Quantum Channel State Masking

Uzi Pereg

Institute for Communications Engineering Technical University of Munich (TUM)

Joint Work with Christian Deppe and Holger Boche

Quantum Communication and Information Theory

Natural extension of the classical theory to quantum systems

Quantum Communication and Information Theory

- Natural extension of the classical theory to quantum systems
- **•** reveals "strange" phenomena: negative conditional entropy, super-activation, etc.

Quantum Communication and Information Theory

- Natural extension of the classical theory to quantum systems
- reveals "strange" phenomena: negative conditional entropy, super-activation, etc.
- **•** Progress in practice
	- Quantum key distribution for secure communication (307 km in optical fibers, 1200 km through space)

Quantum Communication and Information Theory

- Natural extension of the classical theory to quantum systems
- reveals "strange" phenomena: negative conditional entropy, super-activation, etc.
- **•** Progress in practice
	- Quantum key distribution for secure communication (307 km in optical fibers, 1200 km through space)
	- Computation power: Google's supremacy experiment

State-dependent channels

- Channel state information (CSI)
	- classical applications: cognitive radio in wireless systems, memory storage, digital watermarking, etc.
- State masking: the state sequence represents information that should remain hidden from the receiver [Merhav and Shamai, 2007]

Classical results with channel state information (CSI) at the encoder:

- Causal CSI [Shannon 1958]
- Strictly-causal CSI [Csiszár and Körner 1981]
- Non-causal CSI [Gel'fand and Pinsker 1980]

Classical results with channel state information (CSI) at the encoder:

- Causal CSI [Shannon 1958]
- Strictly-causal CSI [Csiszár and Körner 1981]
- Non-causal CSI [Gel'fand and Pinsker 1980]

Classical state masking [Merhav and Shamai, 2007]

- Broadcast channel [Koyluoglu et al. 2016] [Dikshtein et al. 2019]
- Source coding [Courtade 2012]
- Coordination [Le Treust and Bloch 2020]

Quantum channels with side information

- Without entanglement assistance: classical-quantum channels with causal or non-causal CSI [Boche, Cai, and Nötzel 2016]
- Entanglement assistance with non-causal CSI [Dupuis 2008]
- Entanglement assistance with causal CSI [P. 2020]
- Rate & State channel (parameter estimation) [P. 2021]

- Rate-limited entanglement assistance
	- Achievable rate-leakage region: tradeoff between communication, leakage, and entanglement resources.

- Rate-limited entanglement assistance
	- Achievable rate-leakage region: tradeoff between communication, leakage, and entanglement resources.
- Quantum capacity-leakage region
	- without assistance
	- unlimited entanglement assistance

- **•** Rate-limited entanglement assistance
	- \circ Achievable rate-leakage region: tradeoff between communication, leakage, and entanglement resources.
- Quantum capacity-leakage region
	- without assistance
	- unlimited entanglement assistance
- Proof:
	- Achievability is based on the decoupling approach
	- Converse proof: classical arguments do not work

Outline

• Definitions

- [Main Results](#page-21-0)
- [Example](#page-33-0)
- **[Concluding Remarks](#page-36-0)**

A pure quantum state $|\psi\rangle$ is a normalized vector in the Hilbert space \mathcal{H}_A .

Qubit

For a qubit, $|\psi\rangle = |0\rangle$, $|1\rangle$, or

$$
|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \text{, with } |\alpha|^2 + |\beta^2| = 1
$$

A pure quantum state $|\psi\rangle$ is a normalized vector in the Hilbert space \mathcal{H}_{A} .

Qubit

For a qubit, $|\psi\rangle = |0\rangle$, $|1\rangle$, or

$$
|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \ , \text{ with } |\alpha|^2 + |\beta^2| = 1
$$

Entanglement

Systems A and B are entangled if $|\psi_{AB}\rangle \neq |\psi_A\rangle \otimes |\psi_B\rangle$

For example, $|\Phi_{AB}\rangle=\frac{1}{\sqrt{2}}$ $_{\overline{2}}(|0\rangle\otimes|0\rangle+|1\rangle\otimes|1\rangle).$

Entanglement can generate shared randomness, but it is a much more powerful resource.

The state ρ_A of a quantum system A is an Hermitian, positive semidefinite, unit-trace density matrix over \mathcal{H}_{A} .

Given ρ_{AB} , define

 $H(A)_{\rho} \equiv -\text{Tr}(\rho_A \log \rho_A)$

 $H(A|B)_{\rho} \equiv H(AB)_{\rho} - H(B)_{\rho}$

- Mutual information $I(A;B)_{\rho} = H(A)_{\rho} + H(B)_{\rho} H(AB)_{\rho}$
- Coherent information $I(A \rangle B)_{\rho} = -H(A|B)_{\rho}$.

