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Motivation

Quantum Communication and Information Theory

Natural extension of the classical theory to quantum systems

reveals �strange� phenomena: negative conditional entropy,
super-activation, etc.

Progress in practice

◦ Quantum key distribution for secure communication
(307 km in optical �bers, 1200 km through space)

◦ Computation power: Google's supremacy experiment
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Motivation (Cont.)

State-dependent channels

Channel state information (CSI)

◦ classical applications: cognitive radio in wireless systems, memory
storage, digital watermarking, etc.

State masking: the state sequence represents information that should
remain hidden from the receiver [Merhav and Shamai, 2007]
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Background: State-Dependent Channels

Classical results with channel state information (CSI) at the encoder:

Causal CSI [Shannon 1958]

Strictly-causal CSI [Csiszár and Körner 1981]

Non-causal CSI [Gel'fand and Pinsker 1980]

Classical state masking [Merhav and Shamai, 2007]

Broadcast channel [Koyluoglu et al. 2016] [Dikshtein et al. 2019]

Source coding [Courtade 2012]

Coordination [Le Treust and Bloch 2020]
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Background: State-Dependent Channels (Cont.)

Quantum channels with side information

Without entanglement assistance: classical-quantum channels with
causal or non-causal CSI [Boche, Cai, and Nötzel 2016]

Entanglement assistance with non-causal CSI [Dupuis 2008]

Entanglement assistance with causal CSI [P. 2020]

Rate & State channel (parameter estimation) [P. 2021]
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Main Contributions

Rate-limited entanglement assistance

◦ Achievable rate-leakage region: tradeo� between communication,
leakage, and entanglement resources.

Quantum capacity-leakage region

◦ without assistance

◦ unlimited entanglement assistance

Proof:

◦ Achievability is based on the decoupling approach

◦ Converse proof: classical arguments do not work
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Outline

De�nitions

Main Results

Example

Concluding Remarks
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Quantum States

A pure quantum state |ψ〉 is a normalized vector in the Hilbert space HA.

Qubit

For a qubit, |ψ〉 = |0〉, |1〉, or

|ψ〉 = α|0〉+ β|1〉 , with |α|2 + |β2| = 1
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Quantum States

A pure quantum state |ψ〉 is a normalized vector in the Hilbert space HA.

Qubit

For a qubit, |ψ〉 = |0〉, |1〉, or

|ψ〉 = α|0〉+ β|1〉 , with |α|2 + |β2| = 1

Entanglement

Systems A and B are entangled if |ψAB〉 6= |ψA〉 ⊗ |ψB〉

For example, |ΦAB〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉).
Entanglement can generate shared randomness, but it is a much more
powerful resource.
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Quantum States (Cont.)

The state ρA of a quantum system A is an Hermitian, positive semide�nite,
unit-trace density matrix over HA.

Given ρAB , de�ne

H(A)ρ ≡ −Tr(ρA log ρA)

H(A|B)ρ ≡ H(AB)ρ − H(B)ρ

Uzi Pereg Quantum Masking 9 / 24



Quantum States (Cont.)

Mutual information I (A;B)ρ = H(A)ρ + H(B)ρ − H(AB)ρ

Coherent information I (A〉B)ρ = −H(A|B)ρ.
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Channel Model

Quantum state-dependent channel

A given CPTP linear map NEA→B

A pure state |φEE0C 〉⊗n (memoryless)

Channel state information (CSI): Alice has En
0

Entanglement resources: Alice and Bob share ΨGAGB

Leakage

The state of Cn should be hidden from Bob
E.g., network information that should not be leaked to the end user.
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Channel Model (Cont.)

GA

|ΨGAGB〉

En
0

Cn

1
nI(BnGB;Cn)ρ ≤ L

|φE0EC〉⊗n En

N DBn M̂

GB

FM An
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Channel Model (Cont.)

Leakage

In the classical case, the leakage requirement need not include shared
randomness (cannot help the decoder).

Our leakage requirement includes the entanglement resource system
because Bob could use it to extract information on the channel state,
using teleportation for instance.
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Main Results: Rate-Limited Assistance

Theorem

A quantum communication rate Q is achievable with leakage rate L and

entanglement-assitance rate Re if

Q + Re ≤H(A|EC )ρ

Q − Re ≤− H(A|B)ρ

L ≥I (C ;AB)ρ

for some ρAA′EC with ρEC = φEC , where ρABC = NEA′→B(ρAEA′C ).

demonstrates tradeo� between communication, leakage, and
entanglement rates.

Proof is based on the decoupling approach.

Proof
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Main Results: Rate-Limited Assistance (Cont.)

Masking is a �decoupling problem": We wish to decouple Cn from Bn

and GB .

In our extended decoupling approach, Bob's environment + Cn are
decoupled from Alice's reference system.

