Entanglement Assisted Covert Communication Over Qubit Depolarizing Channel

Elyakim Zlotnick¹, Boulat Bash², and Uzi Pereg¹

¹ECE Department, Technion

²ECE Department, University of Arizona

- Privacy and confidentiality are critical in communication.
- Traditional security requirement: Prevent an eavesdropper from recovering information.

- Privacy and confidentiality are critical in communication.
- Traditional security requirement: Prevent an eavesdropper from recovering information.
- **Covert Communication**: Not only the transmitted information kept secret, but also the transmission itself.

- Privacy and confidentiality are critical in communication.
- Traditional security requirement: Prevent an eavesdropper from recovering information.
- **Covert Communication**: Not only the transmitted information kept secret, but also the transmission itself.
	- Transmission rate is zero.

- Privacy and confidentiality are critical in communication.
- Traditional security requirement: Prevent an eavesdropper from recovering information.
- **Covert Communication**: Not only the transmitted information kept secret, but also the transmission itself.
	- Transmission rate is zero.
	- \circ Instead of sending a message of $n \cdot R$ bits, Alice sends a sublinear message of $f(n) \cdot L$ bits.

- Without entanglement, $\#$ information bits is $O(\sqrt{n})$ (SRL-square root law):
	- classical communication [Bash et al. 2013, Bloch 2016]
	- continuous variable (bosonic channel) [Bash et al. 2015]
	- discrete variable (classical-quatum) [Sheikholeslami et al. 2016] [Bullock et al. 2023]

- Without entanglement, $\#$ information bits is $O(\sqrt{n})$ (SRL-square root law):
	- classical communication [Bash et al. 2013, Bloch 2016]
	- continuous variable (bosonic channel) [Bash et al. 2015]
	- discrete variable (classical-quatum) [Sheikholeslami et al. 2016] [Bullock et al. 2023]
- Given pre-shared entanglement, $\#$ information bits is $O(\sqrt{n}\log(n))$:
	- Continuous variable (bosonic channel) [Gagatsos et al. 2020]
	- Discrete variable?

- Without entanglement, $\#$ information bits is $O(\sqrt{n})$ (SRL-square root law):
	- classical communication [Bash et al. 2013, Bloch 2016]
	- continuous variable (bosonic channel) [Bash et al. 2015]
	- discrete variable (classical-quatum) [Sheikholeslami et al. 2016] [Bullock et al. 2023]
- Given pre-shared entanglement, $\#$ information bits is $O(\sqrt{n}\log(n))$:
	- Continuous variable (bosonic channel) [Gagatsos et al. 2020]
	- Discrete variable? Yes!

We consider qubit depolarizing channels:

- **•** Three scenarios
	- 1) adversary can access the entire environment
	- 2) "half" the environment
	- 3) other "half"
- Logarithmic factor is not reserved for continuous-variable channels
- **•** Interpretation: Energy-constrained transmission

[Definitions and Related Work](#page-9-0)

[Main Results](#page-33-0)

· [Discussion and Interpretation](#page-40-0)

Information Moments

◦ First moment: Divergence

$$
D(\rho||\sigma) = \mathsf{Tr}\left[\rho\left(\log(\rho) - \log(\sigma)\right)\right]
$$

Information Moments

◦ First moment: Divergence

$$
D(\rho||\sigma) = \mathsf{Tr}\left[\rho\left(\log(\rho) - \log(\sigma)\right)\right]
$$

◦ Second moment:

$$
V(\rho||\sigma) = \text{Tr}[\rho|(\log(\rho) - \log(\sigma) - D(\rho||\sigma)|^2]
$$

Information Moments

◦ First moment: Divergence

$$
D(\rho||\sigma) = \mathsf{Tr}\left[\rho\left(\log(\rho) - \log(\sigma)\right)\right]
$$

◦ Second moment:

$$
V(\rho||\sigma) = \text{Tr}[\rho|(\log(\rho) - \log(\sigma) - D(\rho||\sigma)|^2]
$$

◦ Fourth moment:

$$
Q(\rho||\sigma) = \text{Tr}[\rho|(\log(\rho) - \log(\sigma) - D(\rho||\sigma)|^4]
$$

Information Derivative $(\eta$ -divergence)