Quantum state-dependent channel

- A given CPTP linear map $\mathcal{N}_{FA\rightarrow B}$
- A pure state $\ket{\phi_{EE_0}c}^{\otimes n}$ (memoryless)
- Channel state information (CSI): Alice has $E_{0}^{\prime\prime}$
- **•** Entanglement resources: Alice and Bob share $\Psi_{G_4G_B}$

Quantum state-dependent channel

- A given CPTP linear map $\mathcal{N}_{FA\rightarrow B}$
- A pure state $\ket{\phi_{EE_0}c}^{\otimes n}$ (memoryless)
- Channel state information (CSI): Alice has $E_{0}^{\prime\prime}$
- **•** Entanglement resources: Alice and Bob share $\Psi_{G_4G_B}$

Leakage

The state of $Cⁿ$ should be hidden from Bob E.g., network information that should not be leaked to the end user.

Channel Model (Cont.)

Leakage

- In the classical case, the leakage requirement need not include shared randomness (cannot help the decoder).
- Our leakage requirement includes the entanglement resource system because Bob could use it to extract information on the channel state, using teleportation for instance.

• Definitions

- [Main Results](#page-21-0)
- [Example](#page-33-0)
- **[Concluding Remarks](#page-36-0)**

Theorem

A quantum communication rate Q is achievable with leakage rate L and entanglement-assitance rate R_e if

$$
Q + R_e \leq H(A|EC)_{\rho}
$$

\n
$$
Q - R_e \leq - H(A|B)_{\rho}
$$

\n
$$
L \geq I(C; AB)_{\rho}
$$

for some $\rho_{AA'EC}$ with $\rho_{EC} = \phi_{EC}$, where $\rho_{ABC} = \mathcal{N}_{EA'\rightarrow B}(\rho_{AFA'C})$.

- **o** demonstrates tradeoff between communication, leakage, and entanglement rates.
- Proof is based on the decoupling approach.

[Proof](#page-39-0)

- Masking is a "decoupling problem": We wish to decouple $Cⁿ$ from $Bⁿ$ and G_{B} .
- In our extended decoupling approach, Bob's environment $+$ C^n are decoupled from Alice's reference system.
- **•** The leakage derivation follows naturally.

Define

$$
\underline{\mathcal{Q}}(\mathcal{N}) \equiv \bigcup_{\rho_{EA'AC}:\rho_{EC}=\phi_{EC}} \left\{ \begin{array}{ll} (Q,L): 0 \leq Q \leq \min\{-H(A|B)_{\rho}, H(A|EC)_{\rho}\} \\ L \geq \left. I(C;AB)_{\rho} \right. \end{array} \right\}
$$

and

$$
\overline{Q}(\mathcal{U}^{\mathsf{H}})\equiv \bigcup_{\rho_{\mathsf{EA'AC}}:\,\rho_{\mathsf{EC}}=\phi_{\mathsf{EC}}}\left\{\n\begin{array}{lcl}\n(\mathsf{Q},\mathsf{L}) : & 0 \leq \mathsf{Q} \leq & H(\mathsf{A}|\mathsf{CK})_{\rho} \\
\mathsf{L} \geq & I(\mathsf{C};\mathsf{AB})_{\rho}\n\end{array}\n\right\}
$$

with $\rho_{ABC} = \mathcal{N}_{EA'\rightarrow B}(\rho_{AEA'C})$ and $\rho_{ABKC} = \mathcal{U}_{EA'\rightarrow BK}^{H}(\rho_{AEA'C})$.

Theorem

 \bullet the quantum masking region without assistance is given by

$$
\mathcal{R}_{Q} = \bigcup_{k=1}^{\infty} \frac{1}{k} \underline{\mathcal{Q}}(\mathcal{N}^{\otimes k}).
$$

2) For a Hadamard channel,

$$
\underline{\mathcal{Q}}(\mathcal{N}^H) \subseteq \mathcal{R}_{Q} \subseteq \overline{\mathcal{Q}}(\mathcal{U}^H)
$$

• arguments of Merhav and Shamai (2007) do not work in the quantum setting because $H(M|B^nC^n)_\rho < 0$.

