Communication with Unreliable Entanglement Assistance

Uzi Pereg

Technical University of Munich

Munich Center for Quantum Science and Technology (MCQST)

Joint Work with Christian Deppe and Holger Boche

Entanglement resources are instrumental in a wide variety of quantum network frameworks:

• Physical-layer security (device-independent QKD, quantum repeaters) [Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]

Entanglement resources are instrumental in a wide variety of quantum network frameworks:

- Physical-layer security (device-independent QKD, quantum repeaters) [Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]
- Sensor networks [Xia et al. 2021]

Entanglement resources are instrumental in a wide variety of quantum network frameworks:

- Physical-layer security (device-independent QKD, quantum repeaters) [Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]
- Sensor networks [Xia et al. 2021]
- Communication rate [Bennett et al. 1999] [Hao et al. 2021]

• . . .

Entanglement resources are instrumental in a wide variety of quantum network frameworks:

- Physical-layer security (device-independent QKD, quantum repeaters) [Vazirani and Vidick 2014] [Yin et al. 2020][Pompili et al. 2021]
- Sensor networks [Xia et al. 2021]
- Communication rate [Bennett et al. 1999] [Hao et al. 2021]

• . . .

Unfortunately, entanglement is a fragile resource that is quickly degraded by decoherence effects.

Motivation: Entanglement (Cont.)

• In order to generate (heralded) entanglement in an optical communication system, the transmitter may prepare an entangled pair of photons locally, and then send one of them to the receiver.

Motivation: Entanglement (Cont.)

- In order to generate (heralded) entanglement in an optical communication system, the transmitter may prepare an entangled pair of photons locally, and then send one of them to the receiver.
- Such generation protocols are not always successful, as photons are easily absorbed before reaching the destination.

- Therefore, practical systems require a back channel. In the case of failure, the protocol is to be repeated. The backward transmission may result in a delay, which in turn leads to a further degradation of the entanglement resources.
- We propose a new principle of operation: The communication system operates on a rate that is adapted to the status of entanglement assistance. Hence, feedback and repetition are not required.

Alternative approaches for entanglement resources:

- Noisy entanglement [Zhuang, Zhu, and Shor 2017]
- Generate entanglement while the system is idle [Nötzel and DiAdamo, 2020]
- Entanglement distillation [Devetak and Winter, 2005]

Unreliable Resources in Classical Theory

Very partial list:

- Unreliable channel
 - outage capacity [Ozarow, Shamai, and Wyner 1994] [Ng et al. 2007]
 - automatic repeat request (ARQ) [Caire and Tuninetti 2001]
 - cognitive radio [Goldsmith et al. 2008]
 - connectivity [Simeone et al. 2012] [Tajer et al. 2021]
- Broadcast approach [Steiner and Shamai 2003] [Cohen, Médard, and Shamai 2022] (B.1)

Unreliable Resources in Classical Theory

Very partial list:

- Unreliable channel
 - outage capacity [Ozarow, Shamai, and Wyner 1994] [Ng et al. 2007]
 - automatic repeat request (ARQ) [Caire and Tuninetti 2001]
 - cognitive radio [Goldsmith et al. 2008]
 - connectivity [Simeone et al. 2012] [Tajer et al. 2021]
- Broadcast approach [Steiner and Shamai 2003] [Cohen, Médard, and Shamai 2022] (B.1)
- Unreliable cooperation [Steinberg 2014]
 - cribbing encoders [Huleihel and Steinberg 2016]
 - conferencing decoders [Huleihel and Steinberg 2017] [Itzhak and Steinberg 2017] [P. and Steinberg 2020]

The Fundamental Problem

Fundamental Problem: Noiseless Channel

classical bit transmission

1

Fundamental Problem: Noiseless Channel + Assistance

Fundamental Problem: Noiseless Channel + Assistance

Theorem

The classical entanglement-assisted (EA) capacity of a noiseless qubit channel is

 $2 \quad \frac{\text{classical bits}}{\text{transmission}}$

Pauli

Pauli

We consider transmission with unreliable EA: The entangled resource may fail to reach Bob.

Extreme Strategies

1 Uncoded communication

We consider transmission with unreliable EA: The entangled resource may fail to reach Bob.

