight
[Tahmasbi, Bloch, and Yener, 2020].
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Motivation: Bosonic Channels

• Optical communication forms the backbone of the Internet

• The bosonic (Gaussian) channel is a simple quantum-mechanical model for
optical communication over free space or optical �bers

unsplash.com
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Related Work (Cont.)

Bosonic broadcast channels
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Main Contributions

We study secret-sharing building blocks that are based on quantum broadcast
communication.

• Con�dential capacity region of the pure-loss bosonic broadcast channel with
shared key assistance (under min output-entropy conjecture)

• Conference key agreement for the distillation and distribution of joint +
private keys

• Quantum layered secrecy: Three receivers with di�erent security levels
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Outline

Key Assistance and Key Agreement
De�nitions
Main Results

Layered Secrecy
Channel Model
Main Results
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Quantum Broadcast Channel

A quantum broadcast channel NA→BE is a linear, completely positive, trace
preserving map corresponding to a quantum physical evolution:

ρA
N−−−−→ ρBE

Alice transmits a common message and a con�dential message, m0 and m1, resp.
Bob � legitimate receiver of both m0 and m1

Eve � legitimate receiver of m0, but also eavesdrops on m1
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Bosonic Model

For a single-mode bosonic broadcast channel, the channel input is an
electromagnetic �eld mode with annihilation operator â, and the outputs are

b̂ =
√
η â+

√
1− η ĉ

ê =
√
1− η â−√

η ĉ

where

• the noise mode ĉ is in a thermal Gaussian state (lossy) or vacuum state
(pure-loss)

• the transmissivity η ∈ [0, 1] captures the absorption length of the optical �ber

â
η
b̂

ĉ

ê
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Bosonic Model (Cont.)

• A coherent state |α⟩ corresponds to an oscillation of the electromagnetic �eld,

|α⟩ = D(α)|0⟩
D(α) ≡ exp

(
αâ† − α∗â

)

• The transmitter employs a coherent state protocol.
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Coding with Key Assistance

m0,m1

k

F LAn

Bn
m̂0 m̂1

En
m̃0 , m1m1

Communication Scheme (1)

A key k is drawn from [1 : 2nRK ] uniformly at random, and then shared between
Alice and Bob.
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Coding with Key Assistance

m0,m1

k

F LAn

Bn
m̂0 m̂1

En
m̃0 , m1m1

Communication Scheme (2)

Alice chooses a common message m0 for both Bob and Eve, and
a con�dential message m1 for Bob.
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Coding with Key Assistance

m0,m1

k

F LAn

Bn
m̂0 m̂1

En
m̃0 , m1m1

Communication Scheme (3)

Input: Alice prepares ρm0,m1,k
An = F (m0,m1, k), and transmits An.

Output: Bob and Eve receive Bn and E n, resp.
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Coding with Key Assistance

m0,m1

k

F LAn

Bn
m̂0 m̂1

En
m̃0 , m1m1

Communication Scheme (4)

Eve performs a measurement ΞE n , and obtains m̃0.
Bob performs a measurement ΓBn|k , and obtains m̂0, m̂1.
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Coding with Key Assistance

m0,m1

k

F LAn

Bn
m̂0 m̂1

En
m̃0 , m1m1

Security Requirement

I (M1;E
n|M0)ρ → 0 as n → ∞
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Conference Key Agreement

k0 k1An

k̂0 k̂1Bn

F

zb

Γ

ze

k̃0 k1En

Ξ

Key Agreement Protocol (1)

Alice, Bob, and Eve share a product state ω⊗n
ABE .
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Conference Key Agreement

k0 k1An

k̂0 k̂1Bn

F

zb

Γ

ze

k̃0 k1En

Ξ

Key Agreement Protocol (2)

Alice performs a measurement FAn , producing k0, k1, zb, ze .
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Conference Key Agreement

k0 k1An

k̂0 k̂1Bn

F

zb

Γ

ze

k̃0 k1En

Ξ

Key Agreement Protocol (3)

Alice sends zb and ze to Bob and Eve through a public channel.
Bob and Eve receive (Bn, zb) and (E n, ze), resp.
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Conference Key Agreement

k0 k1An

k̂0 k̂1Bn

F

zb

Γ

ze

k̃0 k1En

Ξ

Key Agreement Protocol (4)

Eve performs a measurement ΞE n|ze , and obtains k̃0.

