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Motivation: Entanglement

Entanglement resources are instrumental in a wide variety of quantum network
frameworks:

• Physical-layer security (device-independent QKD, quantum repeaters)
[Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]

• Sensor networks [Xia et al. 2021]

• Communication rate [Bennett et al. 1999] [Hao et al. 2021]

• · · ·
Unfortunately, entanglement is a fragile resource that is quickly degraded by
decoherence e�ects.
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Motivation: Entanglement (Cont.)

• In order to generate (heralded) entanglement in an optical communication
system, the transmitter may prepare an entangled pair of photons locally, and
then send one of them to the receiver.

• Such generation protocols are not always successful, as photons are easily
absorbed before reaching the destination.

Receiver

Transmitter
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Motivation: Entanglement (Cont.)

• Therefore, practical systems require a back channel. In the case of failure, the
protocol is to be repeated. The backward transmission may result in a delay,
which in turn leads to a further degradation of the entanglement resources.

• We propose a new principle of operation: The communication system
operates on a rate that is adapted to the status of entanglement assistance.
Hence, feedback and repetition are not required.
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Motivation: Entanglement (Cont.)

Alternative approaches for entanglement resources:

• Noisy entanglement [Zhuang, Zhu, and Shor 2017]

• Generate entanglement while the system is idle [Nötzel and DiAdamo, 2020]

• Entanglement distillation [Devetak and Winter, 2005]
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Unreliable Resources in Classical Theory

Very partial list:

• Unreliable channel

• outage capacity [Ozarow, Shamai, and Wyner 1994] [Ng et al. 2007]

• automatic repeat request (ARQ) [Caire and Tuninetti 2001]

• cognitive radio [Goldsmith et al. 2008]

• connectivity [Simeone et al. 2012] [Tajer et al. 2021]

• Broadcast approach [Steiner and Shamai 2003]
[Cohen, Médard, and Shamai 2022] (B.1)

• Unreliable cooperation [Steinberg 2014]

• cribbing encoders [Huleihel and Steinberg 2016]

• conferencing decoders [Huleihel and Steinberg 2017]
[Itzhak and Steinberg 2017] [P. and Steinberg 2020]
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The Fundamental Problem
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Fundamental Problem: Noiseless Channel

Classical Bit-Pipe

The capacity of a classical noiseless bit channel is

1
classical bit

transmission

Holevo Bound

The classical capacity of a noiseless qubit channel is

1
classical bit

transmission
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Fundamental Problem: Noiseless Channel + Assistance

Theorem

The classical common-randomness (CR) capacity of a noiseless bit-pipe is

1
classical bit

transmission

Holevo Bound

The classical capacity of a noiseless qubit channel is

1
classical bit

transmission
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Fundamental Problem: Noiseless Channel + Assistance

Theorem

The classical common-randomness (CR) capacity of a noiseless bit-pipe is

1
classical bit

transmission

Theorem

The classical entanglement-assisted (EA) capacity of a noiseless qubit channel is

2
classical bits

transmission
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Fundamental Problem: Noiseless Channel + EA

Superdense Coding

Encoder

Decoder

x2

x1

|Φ⟩
ΣZ

A
id

B H x̂1

x̂2

Pauli
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Fundamental Problem: Noiseless Channel + EA (Cont.)

Superdense Coding

Encoder

Decoder

x2

x1

|Φ⟩
ΣZ

A
id

B H x̂1

x̂2

Pauli
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Fundamental Problem: Noiseless Channel + EA (Cont.)

We consider transmission with unreliable EA:
The entangled resource may fail to reach Bob.

Extreme Strategies

1 Uncoded communication

◦ Guaranteed rate: R = 1

◦ Excess rate: R ′ = 0

2 Alice: Employ superdense encoder.

Bob: If EA is present, employ superdense decoder.

If EA is absent, abort.