For a spectral decomposition $\sigma = \sum_i \lambda_i P_i$, let

$$
\eta(\rho||\sigma) = \sum_{i \neq j} \frac{\log(\lambda_i) - \log(\lambda_j)}{\lambda_i - \lambda_j} \operatorname{Tr}[(\rho - \sigma)P_i(\rho - \sigma)P_j]
$$

$$
+ \sum_{i} \frac{1}{\lambda_i} \operatorname{Tr}[(\rho - \sigma)P_i(\rho - \sigma)P_i]
$$

[Tahmasbi and Bloch 2021]

Quantum Channel

A quantum channel $\mathcal{N}_{A\rightarrow B}$ is a completely-positive trace-preserving (CPTP) map.

Quantum Channel

A quantum channel $\mathcal{N}_{A\rightarrow B}$ is a completely-positive trace-preserving (CPTP) map.

Stinespring Dilation

Every quantum channel has an isometric extension,

$$
\mathcal{V}_{A\rightarrow BE}(\rho)=V\rho V^{\dagger}
$$

where V is an isometry that maps from \mathcal{H}_A to $\mathcal{H}_B \otimes \mathcal{H}_F$.

A, B and E are associated with Alice, Bob and the environment, respectively.

W TECHNION |

Qubit Depolarizing Channel

Bob receives qubit state w.p. $1 - q$, and a completely mixed state w.p. q,

$$
\mathcal{N}_{A\rightarrow B}(\rho) = (1-q)\rho + q\frac{1}{2}
$$

=
$$
\left(1 - \frac{3q}{4}\right)\rho + \frac{q}{4}\left(X\rho X + Y\rho Y + Z\rho Z\right)
$$

Qubit Depolarizing Channel

Bob receives qubit state w.p. $1 - q$, and a completely mixed state w.p. q,

$$
\mathcal{N}_{A\rightarrow B}(\rho) = (1-q)\rho + q\frac{1}{2}
$$

=
$$
\left(1 - \frac{3q}{4}\right)\rho + \frac{q}{4}\left(X\rho X + Y\rho Y + Z\rho Z\right)
$$

Canonical Stinespring dilation

$$
V \equiv \sqrt{1-\frac{3q}{4}}1 \otimes \left|1\right\rangle + \sqrt{\frac{q}{4}}X \otimes \left|2\right\rangle + \sqrt{\frac{q}{4}}Y \otimes \left|3\right\rangle + \sqrt{\frac{q}{4}}Z \otimes \left|4\right\rangle
$$

- \circ log(M) #information bits, over *n* channel uses.
- \circ In covert communication, $log(M)$ is sub-linear

$$
\circ \text{ Transmission rate: } R = \frac{\log(M)}{n} \to 0
$$

Coding for Covert Communication (Cont.)

- \circ Entanglement assistance: Alice and Bob share $|\Psi_{\mathcal{T}_A\mathcal{T}_B}\rangle$ a priori.
- Detection: Willie performs hypothesis testing to determine whether Alice has transmitted information or not.

An (M, n, ϵ, δ) code for covert communication with entanglement assistance satisfies two requirements.

1) Low probability of error: Bob decodes with

Pr(error) $\leq \epsilon$

An (M, n, ϵ, δ) code for covert communication with entanglement assistance satisfies two requirements.

1) Low probability of error: Bob decodes with

Pr(error) $\leq \epsilon$

2) Covertness: Willie has a bad detection performance

 $D(\rho_{W^n}||\omega_0^{\otimes n}) \leq \delta$

where ρ_{W^n} is Willie's average state, and $\omega_0 \equiv \mathcal{N}_{A\rightarrow W}(|0\rangle\langle 0|)$. This guarantees Pr(miss) + Pr(False alarm) $\approx \frac{1}{2}$.

Covert Rate

The growth is characterized by the covert "rate",

$$
L=\frac{\log(M)}{\sqrt{n\delta}\log(n)}.
$$

A covert rate L is achievable if $\forall \epsilon, \delta > 0 \; \exists \; n \geq n_0(L,\epsilon,\delta)$, there exists an $(M=2^{L\sqrt{n\delta}\log(n)},n,\epsilon,\delta)$ code for covert communication with entanglement assistance.

Covert Capacity

The entanglement-assisted covert capacity is the supremum of achievable rates.