The leakage derivation follows naturally.
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Main Results: Unassisted Region

De�ne

Q(N ) ≡⋃
ρEA′AC : ρEC=φEC

{
(Q, L) : 0 ≤ Q ≤ min{−H(A|B)ρ , H(A|EC )ρ}

L ≥ I (C ;AB)ρ

}

and

Q(U H) ≡
⋃

ρEA′AC : ρEC=φEC

{
(Q, L) : 0 ≤ Q ≤ H(A|CK )ρ

L ≥ I (C ;AB)ρ

}

with ρABC = NEA′→B(ρAEA′C ) and ρABKC = U H
EA′→BK (ρAEA′C ).
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Main Results: Unassisted Region (Cont.)

Theorem
1) the quantum masking region without assistance is given by

RQ =
∞⋃
k=1

1

k
Q(N⊗k) .

2) For a Hadamard channel,

Q(N H) ⊆ RQ ⊆ Q(U H)

arguments of Merhav and Shamai (2007) do not work in the quantum
setting because H(M|BnCn)ρ < 0.
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Converse Proof (Unassisted)

The leakage is bounded by

n(L + δn) ≥ I (Cn;Bn)ρ

= I (Cn;MBn)ρ − I (Cn;M|Bn)ρ

= I (Cn;MBn)ρ − H(M|Bn)ρ + H(M|BnCn)ρ

= I (Cn;MBn)ρ + I (M〉Bn)ρ + H(M|BnCn)ρ

≥ I (Cn;MBn)ρ + n(Q − εn) + H(M|BnCn)ρ

Since H(M|BnCn)ρ ≥ − log |HM | = −nQ,

L + δn + εn ≥
1

n
I (Cn;MBn)ρ
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Main Results: Entanglement-Assisted Region

Theorem

Given entanglement assistance, the quantum capacity-leakage region is

Rea
Q =

⋃
ρEA′AC : ρEC=ϕEC

{
(Q, L) : 0 ≤ Q ≤ 1

2 [I (A;B)ρ − I (A;EC )ρ]
L ≥ I (C ;AB)ρ

}

and the classical capacity-leakage region is

Rea
Cl =

⋃
ρEA′AC : ρEC=ϕEC

{
(R, L) : 0 ≤ R ≤ I (A;B)ρ − I (A;EC )ρ

L ≥ I (C ;AB)ρ

}

assuming maximally correlated channel state systems:

ϕEE0C =
∑
s∈S

q(s)|s〉〈s|E ⊗ |s〉〈s|E0 ⊗ |s〉〈s|C
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Example: Dephasing Channel

State-dependent dephasing channel

Given a classical channel state S ∼ Bernoulli(q),

NEA→B(ρEA) =(1− q)P(0)
A→B(σ0) + qP(1)

A→B(σ1)

P(s)
A→B(σ) =(1− εs)σ + εsZσZ , s = 0, 1,

for ρEA = (1− q)|0〉〈0|E ⊗ σ0 + q|1〉〈1|E ⊗ σ1.

If Alice applies Z gate controlled by S ⊕Y , Y ∼ Bernoulli(λ), this achieves

Rea
Cl ⊇

⋃
0≤λ≤ 1

2

{
(R, L) : 0 ≤ R ≤ 2− h2(λ ∗ ε̂)
L ≥ h2(λ ∗ ε̂)− (1− q)h2(λ ∗ ε0)− qh2(λ ∗ ε1)

}

where a ∗ b = (1− a)b + a(1− b) and ε̂ = (1− q)ε0 + q(1− ε1). ←↩
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Concluding Remarks

Our results demonstrate the following common phenomena in quantum
information theory:

Entanglement-assisted protocols can accomplish a performance
increase compared to unassisted protocols.

Introducing entanglement resources transforms the capacity formula
from multi-letter to single-letter form

Dimension bound is an open problem � also for quantum wiretap
channel, quantum broadcast channel, squashed entanglement, etc.
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Thank you

1
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IID Decoupling

Theorem

Let |ωABK 〉, |σSRG1G2〉 = |ΨSR〉 ⊗ |ΦG1G2〉 in H⊗2S ⊗H⊗2G . Let WSG1→An

be a full-rank partial isometry, and denote |σAnRG2〉 = WSG1→An |σSRG1G2〉 ..
De�ne

TA→K (ρA) = |HA|TrB [opA→BK (|ωABK 〉)(ρA)]

where opA→B(|iA〉 ⊗ |jB〉) ≡ |jB〉〈iA|. Then,∫
UAn

dUAn

∥∥T ⊗nA→K (UAnσAnR)− ωK ⊗ σR
∥∥
1
≤
√
|HS |
|HG |

2−nH(A|K)ω+nεn∫
UAn

dUAn

∥∥T ⊗nA→K (UAnσAnRG2)− ωK ⊗ σRG2

∥∥
1
≤
√
|HS ||HG |2−nH(A|K)ω+nεn

where the integral is over the Haar measure on all unitaries UAn .
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Achievability Scheme

←↩
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GA

|ΦGAGB〉

En
0

Cn

1
nI(BnGB;Cn)ρ ≤ L
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UN
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Kn

GB
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B
〉
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