◦ Guaranteed rate: R = 0

◦ Excess rate: R ′ = 2
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Fundamental Problem: Noiseless Channel + EA (Cont.)

Time Division

1st sub-block:

I Alice sends (1− λ)n uncoded bits.

I Bob measures (1− λ)n qubits without assistance.

2nd sub-block:

I Alice employs superdense encoding λn times.

I If EA is present, Bob decodes 2 · λn bits by superdense decoding.

I If EA is absent, Bob ignores λn qubits.
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Fundamental Problem: Noiseless Channel + EA (Cont.)

Rates

◦ Guaranteed rate: R = 1− λ
◦ Excess rate: R ′ = 2λ

? Can we do better?
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Main Contributions

• New principle of operation: communication over quantum channels with
unreliable entanglement assistance.

• Classical information:
Alice sends classical messages to Bob

• Quantum information:
Alice teleports a quantum state to Bob

• Time division, between entanglement-assisted and unassisted coding
schemes, is optimal for a noiseless channel, but strictly sub-optimal for the
depolarizing channel.
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Outline

Model

Main Results
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Classical Coding

DF N⊗n BnAn
m,m′

|ΨGAGB
⟩

GA GB

m̂, m̂′

Communication Scheme (1)

Alice chooses two messages, m and m′.

Uzi Pereg Unreliable Entanglement 16 / 35



Classical Coding

DF N⊗n BnAn
m,m′

|ΨGAGB
⟩

GA GB

m̂, m̂′

Communication Scheme (2)

Input: Alice prepares ρm,m
′

An = Fm,m′(ΨGA
), and transmits An.

Output: Bob receives Bn.
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Classical Coding

DF N⊗n BnAn
m,m′

|ΨGAGB
⟩

GA GB

m̂, m̂′

Decoding with Entanglement Assistance

If EA is present, Bob performs a measurement D to estimate m,m′.
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Classical Coding

D∗F N⊗n BnAn
m,m′

|ΨGAGB
⟩

GA

ˆ̂m

Decoding without Assistance

If EA is absent, Bob performs a measurement D∗ to estimate m alone.
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Classical Coding (Cont.)

Error Probabilities

P
(n)
e|m,m′ = 1− Tr

[
Dm,m′(N⊗nA→B ⊗ id)(Fm,m′ ⊗ id)(ΨGA,GB

)
]

P
∗(n)
e|m,m′ = 1− Tr

[
D∗mN⊗nA→B Fm,m′(ΨGA

)
]
.

Capacity Region

• (R,R ′) is achievable with unreliable entanglement assistance if there exists a
sequence of (2nR , 2nR

′
, n) codes such that the error probabilities (with and

without assistance) tend to zero as n→∞.

• The classical capacity region CEA∗(N ) is the set of achievable rate pairs.
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Quantum Coding

Quantum Coding
• Alice has a product state θM ⊗ ξM̄ over Hilbert spaces of dimension

|HM | = 2nQ and |HM̄ | = 2n(Q+Q′)

• She encodes by applying FGAMM̄→An to ΨGA
⊗ θM ⊗ ξM̄ , and transmits An.

• Bob receives ρBn

• If EA is present, he applies DBnGB→M̃ .
If EA is absent, he applies D∗

Bn→M̂
.

(Q,Q ′) is an achievable rate pair if there exists a sequence of (2nQ , 2nQ
′
, n) codes

such that

‖ξM̄ −D(ρBnGB
)‖

1
→ 0 and ‖θM −D∗(ρBn)‖

1
→ 0

as n→∞.
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Related Work: Without Assistance

Let NA→B be quantum channel. De�ne the Holevo information

χ(N ) = max
pX (x),|φx

A〉
I (X ;B)ρ

with |X | ≤ |HA|2 and ρXB ≡
∑

x∈X pX (x)|x〉〈x | ⊗NA→B(φxA).