The scale of $O(\sqrt{n}\log(n))$ has already been observed in a continuous-variable model, i.e., the bosonic Gaussian channel [Gagatsos et al. 2020].

- The scale of $O(\sqrt{n}\log(n))$ has already been observed in a continuous-variable model, i.e., the bosonic Gaussian channel [Gagatsos et al. 2020].
- Until now, it has remained unclear whether this performance boost can also be achieved in finite dimensions.

- The scale of $O(\sqrt{n}\log(n))$ has already been observed in a continuous-variable model, i.e., the bosonic Gaussian channel [Gagatsos et al. 2020].
- Until now, it has remained unclear whether this performance boost can also be achieved in finite dimensions.
- In some communication settings, the coding scale is larger for continuous-variable channels.

- The scale of $O(\sqrt{n}\log(n))$ has already been observed in a continuous-variable model, i.e., the bosonic Gaussian channel [Gagatsos et al. 2020].
- Until now, it has remained unclear whether this performance boost can also be achieved in finite dimensions.
- In some communication settings, the coding scale is larger for continuous-variable channels.
- For example, in deterministic identification, the code size is super-exponential for Gaussian channels but limited to an exponential scale for finite-dimensional channels [Salariseddigh et al. 2021].

Depolarizing Channel

The depolarizing channel has a Stinespring dilation $\mathcal{V}_{A\to BE_1E_2}(\rho_A) = V \rho_A V^\dagger$,

$$
V \equiv \sqrt{1-\frac{3q}{4}}1 \otimes \left|00\right\rangle + \sqrt{\frac{q}{4}}X \otimes \left|01\right\rangle + \sqrt{\frac{q}{4}}Y \otimes \left|11\right\rangle + \sqrt{\frac{q}{4}}Z \otimes \left|10\right\rangle \,.
$$

 \circ Three qubits at the output of the channel. For example, given $|\phi_A\rangle = |+\rangle$,

$$
\begin{aligned} \left| \psi_{BE_1E_2} \right\rangle &= V \left| + \right\rangle \\ &= \sqrt{1 - \frac{3q}{4}} \left| + \right\rangle \left| 00 \right\rangle + \sqrt{\frac{q}{4}} \left| + \right\rangle \left| 01 \right\rangle \\ &- i\sqrt{\frac{q}{4}} \left| - \right\rangle \left| 11 \right\rangle + \sqrt{\frac{q}{4}} \left| - \right\rangle \left| 10 \right\rangle \end{aligned}
$$

The depolarizing channel has a Stinespring dilation $\mathcal{V}_{A\to BE_1E_2}(\rho_A) = V \rho_A V^\dagger$,

$$
V \equiv \sqrt{1-\frac{3q}{4}}\mathbb{1}\otimes \ket{00} + \sqrt{\frac{q}{4}}X\otimes \ket{01} + \sqrt{\frac{q}{4}}Y\otimes \ket{11} + \sqrt{\frac{q}{4}}Z\otimes \ket{10}\,.
$$

 \circ Three qubits at the output of the channel. For example, given $|\phi_A\rangle = |+\rangle$,

$$
\begin{aligned} \left| \psi_{BE_1E_2} \right\rangle &= V \left| + \right\rangle \\ &= \sqrt{1-\frac{3q}{4}} \left| + \right\rangle \left| 00 \right\rangle + \sqrt{\frac{q}{4}} \left| + \right\rangle \left| 01 \right\rangle \\ &- i\sqrt{\frac{q}{4}} \left| - \right\rangle \left| 11 \right\rangle + \sqrt{\frac{q}{4}} \left| - \right\rangle \left| 10 \right\rangle \end{aligned}
$$

Intuitively, (E_1, E_2) store a "flag" that indicates which Pauli error occurred.