Extreme Strategies

- 1 Uncoded communication
 - Guaranteed rate: R = 1
 - Excess rate: R' = 0

We consider transmission with unreliable EA: The entangled resource may fail to reach Bob.

Extreme Strategies

- 1 Uncoded communication
 - Guaranteed rate: R = 1
 - Excess rate: R' = 0
- 2 Alice: Employ superdense encoder.

Bob: If EA is present, employ superdense decoder.

We consider transmission with unreliable EA: The entangled resource may fail to reach Bob.

Extreme Strategies

- 1 Uncoded communication
 - Guaranteed rate: R = 1
 - Excess rate: R' = 0
- 2 Alice: Employ superdense encoder.

Bob: If EA is present, employ superdense decoder.

If EA is absent, abort.

We consider transmission with unreliable EA: The entangled resource may fail to reach Bob.

Extreme Strategies

- 1 Uncoded communication
 - Guaranteed rate: R = 1
 - Excess rate: R' = 0
- 2 Alice: Employ superdense encoder.

Bob: If EA is present, employ superdense decoder.

If EA is absent, abort.

- Guaranteed rate: R = 0
- Excess rate: R'=2

Time Division

1st sub-block:

- Alice sends $(1 \lambda)n$ uncoded bits.
- Bob measures $(1 \lambda)n$ qubits without assistance.

2nd sub-block:

- Alice employs superdense encoding λn times.
- If EA is present, Bob decodes $2 \cdot \lambda n$ bits by superdense decoding.
- If EA is absent, Bob ignores λn qubits.

Rates

- \circ Guaranteed rate: $R=1-\lambda$
- Excess rate: $R' = 2\lambda$
- ★ Can we do better?

- New principle of operation: communication over quantum channels with unreliable entanglement assistance.
- Classical information: Alice sends classical messages to Bob

- New principle of operation: communication over quantum channels with unreliable entanglement assistance.
- Classical information: Alice sends classical messages to Bob
- Quantum information: Alice teleports a quantum state to Bob

- New principle of operation: communication over quantum channels with unreliable entanglement assistance.
- Classical information: Alice sends classical messages to Bob
- Quantum information: Alice teleports a quantum state to Bob
- Time division, between entanglement-assisted and unassisted coding schemes, is optimal for a noiseless channel, but strictly sub-optimal for the depolarizing channel.

Outline

• Model

• Main Results

Communication Scheme (1)

Alice chooses two messages, m and m'.

Communication Scheme (2)

Input: Alice prepares $\rho_{A^n}^{m,m'} = \mathcal{F}^{m,m'}(\Psi_{G_A})$, and transmits A^n . Output: Bob receives B^n .

Decoding with Entanglement Assistance

If EA is *present*, Bob performs a measurement \mathcal{D} to estimate m, m'.

Decoding without Assistance

If EA is absent, Bob performs a measurement \mathcal{D}^* to estimate m alone.

Classical Coding (Cont.)

Error Probabilities

$$P_{e|m,m'}^{(n)} = 1 - \mathrm{Tr} \left[D_{m,m'} (\mathcal{N}_{A \to B}^{\otimes n} \otimes \mathrm{id}) (\mathcal{F}^{m,m'} \otimes \mathrm{id}) (\Psi_{G_A,G_B}) \right]$$

$$P_{e|m,m'}^{*(n)} = 1 - \operatorname{Tr}\left[D_m^* \mathcal{N}_{A \to B}^{\otimes n} \mathcal{F}^{m,m'}(\Psi_{G_A})\right].$$

Classical Coding (Cont.)

Error Probabilities

$$P_{e|m,m'}^{(n)} = 1 - \mathrm{Tr} \left[D_{m,m'} (\mathcal{N}_{A \to B}^{\otimes n} \otimes \mathrm{id}) (\mathcal{F}^{m,m'} \otimes \mathrm{id}) (\Psi_{G_A,G_B}) \right]$$

$$P_{e|m,m'}^{*(n)} = 1 - \operatorname{Tr}\left[D_m^* \mathcal{N}_{A \to B}^{\otimes n} \mathcal{F}^{m,m'}(\Psi_{G_A})\right].$$

Capacity Region

• (R, R') is achievable with unreliable entanglement assistance if there exists a sequence of $(2^{nR}, 2^{nR'}, n)$ codes such that the error probabilities (with and without assistance) tend to zero as $n \to \infty$.