HSW Theorem
(Holevo 1998, Schumacher and Westmoreland 1997)

The classical capacity of a quantum channel NA→B without assistance satis�es

C0(N ) = lim
k→∞

1

k
χ
(
N ⊗k)
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Related Work: Without Assistance (Cont.)

Let NA→B be quantum channel. De�ne

Ic(N ) = max
|φA1A〉

I (A1〉B)ρ

with ρA1B ≡ (id⊗NA→B)(φA1A) and |HA1 | = |HA|.

LSD Theorem (Lloyd (1997), Shor (2002), and Devetak (2005))

The quantum capacity of a quantum channel NA→B is given by

Q0(N ) = lim
k→∞

1

k
Ic
(
N ⊗k)

Uzi Pereg Unreliable Entanglement 20 / 35



Related Work: Without Assistance (Cont.)

Let NA→B be quantum channel. De�ne

Ic(N ) = max
|φA1A〉

(−H(A1|B)ρ)

with ρA1B ≡ (id⊗NA→B)(φA1A) and |HA1 | = |HA|.

LSD Theorem (Lloyd (1997), Shor (2002), and Devetak (2005))

The quantum capacity of a quantum channel NA→B is given by

Q0(N ) = lim
k→∞

1

k
Ic
(
N ⊗k)

Uzi Pereg Unreliable Entanglement 20 / 35



Related Work: Without Assistance (Cont.)

Let NA→B be quantum channel. De�ne

Ic(N ) = max
|φA1A〉

(−H(A1|B)ρ)

with ρA1B ≡ (id⊗NA→B)(φA1A) and |HA1 | = |HA|.

LSD Theorem (Lloyd (1997), Shor (2002), and Devetak (2005))

The quantum capacity of a quantum channel NA→B is given by

Q0(N ) = lim
k→∞

1

k
Ic
(
N ⊗k)

Uzi Pereg Unreliable Entanglement 20 / 35



Related Work: Entanglement Assistance

Theorem (Bennett, Shor, Smolin, and Thapliyal 1999)

The entanglement-assisted classical capacity of a quantum channel NA→B is given

by

CEA(N ) = max
|φA1A〉

I (A1;B)ρ

with ρA1B ≡ (id⊗N )(φA1A).
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Theorem (Bennett, Shor, Smolin, and Thapliyal 1999)

The entanglement-assisted classical capacity of a quantum channel NA→B is given

by

CEA(N ) = max
|φA1A〉

I (A1;B)ρ

and the entanglement-assisted quantum capacity is given by

QEA(N ) = max
|φA1A〉

1

2
I (A1;B)ρ

with ρA1B ≡ (id⊗N )(φA1A).
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Outline

Model

Main Results
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Main Results: Classical Capacity

Let NA→B be a quantum channel. De�ne

REA*(N ) =
⋃

pX , |φA0A1 〉 , F (x)

{
(R,R ′) : R ≤ I (X ;B)ρ

R ′ ≤ I (A1;B|X )ρ

}

where the union is over the distributions pX such that |X | ≤ |HA|2 + 1, the pure

states |φA0A1〉, and the quantum channels F (x)
A0→A, with

ρXA1A =
∑
x∈X

pX (x)|x〉〈x | ⊗ (id⊗F (x)
A0→A)(|φA1A0〉〈φA1A0 |) ,

ρXA1B = (id⊗NA→B)(ρXA1A) .
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Main Results: Classical Capacity (Cont.)

Theorem

The classical capacity region of a quantum channel NA→B with unreliable
entanglement assistance satis�es

CEA*(N ) =
∞⋃
k=1

1

k
REA*(N ⊗k) .
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Main Results: Classical Capacity (Cont.)

Classical �Superposition Coding"
• An auxiliary variable U is associated with the message m.

• Alice encodes the second message m′ by a random codeword ∼ pX |U .

Quantum Counterpart

• An auxiliary variable X is associated with the classical message m, which Bob
decodes whether there is entanglement assistance or not.

