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Motivation

Privacy and confidentiality are critical in communication.

Traditional security requirement: Prevent an eavesdropper from recovering
information.

Covert Communication: Not only the transmitted information kept secret,
but also the transmission itself.

◦ Transmission rate is zero.

◦ Instead of sending a message of n · R bits, Alice sends a sublinear message of
f (n) · L bits.
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Background: Covert Communication

Without entanglement, # information bits is O(
√
n) (SRL-square root law):

◦ classical communication [Bash et al. 2013, Bloch 2016]

◦ continuous variable (bosonic channel) [Bash et al. 2015]

◦ discrete variable (classical-quatum) [Sheikholeslami et al. 2016]
[Bullock et al. 2023]

Given pre-shared entanglement, # information bits is O(
√
n log(n)):

◦ Continuous variable (bosonic channel) [Gagatsos et al. 2020]

◦ Discrete variable? Yes!
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Main Contributions

We consider qubit depolarizing channels:

Three scenarios
1) adversary can access the entire environment

2) "half" the environment

3) other "half"

Logarithmic factor is not reserved for continuous-variable channels

Interpretation: Energy-constrained transmission
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Outline

Definitions and Related Work

Main Results

Discussion and Interpretation
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Information Moments and Derivative

Information Moments
◦ First moment: Divergence

D(ρ||σ) = Tr [ρ (log(ρ)− log(σ))]

◦ Second moment:

V (ρ||σ) = Tr[ρ|(log(ρ)− log(σ)− D(ρ||σ)|2]

◦ Fourth moment:

Q(ρ||σ) = Tr[ρ|(log(ρ)− log(σ)− D(ρ||σ)|4]
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Information Moments and Derivative (Cont.)

Information Derivative (η-divergence)
For a spectral decomposition σ =

∑
i λiPi , let

η(ρ||σ) =
∑
i ̸=j

log(λi )− log(λj)

λi − λj
Tr[(ρ− σ)Pi (ρ− σ)Pj ]

+
∑
i

1
λi

Tr[(ρ− σ)Pi (ρ− σ)Pi ]

[Tahmasbi and Bloch 2021]
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Isometric Extension

Quantum Channel
A quantum channel NA→B is a completely-positive trace-preserving (CPTP) map.

Stinespring Dilation
Every quantum channel has an isometric extension,

VA→BE (ρ) = V ρV †

where V is an isometry that maps from HA to HB ⊗HE .

A, B and E are associated with Alice, Bob and the environment, respectively.
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Study Case

Qubit Depolarizing Channel
Bob receives qubit state w.p. 1 − q, and a completely mixed state w.p. q,

NA→B(ρ) = (1 − q)ρ+ q
1

2

=

(
1 − 3q

4

)
ρ+

q

4
(XρX + Y ρY + ZρZ )

Canonical Stinespring dilation

V ≡
√

1 − 3q
4
1⊗ |1⟩+

√
q

4
X ⊗ |2⟩+

√
q

4
Y ⊗ |3⟩+

√
q

4
Z ⊗ |4⟩
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Coding for Covert Communication

◦ log(M) — #information bits, over n channel uses.

◦ In covert communication, log(M) is sub-linear

◦ Transmission rate: R = log(M)
n → 0
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Coding for Covert Communication (Cont.)

◦ Entanglement assistance: Alice and Bob share |ΨTATB
⟩ a priori.

◦ Detection: Willie performs hypothesis testing to determine whether Alice has
transmitted information or not.
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Coding for Covert Communication

An (M, n, ϵ, δ) code for covert communication with entanglement assistance
satisfies two requirements.

1) Low probability of error: Bob decodes with

Pr(error) ≤ ϵ

2) Covertness: Willie has a bad detection performance

D(ρW n ||ω⊗n
0 ) ≤ δ

where ρW n is Willie’s average state, and ω0 ≡ NA→W (|0⟩⟨0|).
This guarantees Pr(miss) + Pr(False alarm) ≈ 1

2 .
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Coding for Covert Communication (Cont.)

Covert Rate
The growth is characterized by the covert “rate",

L =
log(M)√
nδ log(n)

.

A covert rate L is achievable if ∀ ϵ, δ > 0 ∃ n ≥ n0(L, ϵ, δ), there exists an
(M = 2L

√
nδ log(n), n, ϵ, δ) code for covert communication with entanglement

assistance.

Covert Capacity
The entanglement-assisted covert capacity is the supremum of achievable rates.
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Discrete vs. Continuous-Variable Channels

The scale of O(
√
n log(n)) has already been observed in a continuous-variable

model, i.e., the bosonic Gaussian channel [Gagatsos et al. 2020].

Until now, it has remained unclear whether this performance boost can also
be achieved in finite dimensions.

In some communication settings, the coding scale is larger for
continuous-variable channels.

For example, in deterministic identification, the code size is super-exponential
for Gaussian channels but limited to an exponential scale for
finite-dimensional channels [Salariseddigh et al. 2021].
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Depolarizing Channel

The depolarizing channel has a Stinespring dilation VA→BE1E2(ρA) = V ρAV
†,

V ≡
√

1 − 3q
4
1⊗ |00⟩+

√
q

4
X ⊗ |01⟩+

√
q

4
Y ⊗ |11⟩+

√
q

4
Z ⊗ |10⟩ .

◦ Three qubits at the output of the channel. For example, given |ϕA⟩ = |+⟩,

|ψBE1E2⟩ = V |+⟩

=

√
1 − 3q

4
|+⟩ |00⟩+

√
q

4
|+⟩ |01⟩

− i

√
q

4
|−⟩ |11⟩+

√
q

4
|−⟩ |10⟩

Intuitively, (E1,E2) store a "flag" that indicates which Pauli error occurred.