Classical Coding (Cont.)

Error Probabilities

$$P_{e|m,m'}^{(n)} = 1 - \mathrm{Tr} \left[D_{m,m'} (\mathcal{N}_{A \to B}^{\otimes n} \otimes \mathrm{id}) (\mathcal{F}^{m,m'} \otimes \mathrm{id}) (\Psi_{G_A,G_B}) \right]$$

$$\mathcal{P}_{e|m,m'}^{*(n)} = 1 - \mathrm{Tr} \Big[D_m^* \mathcal{N}_{A \to B}^{\otimes n} \, \mathcal{F}^{m,m'}(\Psi_{G_A}) \Big] \, .$$

Capacity Region

- (R, R') is achievable with unreliable entanglement assistance if there exists a sequence of $(2^{nR}, 2^{nR'}, n)$ codes such that the error probabilities (with and without assistance) tend to zero as $n \to \infty$.
- The classical capacity region $\mathcal{C}_{\mathsf{EA}*}(\mathcal{N})$ is the set of achievable rate pairs.

Quantum Coding

Quantum Coding

- Alice has a product state $\theta_M \otimes \xi_{\bar{M}}$ over Hilbert spaces of dimension $|\mathcal{H}_M| = 2^{nQ}$ and $|\mathcal{H}_{\bar{M}}| = 2^{n(Q+Q')}$
- She encodes by applying $\mathcal{F}_{G_AM\bar{M}\to A^n}$ to $\Psi_{G_A}\otimes \theta_M\otimes \xi_{\bar{M}}$, and transmits A^n .
- Bob receives ρ_{Bⁿ}
- If EA is present, he applies $\mathcal{D}_{B^n G_B \to \tilde{M}}$. If EA is absent, he applies $\mathcal{D}^*_{B^n \to \hat{M}}$.

Quantum Coding

Quantum Coding

- Alice has a product state $\theta_M \otimes \xi_{\overline{M}}$ over Hilbert spaces of dimension $|\mathcal{H}_M| = 2^{nQ}$ and $|\mathcal{H}_{\overline{M}}| = 2^{n(Q+Q')}$
- She encodes by applying $\mathcal{F}_{G_AM\bar{M}\to A^n}$ to $\Psi_{G_A}\otimes \theta_M\otimes \xi_{\bar{M}}$, and transmits A^n .
- Bob receives ρ_{Bⁿ}
- If EA is present, he applies $\mathcal{D}_{B^n G_B \to \tilde{M}}$. If EA is absent, he applies $\mathcal{D}^*_{B^n \to \hat{M}}$.

(Q, Q') is an achievable rate pair if there exists a sequence of $(2^{nQ}, 2^{nQ'}, n)$ codes such that

$$\|\xi_{\bar{M}} - \mathcal{D}(\rho_{B^n G_B})\|_1 o 0$$
 and $\|\theta_M - \mathcal{D}^*(\rho_{B^n})\|_1 o 0$

as $n \to \infty$.

Related Work: Without Assistance

Let $\mathscr{N}_{A \to B}$ be quantum channel. Define the Holevo information

$$\chi(\mathscr{N}) = \max_{p_X(x), |\phi_A^x\rangle} I(X; B)_{\rho}$$

with $|\mathcal{X}| \leq |\mathcal{H}_A|^2$ and $\rho_{XB} \equiv \sum_{x \in \mathcal{X}} p_X(x) |x\rangle \langle x| \otimes \mathscr{N}_{A \to B}(\phi_A^x)$.

HSW Theorem (Holevo 1998, Schumacher and Westmoreland 1997)

The classical capacity of a quantum channel $\mathcal{N}_{A \rightarrow B}$ without assistance satisfies

$$C_0(\mathscr{N}) = \lim_{k \to \infty} \frac{1}{k} \chi\left(\mathscr{N}^{\otimes k}\right)$$

Related Work: Without Assistance (Cont.)

Let $\mathcal{N}_{A \rightarrow B}$ be quantum channel. Define

$$I_{c}(\mathscr{N}) = \max_{ig|\phi_{A_{1}A}
angle} I(A_{1}
angle B)_{
ho}$$

with $\rho_{A_1B} \equiv (\mathsf{id} \otimes \mathscr{N}_{A \to B})(\phi_{A_1A})$ and $|\mathcal{H}_{A_1}| = |\mathcal{H}_A|$.