• The entangled state φA0A1 is non-correlated with the messages, since the
resources are pre-shared before communication takes place.

• Alice encodes the message m′ using the encoding channel F (x)
A0→A

Uzi Pereg Unreliable Entanglement 25 / 35



Main Results: Classical Capacity (Cont.)

Classical �Superposition Coding"
• An auxiliary variable U is associated with the message m.

• Alice encodes the second message m′ by a random codeword ∼ pX |U .

Quantum Counterpart

• An auxiliary variable X is associated with the classical message m, which Bob
decodes whether there is entanglement assistance or not.

• The entangled state φA0A1 is non-correlated with the messages, since the
resources are pre-shared before communication takes place.

• Alice encodes the message m′ using the encoding channel F (x)
A0→A

Uzi Pereg Unreliable Entanglement 25 / 35



Main Results: Classical Capacity (Cont.)

Classical �Superposition Coding"
• An auxiliary variable U is associated with the message m.

• Alice encodes the second message m′ by a random codeword ∼ pX |U .

Quantum Counterpart

• An auxiliary variable X is associated with the classical message m, which Bob
decodes whether there is entanglement assistance or not.

• The entangled state φA0A1 is non-correlated with the messages, since the
resources are pre-shared before communication takes place.

• Alice encodes the message m′ using the encoding channel F (x)
A0→A

Uzi Pereg Unreliable Entanglement 25 / 35



Main Results: Classical Capacity (Cont.)

Classical �Superposition Coding"
• An auxiliary variable U is associated with the message m.

• Alice encodes the second message m′ by a random codeword ∼ pX |U .

Quantum Counterpart

• An auxiliary variable X is associated with the classical message m, which Bob
decodes whether there is entanglement assistance or not.

• The entangled state φA0A1 is non-correlated with the messages, since the
resources are pre-shared before communication takes place.

• Alice encodes the message m′ using the encoding channel F (x)
A0→A

Uzi Pereg Unreliable Entanglement 25 / 35



Main Results: Classical Capacity (Cont.)

Classical �Superposition Coding"
• An auxiliary variable U is associated with the message m.

• Alice encodes the second message m′ by a random codeword ∼ pX |U .

Quantum Counterpart

• An auxiliary variable X is associated with the classical message m, which Bob
decodes whether there is entanglement assistance or not.

• The entangled state φA0A1 is non-correlated with the messages, since the
resources are pre-shared before communication takes place.

• Alice encodes the message m′ using the encoding channel F (x)
A0→A

Uzi Pereg Unreliable Entanglement 25 / 35



Main Results: Classical Capacity (Cont.)

Corollary

For a noiseless qubit channel,

CEA*(N ) =
⋃

0≤λ≤1

{
(R,R ′) : R ≤ 1− λ

R ′ ≤ 2λ

}

Proof: Achievability follows by time division. As for the converse part,

R ≤ 1

n
I (X ;Bn)ω ≤ 1− 1

n
H(Bn|X )ω

Since I (A;B)ρ ≤ 2H(B)ρ in general, we have

R ′ ≤ 1

n
I (A1;Bn|X )ω ≤

1

n
· 2H(Bn|X )ω

Set λ ≡ 1

nH(Bn|X )ω. �
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Main Results: Classical Capacity (Cont.)

Remark

The following tradeo� is observed:

• To maximize the unassisted rate, set an encoding channel F (x)
A0→A that

outputs the pure state |ψx
A〉 that is optimal for the Holevo information, i.e.

F (x)(ϕA1A0) = ϕA1 ⊗ ψx
A

⇒(R,R ′) = (χ(N ), 0)

I χ(N ) is achieved for an entanglement-breaking encoder.

• For R ′ to achieve the entanglement-assisted capacity, set ϕA0A1 as the
entangled state that maximizes I (A1;B)ρ. Take F (x) = idA0→A.
⇒ (R,R ′) = (0,CEA(N ))

I CEA(N ) is achieved for an entanglement-preserving encoder.
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A〉 that is optimal for the Holevo information, i.e.