The depolarizing channel has a Stinespring dilation $\mathcal{V}_{A\to BE_1E_2}(\rho_A) = V \rho_A V^\dagger$,

$$
V \equiv \sqrt{1-\frac{3q}{4}}\mathbb{1}\otimes \ket{00} + \sqrt{\frac{q}{4}}X\otimes \ket{01} + \sqrt{\frac{q}{4}}Y\otimes \ket{11} + \sqrt{\frac{q}{4}}Z\otimes \ket{10}\,.
$$

 \circ Three qubits at the output of the channel. For example, given $|\phi_A\rangle = |+\rangle$,

$$
\begin{aligned} \left| \psi_{BE_1E_2} \right\rangle &= V \left| + \right\rangle \\ &= \sqrt{1-\frac{3q}{4}} \left| + \right\rangle \left| 00 \right\rangle + \sqrt{\frac{q}{4}} \left| + \right\rangle \left| 01 \right\rangle \\ &- i\sqrt{\frac{q}{4}} \left| - \right\rangle \left| 11 \right\rangle + \sqrt{\frac{q}{4}} \left| - \right\rangle \left| 10 \right\rangle \end{aligned}
$$

Intuitively, (E_1, E_2) store a "flag" that indicates which Pauli error occurred.

○ 1st qubit belongs to Bob. 2nd and 3rd leak to the environment.

W TECHNION |

Willie's Channel

Willie has access to (part of) the environment. We consider three scenarios:

- \circ Scenario 1: Willie receives both qubits, E_1 and E_2 .
- \circ Scenario 2: Willie receives last qubit, E_2 .

 \circ Scenario 3: Willie receives the qubit E_1 .

TECHNION

Willie's Channel

Willie has access to (part of) the environment. We consider three scenarios:

- \circ Scenario 1: Willie receives both qubits, E_1 and E_2 .
- \circ Scenario 2: Willie receives last qubit, E_2 .

 \circ Scenario 3: Willie receives the qubit E_1 .

Willie's Channel

Willie has access to (part of) the environment. We consider three scenarios:

- \circ Scenario 1: Willie receives both qubits, E_1 and E_2 .
- \circ Scenario 2: Willie receives last qubit, E_2 .
- \circ Scenario 3: Willie receives the qubit E_1 .

[Definitions and Related Work](#page-9-0)

• [Main Results](#page-33-0)

· [Discussion and Interpretation](#page-40-0)

Willie's Channel: Scenario 1

Theorem

Covert communication is impossible in Scenario 1. Hence, if $W = (E_1, E_2)$, then $C_{cov-EA}(\mathcal{N})=0.$

- Willie receives the entire environment
- Willie can then detect any encoding operation, because $\text{supp}(\omega_1) \nsubseteq \text{supp}(\omega_0)$, where $\omega_0 \equiv \hat{N}_{A\to W}(|0\rangle\langle 0|)$ and $\omega_1 \equiv \hat{N}_{A\to W}(|1\rangle\langle 1|)$

Willie's Channel: Scenario 2

Theorem

Covert communication is trivial in Scenario 2. That is, Alice can communicate information as without the covertness requirement, and send $O(n)$ bits.

- Willie receives the second qubit.
- \circ Willie cannot discern between the $|0\rangle$ and $|1\rangle$ inputs, as

 $\omega_0=\omega_1=(1-\frac{q}{2})\ket{0}\!\!\bra{0}+\frac{q}{2}\ket{1}\!\!\bra{1}$

Willie's Channel: Scenario 3

- Willie receives the first qubit.
- Covert communication is possible, yet not trivial.

 $(\textsf{supp}(\omega_1) \subseteq \textsf{supp}(\omega_0)$ and $\omega_0 \neq \omega_1)$

Theorem

Consider a qubit depolarizing channel as in scenario 3. The entanglement-assisted covert capacity is bounded as

$$
C_{cov-EA}(\mathcal{N}) \ge \frac{4\sqrt{2}}{3} \frac{(1-q)^2}{(2-q)\sqrt{\eta(\omega_1||\omega_0)}}
$$

where $\omega_0 \equiv \mathcal{N}_{A\rightarrow W}(|0\rangle\langle 0|)$ and $\omega_1 \equiv \mathcal{N}_{A\rightarrow W}(|1\rangle\langle 1|)$.

- \circ Recall that the covert rate is defined as $L \equiv \frac{\log(M)}{\log(n) \sqrt{n}}$ $\frac{\log(m)}{\log(n)\sqrt{n\delta}}$
- Without entanglement, #information bits follows SRL, and here, the rate is α defined according to the $\sqrt{n} \log(n)$ scale.
- \Rightarrow Covert transmission of $O(\sqrt{n}\log n)$ information bits is achievable.