Bob performs a measurement ΓBn|zb , and obtains k̂0, k̂1.
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Conference Key Agreement

k0 k1An

k̂0 k̂1Bn

F

zb

Γ

ze

k̃0 k1En

Ξ

Security Requirement

I (Zb,Ze ;K0) , I (Zb,Ze ,E
n;K1)ρ → 0 as n → ∞
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Outline

Key Assistance and Key Agreement
De�nitions
Main Results

Layered Secrecy
Channel Model
Main Results
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Minimum Output Entropy Conjecture

Let g(N) denote the entropy of a thermal state with mean photon number N, i.e.,

g(N) =

{
(N + 1) log(N + 1)− N log(N) if N > 0

0 if N = 0

Minimum Output-Entropy Conjecture [Guha and Shapiro, 2007]

Given a pure-loss bosonic channel, if H(An)ρ = ng(NA), then H(Bn)ρ ≥ ng(ηNA).
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Main Results: Key Assistance

Theorem (1)

Assume that the min output-entropy conjecture holds. Then, the capacity region

of the pure-loss bosonic broadcast channel with con�dential messages and key

assistance is as follows. If η ≥ 1

2
, then

C(Npure-loss) =
⋃

0≤β≤1

 (R0,R1) : R0 ≤ g((1− η)NA)− g((1− η)βNA)
R1 ≤ g(ηβNA)− g((1− η)βNA) + RK

R1 ≤ g(ηβNA)

 .
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Main Results: Key Assistance (Cont.)

Theorem (2)

Otherwise, if η < 1

2
,

C(Npure-loss) =
⋃

0≤β≤1

{
(R0,R1) : R0 ≤ g((1− η)NA)− g((1− η)βNA)

R1 ≤ min (g(ηβNA), RK )

}
.

In this case, Bob has a noisier channel than Eve, and the con�dential
communication relies fully on the secret key (one-time pad).
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Main Results: Key Assistance (Cont.)

Given the transmissivity η = 0.6 and input constraint NA = 5:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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For low common rates, the shared key is fully used to enhance the con�dential
communication. Whereas, for high rates, the key is only partially used.

The `breaking point' corresponds to β0 such that g((1− η)β0NA) = RK .

Uzi Pereg Bosonic Channels & Con�dentiality 18 / 28



Main Results: Key Assistance (Cont.)

Proof outline

• Achievability is interpreted as a �superposition coding scheme", which
consists of cloud centers tn(m0) and satellites xn(m0,m1).

◦ The cloud vector is chosen at random from a bin of size 2n[g((1−η)βNA)+δ], to
ensure that Eve can recover the cloud center, but not the satellite.

• The technical challenge is in the converse proof, which requires the min
output-entropy conjecture. In the proof, it is applied to the degrading
channel from Bob to Eve.
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Main Results: Key Assistance (Cont.)

Remark

• The long-standing conjecture is known to hold in special cases, such as

◦ n = 1 [De Palma, Trevisan, and Giovannetti, 2017]

◦ ρAn = |ϕ⟩⟨ϕ| [Giovannetti, Holevo, and García-Patrón, 2015]

• no longer needed for the single-user wiretap channel, i.e., for R0 = 0
[Wilde and Qi, 2018]
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Main Results: Key Agreement

De�ne the key-rate region,

K(ωABE ) =⋃
ΛA, pT0,T1|X

{
(R0,R1) : R0 ≤ min (I (T0;B)ω, I (T0;E )ω)

R1 ≤ [I (X ;B|T0,T1)ω − I (X ;E |T0,T1)ω]+

}

where [x ]+ = max(x , 0), and the union is over the POVMs ΛA = {Λx
A}x∈X and

distributions pT0,T1|X , with

ωt0,t1,x
BE ≡ TrA ((Λx

A ⊗ 1⊗ 1)ωABE ) .
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Main Results: Key Agreement (Cont.)