F (x)(ϕA1A0) = ϕA1 ⊗ ψx
A

⇒(R,R ′) = (χ(N ), 0)

I χ(N ) is achieved for an entanglement-breaking encoder.

• For R ′ to achieve the entanglement-assisted capacity, set ϕA0A1 as the
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Example: Depolarizing Channel

Qubit depolarizing channel

N (ρ) = (1− ε)ρ+ ε
1

2
, 0 ≤ ε ≤ 1

=

(
1− 3ε

4

)
ρ+

ε

4
(ΣXρΣX + ΣY ρΣY + ΣZρΣZ )
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Example: Depolarizing Channel (Cont.)

Corner Points

• [C (N ) = 1− H2

(
ε
2

)
, 0
]
is achieved with

{
pX =

(
1

2
, 1
2

)
, {|0〉, |1〉}

}
• [0 , CEA(N ) = 1− H

(
1− 3ε

4
, ε
4
, ε
4
, ε
4

)]
is achieved with |ΦA0A1〉 and F (x) = idA0→A.

Classical Mixture

Let Z ∼ Bernoulli(λ). De�ne F (x,z) by F (x,0)(ρA) = |x〉〈x | and F (x,1) = id.
Plugging X̃ ≡ (X ,Z ), we obtain the time-division achievable region,

REA*(N ) ⊇
⋃

0≤λ≤1

{
(R,R ′) : R ≤ (1− λ)C (N )

R ′ ≤ λCEA(N )

}
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Example: Depolarizing Channel (Cont.)

Quantum Superposition State

De�ne

|uβ〉 ≡
√
1− β |0〉 ⊗ |0〉+

√
β |Φ〉 .

Set

|φA0A1〉 ≡
1

‖uβ‖
|uβ〉 , pX =

(
1

2
,
1

2

)
, F (x)(ρ) ≡ Σx

XρΣx
X

• For β = 0, the input state is F (x)(|0〉〈0|) = |x〉〈x |, which achieves C (N )

• For β = 1, the parameter x chooses one of two bell states, achieving CEA(N )
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Example: Depolarizing Channel (Cont.)

Figure: Achievable rate regions for the depolarizing channel with ε = 1

2
.
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Main Results: Quantum Capacity

Let NA→B be a quantum channel. De�ne

LEA*(N ) =
⋃

ϕA1A2A


(Q,Q ′) :
Q ≤ min{I (A1〉B)ρ , H(A1|A2)ρ} ,
Q + Q ′ ≤ 1

2
I (A2;B)ρ


where the union is over the states ϕAA1A2 , with ρA1A2B = (id⊗NA→B)(ϕA1A2A)
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Main Results: Quantum Capacity (Cont.)

Theorem

The quantum capacity region of a quantum channel NA→B with unreliable
entanglement assistance satis�es

QEA*(N ) =
∞⋃
k=1

1

k
LEA*(N ⊗k) .

• The proof is based on the decoupling approach: By Uhlmann's theorem, if we
can encode such that Alice and Bob's environments are in a product state,
then there exists a decoding map such that D ◦N ◦ E ≈ id.

Information-Theoretic Tools, Decoupling.
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Summary and Concluding Remarks

• We considered communication over a quantum channel NA→B , where Alice
and Bob are provided with unreliable entanglement resources.

• Inspired by Steinberg's classical cooperation model, we developed a theory for
reliability by design for entanglement-assisted point-to-point quantum
communication systems.

• The quantum capacity formula has the following interpretation: Without
assistance, A2 behaves as a channel state system. The classical capacity
formula resembles the superposition bound. A straightforward extension of
our methods yields the capacity region of the broadcast channel with
degraded message sets and one-sided entanglement assistance.

• In the future, it would be interesting to apply this methodology to other
quantum information areas that rely on entanglement resources.
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