Main Results: Lower Bound

Lower bound of the covert rate $C_{\text{cov-EA}}$ as function of the noise paramtere q:

- \circ $q \rightarrow 0$: No noise, covert communication is trivial.
- \circ $q \rightarrow 1$: Completely noise, communication is impossible.

X TECHNION

Main Result: Info. Bits Graph

Number of information bits for noise parameter $q=\frac{1}{2}$, and $D(\bar{\rho}_{W^n}||\omega_0^{\otimes n})\leq 0.1$:

[Definitions and Related Work](#page-9-0)

[Main Results](#page-33-0)

· [Discussion and Interpretation](#page-40-0)

Energy Constraint

Suppose that the total energy of the input state is constrained.

- \circ A state ρ satisfies an energy constraint E w.r.t. the Hamiltonian $\hat{H} = |1\rangle\langle 1|$, if $Tr(\hat{H}\rho) \leq E$
- The capacities with and without entanglement assistance, are given by

$$
C_0(\mathcal{N}, E) = H_2 \left(E * \frac{q}{2} \right) - H_2(E)
$$

$$
C_{EA}(\mathcal{N}, E) = H_2(E) + H_2 \left(E * \frac{q}{2} \right) - H(\psi_{A_1 B})
$$

where $H_2(x)$ is the binary entropy function, $a * b = (1 - a)b + a(1 - b)$, and

$$
\psi_{A_1B} = (\mathsf{id}_{A_1} \otimes \mathcal{N}_{A \to B}) \left(\sqrt{1 - \mathsf{E}} \, |00\rangle + \sqrt{\mathsf{E}} \, |11\rangle \right)
$$

For $E \ll 1$,

- Unassisted energy-constrained capacity: $C_0(\mathcal{N}, E) \sim E$
- Entanglement-assisted energy-constrained capacity: $C_{EA}(N, E) \sim -E$ log E

For $E \ll 1$,

- Unassisted energy-constrained capacity: $C_0(N, E) \sim E$
- \circ Entanglement-assisted energy-constrained capacity: $C_{EA}(N, E) \sim -E$ log E

The ratio between the assisted and unassisted capacities scales as

$$
\frac{\mathcal{C}_{EA}(\mathcal{N},E)}{\mathcal{C}_0(\mathcal{N},E)} \sim -\log(E)
$$

For $E \ll 1$,

- Unassisted energy-constrained capacity: $C_0(N, E) \sim E$
- Entanglement-assisted energy-constrained capacity: $C_{FA}(N, E) \sim -E$ log E

The ratio between the assisted and unassisted capacities scales as

$$
\frac{\mathcal{C}_{EA}(\mathcal{N},E)}{\mathcal{C}_0(\mathcal{N},E)} \sim -\log(E)
$$

Effectively, the covertness requirement imposes an energy constraint \Rightarrow Taking $E_n \sim \frac{1}{\sqrt{n}}$, the ratio becomes $O(\log(n)).$

A similar behavior has been observed for bosonic channels with a mean photon number constraint [Guha et al. 2020] [Shi et al. 2020].

 \widetilde{M} TECHNION |

Bob's Detection Capability

The "unfair channel setting": Bob can determine that some outputs are associated with a non-zero input, while Willie cannot. Hence, Bob has an unfair advantage over Willie.

- Examples: erasure channel, amplitude-damping channel.
- Even without assistance, $\#$ information bits scales as $\sqrt{n}\log(n)$ [Bloch et al. 2016, Sheikholeslami et al. 2016]

The depolarizing channel is fair in this sense, yet entanglement assistance has a similar effect as granting Bob the capability of identifying a non-zero transmission with certainty.

We address entanglement-assited and covert communication over depolarizing channels

We consider different scenarios, where Willie has the entire environment, or, part of it.

We address entanglement-assited and covert communication over depolarizing channels

- We consider different scenarios, where Willie has the entire environment, or, part of it.
- Our main contributions include:
	- $*$ Analysis of $#$ information bits per channel uses.
	- ∗ Demonstrating that the logarithmic factor is not exclusive to continuous variable systems.
	- ∗ Interpretation of covert communication rates as energy-constrained capacities for the qubit depolarizing channel.

Thank You