Related Work: Without Assistance (Cont.)

Let $\mathcal{N}_{A \rightarrow B}$ be quantum channel. Define

$$I_{c}(\mathcal{N}) = \max_{|\phi_{A_{1}A}\rangle} (-H(A_{1}|B)_{
ho})$$

with $\rho_{A_1B} \equiv (\mathsf{id} \otimes \mathscr{N}_{A \to B})(\phi_{A_1A})$ and $|\mathcal{H}_{A_1}| = |\mathcal{H}_A|$.

Related Work: Without Assistance (Cont.)

Let $\mathcal{N}_{A \to B}$ be quantum channel. Define

$$I_c(\mathscr{N}) = \max_{\left|\phi_{A_1A}
ight
angle} (-H(A_1|B)_{
ho})$$

with $\rho_{A_1B} \equiv (\mathsf{id} \otimes \mathscr{N}_{A \to B})(\phi_{A_1A})$ and $|\mathcal{H}_{A_1}| = |\mathcal{H}_A|$.

LSD Theorem (Lloyd (1997), Shor (2002), and Devetak (2005))

The quantum capacity of a quantum channel $\mathcal{N}_{A \rightarrow B}$ is given by

$$Q_0(\mathscr{N}) = \lim_{k \to \infty} \frac{1}{k} I_c\left(\mathscr{N}^{\otimes k}\right)$$

Theorem (Bennett, Shor, Smolin, and Thapliyal 1999)

The entanglement-assisted classical capacity of a quantum channel $\mathscr{N}_{A\to B}$ is given by

$$C_{EA}(\mathscr{N}) = \max_{|\phi_{A_1A}\rangle} I(A_1; B)_{\rho}$$

with $\rho_{A_1B} \equiv (id \otimes \mathcal{N})(\phi_{A_1A})$.

Theorem (Bennett, Shor, Smolin, and Thapliyal 1999)

The entanglement-assisted classical capacity of a quantum channel $\mathscr{N}_{A\to B}$ is given by

$$C_{EA}(\mathscr{N}) = \max_{|\phi_{A_1A}\rangle} I(A_1; B)_{\rho}$$

and the entanglement-assisted quantum capacity is given by

$$Q_{EA}(\mathcal{N}) = \max_{|\phi_{A_1A}\rangle} \frac{1}{2} I(A_1; B)_{\rho}$$

with $\rho_{A_1B} \equiv (id \otimes \mathcal{N})(\phi_{A_1A})$.

Outline

• Model

• Main Results

Let $\mathcal{N}_{A \to B}$ be a quantum channel. Define

$$\mathcal{R}_{\mathsf{EA}^*}(\mathscr{N}) = \bigcup_{\rho_X, \ |\phi_{A_0A_1}\rangle, \ \mathcal{F}^{(x)}} \left\{ \begin{array}{cc} (R, R') : \ R \leq & I(X; B)_{\rho} \\ R' \leq & I(A_1; B|X)_{\rho} \end{array} \right\}$$

where the union is over the distributions p_X such that $|\mathcal{X}| \leq |\mathcal{H}_A|^2 + 1$, the pure states $|\phi_{A_0A_1}\rangle$, and the quantum channels $\mathcal{F}_{A_0 \to A}^{(x)}$, with

$$\begin{split} \rho_{XA_{1}A} &= \sum_{x \in \mathcal{X}} p_{X}(x) |x\rangle \langle x| \otimes (\mathsf{id} \otimes \mathcal{F}_{A_{0} \to A}^{(x)}) (|\phi_{A_{1}A_{0}}\rangle \langle \phi_{A_{1}A_{0}}|) \,, \\ \rho_{XA_{1}B} &= (\mathsf{id} \otimes \mathscr{N}_{A \to B}) (\rho_{XA_{1}A}) \,. \end{split}$$

Theorem

The classical capacity region of a quantum channel $\mathcal{N}_{A \to B}$ with unreliable entanglement assistance satisfies

$$\mathcal{C}_{\mathsf{EA}^*}(\mathscr{N}) = \bigcup_{k=1}^{\infty} \frac{1}{k} \mathcal{R}_{\mathsf{EA}^*}(\mathscr{N}^{\otimes k}) \,.$$

Classical "Superposition Coding"

• An auxiliary variable U is associated with the message m.