$$
n(L + \delta_n) \ge I(C^n; B^n)_{\rho}
$$

= $I(C^n; MB^n)_{\rho} - I(C^n; M|B^n)_{\rho}$
= $I(C^n; MB^n)_{\rho} - H(M|B^n)_{\rho} + H(M|B^n C^n)_{\rho}$

$$
n(L + \delta_n) \ge I(C^n; B^n)_{\rho}
$$

= $I(C^n; MB^n)_{\rho} - I(C^n; M|B^n)_{\rho}$
= $I(C^n; MB^n)_{\rho} - H(M|B^n)_{\rho} + H(M|B^n C^n)_{\rho}$
= $I(C^n; MB^n)_{\rho} + I(M \rangle B^n)_{\rho} + H(M|B^n C^n)_{\rho}$

$$
n(L + \delta_n) \ge I(C^n; B^n)_{\rho}
$$

= $I(C^n; MB^n)_{\rho} - I(C^n; M|B^n)_{\rho}$
= $I(C^n; MB^n)_{\rho} - H(M|B^n)_{\rho} + H(M|B^n C^n)_{\rho}$
= $I(C^n; MB^n)_{\rho} + I(M)_{\rho}B^n)_{\rho} + H(M|B^n C^n)_{\rho}$
 $\ge I(C^n; MB^n)_{\rho} + n(Q - \varepsilon_n) + H(M|B^n C^n)_{\rho}$

$$
n(L + \delta_n) \ge I(C^n; B^n)_{\rho}
$$

= $I(C^n; MB^n)_{\rho} - I(C^n; M|B^n)_{\rho}$
= $I(C^n; MB^n)_{\rho} - H(M|B^n)_{\rho} + H(M|B^n C^n)_{\rho}$
= $I(C^n; MB^n)_{\rho} + I(M\rangle B^n)_{\rho} + H(M|B^n C^n)_{\rho}$
 $\ge I(C^n; MB^n)_{\rho} + n(Q - \varepsilon_n) + H(M|B^n C^n)_{\rho}$

Since $H(M|B^nC^n)_\rho\geq -\log|\mathcal{H}_M|=-nQ,$

$$
L+\delta_n+\varepsilon_n\geq \frac{1}{n}I(C^n;MB^n)_{\rho}
$$

Main Results: Entanglement-Assisted Region

Theorem

Given entanglement assistance, the quantum capacity-leakage region is

$$
\mathcal{R}_{Q}^{ea} = \bigcup_{\rho_{EA'AC} : \rho_{EC} = \varphi_{EC}} \left\{ \begin{array}{l} (Q, L) : 0 \leq Q \leq \frac{1}{2} [I(A; B)_{\rho} - I(A; EC)_{\rho}] \\ L \geq I(C; AB)_{\rho} \end{array} \right\}
$$

Main Results: Entanglement-Assisted Region

Theorem

Given entanglement assistance, the quantum capacity-leakage region is

$$
\mathcal{R}_Q^{ea} = \bigcup_{\rho_{EA'AC} : \rho_{EC} = \varphi_{EC}} \left\{ \begin{array}{l} (Q, L) : 0 \leq Q \leq \frac{1}{2} [I(A; B)_{\rho} - I(A; EC)_{\rho}] \\ L \geq I(C; AB)_{\rho} \end{array} \right\}
$$

and the classical capacity-leakage region is

$$
\mathcal{R}_{Cl}^{ea} = \bigcup_{\rho_{EA'AC} : \rho_{EC} = \varphi_{EC}} \left\{ \begin{array}{l} (R,L) : 0 \leq R \leq l(A;B)_{\rho} - l(A;EC)_{\rho} \\ L \geq l(C;AB)_{\rho} \end{array} \right\}
$$

Main Results: Entanglement-Assisted Region

Theorem

Given entanglement assistance, the quantum capacity-leakage region is

$$
\mathcal{R}_Q^{ea} = \bigcup_{\rho_{EA'AC} : \rho_{EC} = \varphi_{EC}} \left\{ \begin{array}{l} (Q, L) : 0 \leq Q \leq \frac{1}{2} [I(A; B)_{\rho} - I(A; EC)_{\rho}] \\ L \geq I(C; AB)_{\rho} \end{array} \right\}
$$

and the classical capacity-leakage region is

$$
\mathcal{R}_{Cl}^{ea} = \bigcup_{\rho_{EA'AC} : \rho_{EC} = \varphi_{EC}} \left\{ \begin{array}{l} (R,L) : 0 \leq R \leq l(A;B)_{\rho} - l(A;EC)_{\rho} \\ L \geq l(C;AB)_{\rho} \end{array} \right\}
$$

assuming maximally correlated channel state systems:

$$
\varphi_{EE_0C}=\sum_{s\in\mathcal{S}}q(s)|s\rangle\langle s|_E\otimes|s\rangle\langle s|_{E_0}\otimes|s\rangle\langle s|_C
$$

• Definitions

- [Main Results](#page-21-0)
- [Example](#page-33-0)
- **[Concluding Remarks](#page-36-0)**

Example: Dephasing Channel

State-dependent dephasing channel

Given a classical channel state $S \sim$ Bernoulli (q) ,

$$
\mathcal{N}_{EA\rightarrow B}(\rho_{EA}) = (1-q)\mathcal{P}_{A\rightarrow B}^{(0)}(\sigma_0) + q\mathcal{P}_{A\rightarrow B}^{(1)}(\sigma_1)
$$

$$
\mathcal{P}_{A\rightarrow B}^{(s)}(\sigma)=(1-\varepsilon_s)\sigma+\varepsilon_s Z\sigma Z\;,\quad s=0,1,
$$

for $\rho_{EA} = (1-q)|0\rangle\langle0|_E \otimes \sigma_0 + q|1\rangle\langle1|_E \otimes \sigma_1$.