Theorem

The key-agreement capacity region for the distillation of a public key and a secret
key from ωABE in �nite dimensions is given by

K(ωABC ) =
∞⋃
n=1

1

n
K(ω⊗n

ABC ).

Corollary

For a degraded broadcast channel,

Ck-a(N , 0) =
⋃

ωABE :ωBE=NA→BE (ωA)

K(ωABC ).

• In particular, for thermal states that are associated with a pure-loss bosonic
channel, the key-agreement capacity region is a subset of the con�dential
capacity region with RK = 0.
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Coding with Layered Secrecy

m0,m1,m2 F LAn

Bn
m̂0 m̂1 m̂2

En
1 m̃0 m̃1 , m2m2

En
2 m̆0 , m1 , m2m1 m2

Quantum Broadcast Channel with 3 Receivers

Consider a channel NA→BE1E2 with three receivers, Bob, Eve 1, and Eve 2.
Alice sends three messages.
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Coding with Layered Secrecy

m0,m1,m2 F LAn

Bn
m̂0 m̂1 m̂2

En
1 m̃0 m̃1 , m2m2

En
2 m̆0 , m1 , m2m1 m2

Layer-0

The common message m0 is intended for all three receivers.
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Coding with Layered Secrecy

m0,m1,m2 F LAn

Bn
m̂0 m̂1 m̂2

En
1 m̃0 m̃1 , m2m2

En
2 m̆0 , m1 , m2m1 m2

Layer-1

In the next layer, the con�dential message m1 is decoded by Bob and Eve 1, but
should remain secret from Eve 2.
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Coding with Layered Secrecy

m0,m1,m2 F LAn

Bn
m̂0 m̂1 m̂2

En
1 m̃0 m̃1 , m2m2

En
2 m̆0 , m1 , m2m1 m2

Layer-2

The con�dential message m2 is decoded by Bob, but should remain secret from
both Eve 1 and Eve 2.
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Main Results: Layered Secrecy

Given a 3-receiver broadcast channel NA→BE1E2 , de�ne the rate region,

RLS(N ) =
⋃

pX0,X1,X2 , φ
x0,x1,x2
A (R0,R1,R2) : R0 ≤ I (X0;E2)ρ

R1 ≤ [I (X1;E1|X0)ρ − I (X1;E2|X0)ρ]+
R2 ≤ [I (X2;B|X0,X1)ρ − I (X2;E1E2|X0,X1)ρ]+


where the union is over the distribution pX0,X1,X2 , and the state collections
{φx0,x1,x2

A }, with ρx0x1x2BE1E2
= NA→BE1E2(φ

x0,x1,x2
A ).
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Main Results: Layered Secrecy (Cont.)

Theorem

The layered-secrecy capacity region of the quantum degraded broadcast channel
NA→BE1E2 in �nite dimensions is given by

CLS(N ) =
∞⋃
n=1

1

n
RLS(N

⊗n)

Uzi Pereg Bosonic Channels & Con�dentiality 27 / 28



Main Results: Layered Secrecy (Cont.)

Theorem
A layered-secrecy rate tuple (R0,R1,R2) is achievable over the pure-loss bosonic
broadcast channel if

R0 ≤ g
(
(1− η1)(1− η2)NA

)
− g

(
(β1 + β2)(1− η1)(1− η2)NA

)
,

R1 ≤ g
(
(β1 + β2)η2(1− η1)NA

)
− g

(
β2η2(1− η1)NA

)
−
[
g
(
(β1 + β2)(1− η2)(1− η1)NA

)
− g(β2(1− η2)(1− η1)NA

)]
,

R2 ≤ g
(
η1β2NA

)
− g

(
(1− η1)β2NA

)
, for some β1, β2 ≥ 0 s.t. β1 + β2 ≤ 1.

â
η1
b̂

ĉ1

η2
ê1

ĉ2

ê2
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Thank You!
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