- An auxiliary variable U is associated with the message m.
- Alice encodes the second message m' by a random codeword $\sim p_{X|U}$.

- An auxiliary variable U is associated with the message m.
- Alice encodes the second message m' by a random codeword $\sim p_{X|U}$.

Quantum Counterpart

• An auxiliary variable X is associated with the classical message m, which Bob decodes whether there is entanglement assistance or not.

- An auxiliary variable U is associated with the message m.
- Alice encodes the second message m' by a random codeword $\sim p_{X|U}$.

Quantum Counterpart

- An auxiliary variable X is associated with the classical message m, which Bob decodes whether there is entanglement assistance or not.
- The entangled state $\phi_{A_0A_1}$ is non-correlated with the messages, since the resources are pre-shared before communication takes place.

- An auxiliary variable U is associated with the message m.
- Alice encodes the second message m' by a random codeword $\sim p_{X|U}$.

Quantum Counterpart

- An auxiliary variable X is associated with the classical message m, which Bob decodes whether there is entanglement assistance or not.
- The entangled state $\phi_{A_0A_1}$ is non-correlated with the messages, since the resources are pre-shared before communication takes place.
- Alice encodes the message m' using the encoding channel $\mathcal{F}^{(x)}_{A_0 \to A}$

Corollary

For a noiseless qubit channel,

$$\mathcal{C}_{\mathsf{EA}^*}(\mathscr{N}) = \bigcup_{0 \leq \lambda \leq 1} \left\{ \begin{array}{cc} (R, R') : R \leq 1 - \lambda \\ R' \leq 2\lambda \end{array} \right\}$$

Corollary

For a noiseless qubit channel,

$${\mathcal C}_{\mathsf{EA}*}({\mathscr N}) = igcup_{0\leq\lambda\leq 1} \left\{ egin{array}{cc} (R,R'): \ R\leq & 1-\lambda \ R'\leq & 2\lambda \end{array}
ight\}$$

Proof: Achievability follows by time division. As for the converse part,

$$R \leq \frac{1}{n}I(X;B^n)_{\omega} \leq 1 - \frac{1}{n}H(B^n|X)_{\omega}$$

Corollary

For a noiseless qubit channel,

$${\mathcal C}_{\mathsf{EA}*}({\mathscr N}) = igcup_{0\leq\lambda\leq 1} \left\{ egin{array}{cc} (R,R') : \ R\leq & 1-\lambda \ R'\leq & 2\lambda \end{array}
ight\}$$

Proof: Achievability follows by time division. As for the converse part,

$$R \leq rac{1}{n}I(X;B^n)_\omega \leq 1 - rac{1}{n}H(B^n|X)_\omega$$

Since $I(A; B)_{\rho} \leq 2H(B)_{\rho}$ in general, we have

$$R' \leq \frac{1}{n}I(A_1; B^n|X)_\omega \leq \frac{1}{n} \cdot 2H(B^n|X)_\omega$$

Set $\lambda \equiv \frac{1}{n} H(B^n | X)_{\omega}$.

Remark

The following tradeoff is observed:

 To maximize the unassisted rate, set an encoding channel *F*^(x)_{A₀→A} that outputs the pure state |ψ^x_A⟩ that is optimal for the Holevo information, *i.e.*

$$\mathcal{F}^{(imes)}(arphi_{\mathcal{A}_{\mathbf{1}}\mathcal{A}_{\mathbf{0}}}) = arphi_{\mathcal{A}_{\mathbf{1}}} \otimes \psi^{ imes}_{\mathcal{A}} \ \Rightarrow (R,R') = (\chi(\mathscr{N}),0)$$

• $\chi(\mathcal{N})$ is achieved for an entanglement-breaking encoder.

- For R' to achieve the entanglement-assisted capacity, set φ_{A₀A₁} as the entangled state that maximizes I(A₁; B)_ρ. Take F^(x) = id_{A₀→A}.
 ⇒ (R, R') = (0, C_{EA}(𝒴))
- $C_{EA}(\mathcal{N})$ is achieved for an entanglement-preserving encoder.