Example: Dephasing Channel

State-dependent dephasing channel

Given a classical channel state $S \sim$ Bernoulli(q),

$$
\mathcal{N}_{\mathit{EA}\rightarrow \mathit{B}}(\rho_{\mathit{EA}}) = (1-q)\mathcal{P}^{(0)}_{A\rightarrow B}(\sigma_0) + q\mathcal{P}^{(1)}_{A\rightarrow B}(\sigma_1)
$$

$$
\mathcal{P}_{A\rightarrow B}^{(s)}(\sigma)=(1-\varepsilon_s)\sigma+\varepsilon_s Z\sigma Z\;,\quad s=0,1,
$$

for $\rho_{EA} = (1-q)|0\rangle\langle0|_E \otimes \sigma_0 + q|1\rangle\langle1|_E \otimes \sigma_1$.

If Alice applies Z gate controlled by $S \oplus Y$, Y \sim Bernoulli(λ), this achieves

$$
\mathcal{R}_{\text{Cl}}^{\text{ea}} \supseteq \bigcup_{0 \leq \lambda \leq \frac{1}{2}} \left\{ \begin{array}{c} (R, L) : 0 \leq R \leq 2 - h_2(\lambda * \hat{\varepsilon}) \\ L \geq h_2(\lambda * \hat{\varepsilon}) - (1 - q)h_2(\lambda * \varepsilon_0) - qh_2(\lambda * \varepsilon_1) \end{array} \right\}
$$

where $a * b = (1 - a)b + a(1 - b)$ and $\hat{\varepsilon} = (1 - q)\varepsilon_0 + q(1 - \varepsilon_1)$. [←](#page-38-0)- • Definitions

- [Main Results](#page-21-0)
- [Example](#page-33-0)
- **o** [Concluding Remarks](#page-36-0)

Our results demonstrate the following common phenomena in quantum information theory:

- Entanglement-assisted protocols can accomplish a performance increase compared to unassisted protocols.
- Introducing entanglement resources transforms the capacity formula from multi-letter to single-letter form
- Dimension bound is an open problem also for quantum wiretap channel, quantum broadcast channel, squashed entanglement, etc.

Thank you

IID Decoupling

Theorem

Let $|\omega_{ABK}\rangle$, $|\sigma_{SRG_1G_2}\rangle = |\Psi_{SR}\rangle \otimes |\Phi_{G_1G_2}\rangle$ in $\mathcal{H}_S^{\otimes 2} \otimes \mathcal{H}_G^{\otimes 2}$. Let $W_{SG_1 \to A^m}$ be a full-rank partial isometry, and denote $\ket{\sigma_{A^n R G_2}} = W_{SG_1 \rightarrow A^n} \vert \sigma_{SRG_1 G_2} \rangle$.. Define

$$
\mathcal{T}_{A\rightarrow K}(\rho_A) = |\mathcal{H}_A| \text{Tr}_B \left[o \rho_{A\rightarrow B K}(|\omega_{ABK}\rangle)(\rho_A) \right]
$$

where $op_{A\rightarrow B}(|i_{A}\rangle\otimes|j_{B}\rangle)\equiv|j_{B}\rangle\langle i_{A}|$. Then,

$$
\int_{\mathbb{U}_{A^n}} dU_{A^n} \left\| \mathcal{T}_{A \to K}^{\otimes n} (U_{A^n} \sigma_{A^n R}) - \omega_K \otimes \sigma_R \right\|_1 \leq \sqrt{\frac{|\mathcal{H}_S|}{|\mathcal{H}_G|} 2^{-nH(A|K)_{\omega} + n\epsilon_n}}
$$
\n
$$
\int_{\mathbb{U}_{A^n}} dU_{A^n} \left\| \mathcal{T}_{A \to K}^{\otimes n} (U_{A^n} \sigma_{A^n R G_2}) - \omega_K \otimes \sigma_{R G_2} \right\|_1 \leq \sqrt{|\mathcal{H}_S| |\mathcal{H}_G| 2^{-nH(A|K)_{\omega} + n\epsilon_n}}
$$

where the integral is over the Haar measure on all unitaries U_{A^n} .

Uzi Pereg [Quantum Masking](#page-0-0) 24 / 24

Achievability Scheme