◦ 1st qubit belongs to Bob. 2nd and 3rd leak to the environment.
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Willie’s Channel

Willie has access to (part of) the environment.
We consider three scenarios:
◦ Scenario 1: Willie receives both qubits, E1 and E2.
◦ Scenario 2: Willie receives last qubit, E2.
◦ Scenario 3: Willie receives the qubit E1.
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Willie’s Channel: Scenario 1

Theorem
Covert communication is impossible in Scenario 1. Hence, if W = (E1,E2), then
Ccov-EA(N ) = 0.

◦ Willie receives the entire environment
◦ Willie can then detect any encoding operation, because

supp(ω1) ̸⊆ supp(ω0), where ω0 ≡ N̂A→W (|0⟩⟨0|) and ω1 ≡ N̂A→W (|1⟩⟨1|)

Uzi Pereg Covert Communication & Entanglement 18 / 28



Willie’s Channel: Scenario 2

Theorem
Covert communication is trivial in Scenario 2. That is, Alice can communicate
information as without the covertness requirement, and send O(n) bits.

◦ Willie receives the second qubit.
◦ Willie cannot discern between the |0⟩ and |1⟩ inputs, as
ω0 = ω1 = (1 − q

2 ) |0⟩⟨0|+
q
2 |1⟩⟨1|
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Willie’s Channel: Scenario 3

◦ Willie receives the first qubit.
◦ Covert communication is possible, yet not trivial.

(supp(ω1) ⊆ supp(ω0) and ω0 ̸= ω1)
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Main Result

Theorem
Consider a qubit depolarizing channel as in scenario 3. The entanglement-assisted
covert capacity is bounded as

Ccov-EA(N ) ≥ 4
√

2
3

(1 − q)2

(2 − q)
√
η(ω1||ω0)

where ω0 ≡ NA→W (|0⟩⟨0|) and ω1 ≡ NA→W (|1⟩⟨1|).

◦ Recall that the covert rate is defined as L ≡ log(M)

log(n)
√
nδ

◦ Without entanglement, #information bits follows SRL, and here, the rate is
defined according to the

√
n log(n) scale.

⇒ Covert transmission of O(
√
n log n) information bits is achievable.
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Main Results: Lower Bound

Lower bound of the covert rate Ccov-EA as function of the noise paramtere q:

◦ q → 0: No noise, covert communication is trivial.
◦ q → 1: Completely noise, communication is impossible.
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Main Result: Info. Bits Graph

Number of information bits for noise parameter q = 1
2 , and D(ρ̄W n ||ω⊗n

0 ) ≤ 0.1:
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Interpretation: Energy Constraint

Energy Constraint
Suppose that the total energy of the input state is constrained.

◦ A state ρ satisfies an energy constraint E w.r.t. the Hamiltonian Ĥ = |1⟩⟨1|, if

Tr(Ĥρ) ≤ E

◦ The capacities with and without entanglement assistance, are given by

C0(N ,E ) = H2

(
E ∗ q

2

)
− H2(E )

CEA(N ,E ) = H2(E ) + H2

(
E ∗ q

2

)
− H(ψA1B)

where H2(x) is the binary entropy function, a ∗ b = (1 − a)b + a(1 − b), and

ψA1B = (idA1 ⊗NA→B)
(√

1 − E |00⟩+
√
E |11⟩

)
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Interpretation: Energy Constraint (Cont.)

For E ≪ 1,

◦ Unassisted energy-constrained capacity: C0(N ,E ) ∼ E

◦ Entanglement-assisted energy-constrained capacity: CEA(N ,E ) ∼ −E log E

The ratio between the assisted and unassisted capacities scales as

CEA(N ,E )

C0(N ,E )
∼ − log(E )

Effectively, the covertness requirement imposes an energy constraint
⇒ Taking En ∼ 1√

n
, the ratio becomes O(log(n)).

A similar behavior has been observed for bosonic channels with a mean
photon number constraint [Guha et al. 2020] [Shi et al. 2020].
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Interpretation: Unfair Detection Capability

Bob’s Detection Capability
The “unfair channel setting": Bob can determine that some outputs are
associated with a non-zero input, while Willie cannot. Hence, Bob has an unfair
advantage over Willie.

Examples: erasure channel, amplitude-damping channel.

Even without assistance, # information bits scales as
√
n log(n)

[Bloch et al. 2016, Sheikholeslami et al. 2016]
The depolarizing channel is fair in this sense, yet entanglement assistance has a
similar effect as granting Bob the capability of identifying a non-zero transmission
with certainty.
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Conclusion

We address entanglement-assited and covert communication over depolarizing
channels

We consider different scenarios, where Willie has the entire environment, or,
part of it.

Our main contributions include:
∗ Analysis of # information bits per channel uses.

∗ Demonstrating that the logarithmic factor is not exclusive to continuous
variable systems.

∗ Interpretation of covert communication rates as energy-constrained capacities
for the qubit depolarizing channel.
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Thank You
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