Remark

The following tradeoff is observed:

• To maximize the unassisted rate, set an encoding channel $\mathcal{F}_{A_0 \to A}^{(x)}$ that outputs the pure state $|\psi_A^x\rangle$ that is optimal for the Holevo information, *i.e.*

$$\mathcal{F}^{(\mathsf{x})}(\varphi_{A_{1}A_{0}}) = \varphi_{A_{1}} \otimes \psi_{A}^{\mathsf{x}}$$
$$\Rightarrow (R, R') = (\chi(\mathcal{N}), 0)$$

• $\chi(\mathscr{N})$ is achieved for an entanglement-breaking encoder.

For R' to achieve the entanglement-assisted capacity, set φ_{A₀A₁} as the entangled state that maximizes I(A₁; B)_ρ. Take F^(x) = id_{A₀→A}.
 ⇒ (R, R') = (0, C_{EA}(𝒴))

• $C_{EA}(\mathcal{N})$ is achieved for an entanglement-preserving encoder.

Remark

The following tradeoff is observed:

 To maximize the unassisted rate, set an encoding channel *F*^(x)_{A₀→A} that outputs the pure state |ψ^x_A⟩ that is optimal for the Holevo information, *i.e.*

$$\mathcal{F}^{(x)}(\varphi_{A_1A_0}) = \varphi_{A_1} \otimes \psi_A^x$$
$$\Rightarrow (R, R') = (\chi(\mathscr{N}), 0)$$

• $\chi(\mathcal{N})$ is achieved for an entanglement-breaking encoder.

- For R' to achieve the entanglement-assisted capacity, set φ_{A₀A₁} as the entangled state that maximizes I(A₁; B)_ρ. Take F^(x) = id_{A₀→A}.
 ⇒ (R, R') = (0, C_{EA}(𝒴))
- ▶ C_{EA}(*N*) is achieved for an entanglement-preserving encoder.

Qubit depolarizing channel

$$\mathscr{N}(
ho) = (1-arepsilon)
ho + arepsilon rac{1}{2} \quad, \quad 0 \leq arepsilon \leq 1$$

Qubit depolarizing channel

$$\mathcal{N}(
ho) = (1-arepsilon)
ho + arepsilon rac{1}{2} \ = \left(1 - rac{3arepsilon}{4}
ight)
ho + rac{arepsilon}{4}\left(\Sigma_X
ho\Sigma_X + \Sigma_Y
ho\Sigma_Y + \Sigma_Z
ho\Sigma_Z
ight)$$

Corner Points

• $\left[C(\mathcal{N}) = 1 - H_2\left(\frac{\varepsilon}{2}\right), 0\right]$ is achieved with $\left\{p_X = \left(\frac{1}{2}, \frac{1}{2}\right), \left\{|0\rangle, |1\rangle\right\}\right\}$

•
$$\begin{bmatrix} 0, \ C_{\mathsf{EA}}(\mathscr{N}) = 1 - H\left(1 - \frac{3\varepsilon}{4}, \frac{\varepsilon}{4}, \frac{\varepsilon}{4}, \frac{\varepsilon}{4}\right) \end{bmatrix}$$

is achieved with $|\Phi_{A_0A_1}\rangle$ and $\mathcal{F}^{(x)} = \mathrm{id}_{A_0 \to A}$

Classical Mixture

Let $Z \sim \text{Bernoulli}(\lambda)$. Define $\mathcal{F}^{(x,z)}$ by $\mathcal{F}^{(x,0)}(\rho_A) = |x\rangle\langle x|$ and $\mathcal{F}^{(x,1)} = \text{id}$. Plugging $\tilde{X} \equiv (X, Z)$, we obtain the time-division achievable region,

$$\mathcal{R}_{\mathsf{EA}^*}(\mathscr{N}) \supseteq \bigcup_{0 \le \lambda \le 1} \left\{ \begin{array}{cc} (R, R') : R \le & (1 - \lambda) C(\mathscr{N}) \\ R' \le & \lambda C_{\mathsf{EA}}(\mathscr{N}) \end{array} \right\}$$

Quantum Superposition State

Define

$$\ket{u_eta} \equiv \sqrt{1-eta} \ket{0} \otimes \ket{0} + \sqrt{eta} \ket{\Phi} \,.$$

Quantum Superposition State

Define

$$\left| u_{\beta}
ight
angle \equiv \sqrt{1-eta} \left| 0
ight
angle \otimes \left| 0
ight
angle + \sqrt{eta} \left| \Phi
ight
angle \;.$$

Set

$$|\phi_{A_0A_1}\rangle \equiv \frac{1}{\|u_{\beta}\|} |u_{\beta}\rangle \quad , \quad p_X = \left(\frac{1}{2}, \frac{1}{2}\right) \quad , \quad \mathcal{F}^{(x)}(\rho) \equiv \Sigma_X^x \rho \Sigma_X^x$$

• For $\beta = 0$, the input state is $\mathcal{F}^{(x)}(|0\rangle\langle 0|) = |x\rangle\langle x|$, which achieves $\mathcal{C}(\mathcal{N})$

• For $\beta = 1$, the parameter x chooses one of two bell states, achieving $C_{EA}(\mathcal{N})$

Let $\mathcal{N}_{A \to B}$ be a quantum channel. Define

$$\mathscr{L}_{\mathsf{EA}^*}(\mathscr{N}) = \bigcup_{\varphi_{A_1A_2A}} \left\{ \begin{array}{l} (Q,Q') : \\ Q \leq \min\{I(A_1 \setminus B)_{\rho}, H(A_1 \mid A_2)_{\rho}\}, \\ Q+Q' \leq \frac{1}{2}I(A_2;B)_{\rho} \end{array} \right\}$$

where the union is over the states $\varphi_{AA_1A_2}$, with $\rho_{A_1A_2B} = (id \otimes \mathscr{N}_{A \to B})(\varphi_{A_1A_2A})$

Main Results: Quantum Capacity (Cont.)

Theorem

The quantum capacity region of a quantum channel $\mathscr{N}_{A\to B}$ with unreliable entanglement assistance satisfies

$$\mathcal{Q}_{\mathsf{EA}^*}(\mathscr{N}) = \bigcup_{k=1}^{\infty} \frac{1}{k} \mathscr{L}_{\mathsf{EA}^*}(\mathscr{N}^{\otimes k}).$$

The proof is based on the decoupling approach: By Uhlmann's theorem, if we can encode such that Alice and Bob's environments are in a product state, then there exists a decoding map such that D ∘ N ∘ E ≈ id.

Information-Theoretic Tools, Decoupling.

 We considered communication over a quantum channel *N*_{A→B}, where Alice and Bob are provided with *unreliable* entanglement resources.

- We considered communication over a quantum channel *N*_{A→B}, where Alice and Bob are provided with *unreliable* entanglement resources.
- Inspired by Steinberg's classical cooperation model, we developed a theory for reliability by design for entanglement-assisted point-to-point quantum communication systems.

- We considered communication over a quantum channel *N*_{A→B}, where Alice and Bob are provided with *unreliable* entanglement resources.
- Inspired by Steinberg's classical cooperation model, we developed a theory for reliability by design for entanglement-assisted point-to-point quantum communication systems.
- The quantum capacity formula has the following interpretation: Without assistance, A₂ behaves as a channel state system. The classical capacity formula resembles the superposition bound. A straightforward extension of our methods yields the capacity region of the broadcast channel with degraded message sets and one-sided entanglement assistance.

- We considered communication over a quantum channel *N*_{A→B}, where Alice and Bob are provided with *unreliable* entanglement resources.
- Inspired by Steinberg's classical cooperation model, we developed a theory for reliability by design for entanglement-assisted point-to-point quantum communication systems.
- The quantum capacity formula has the following interpretation: Without assistance, A₂ behaves as a channel state system. The classical capacity formula resembles the superposition bound. A straightforward extension of our methods yields the capacity region of the broadcast channel with degraded message sets and one-sided entanglement assistance.
- In the future, it would be interesting to apply this methodology to other quantum information areas that rely on entanglement resources.

Acknowledgments

German Research Foundation (DFG)

EXC-2111 - 390814868 (Pereg, Boche) Leibniz Prize BO 1734/20-1 (Boche) EXC-2092 - 390781972 (Boche)

German Federal Ministry of Education and Research (BMBF)

```
16KISQ028 (Pereg, Deppe)
16KIS0858 (Boche)
"NewCom" 16KIS1003K (Boche)
```

Israel CHE Fellowship for Quantum Science and Technology (Pereg)

Thank you

