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Motivation: Uplink Communication

• The multiple-access channel (MAC) is among the most fundamental models
in network communication and information theory.

◦ cellular communication: uplink from mobiles to the base station

◦ sat-based IoT: from ground devices to a satellite in space

◦ WLAN: from terminals to access point

unsplash.com
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Motivation: Uplink Communication (Cont.)

• Signals of di�erent transmitters may interfere with one another.

• In sequential decoding, the receiver decodes the �rst message while treating
the other signals as noise. Subsequently, the previous estimation can reduce
the e�ective noise for decoding the next message.

• If a cognitive transmitter has access to the signal of another transmitter, this
knowledge can be exploited such that the receiver will decode the messages
with less noise.
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Motivation: Quantum Networks

Cooperation in quantum communication networks has been extensively studied in
recent years, following both experimental progress and theoretical discoveries.

• Conferencing

◦ transmitters [Boche and Nötzel, 2014]

◦ receivers [P. et al., 2021]

• Entanglement resources in networks

◦ transmitter-receiver [Bennett et al., 1999]
* Unreliable assistance: �Quantum V" (Session F.12)

◦ between transmitters [Leditzky et al., 2020]

◦ between receivers [P. et al., 2021]

• Q MAC with side information [Padakandla, 2022]

• . . .
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Background: Classical Cribbing

Cribbing is another form of cooperation, whereby one transmitter has access to
the other's transmissions.
(very partial list)

• Perfect cribbing [Willems and van der Meulen, 1985]

◦ strictly causal; causal; noncausal

• Discretized cribbing [Asnani and Permuter, 2013] [Kopetz et al., 2016]

• Channel state [Bross and Lapidoth, 2010] [Zamanighomi et al., 2011]

• Unreliable cribbing [Steinberg, 2014] [Huleihel and Steinberg, 2017]

• Cribbing with secrecy [Helal, Bloch, and Nosratinia, 2020]

• · · ·
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Main Contributions

We consider the quantum MAC with cribbing encoders: Transmitter 2 measures a
system that is entangled with Transmitter 1.

• Model

◦ no cloning: perfect cribbing violates laws of Quantum Mechanics

• Achievable regions

◦ strictly causal

◦ causal and non-causal: Cribbing in�icts state collapse
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Main Contributions (Cont.)

• Robust cribbing

◦ multi letter capacity formula

◦ single letter in special cases

• Non-robust cribbing → similar to relay

◦ partial decode-forward and cutset bounds

◦ determine capacity in special cases
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Quantum MAC

A quantum multiple-access channel (MAC)MA1A2→B is a linear, completely
positive, trace preserving map corresponding to a quantum physical evolution:

ρA1A2

M−−−−→ ρB

Perfect Cribbing

⇒ violatation of the laws of quantum mechanics, by the no-cloning theorem.

m1
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Cribbing Encoder

Assume w.l.o.g. that the quantum MAC can be decomposed as

MA1A2→B(ρA1A2) = TrE

[
(NA′

1A2→B ◦ LA1→A′
1E

)(ρA1A2)
]

Noisy Cribbing

Alice 1 transmits An
1
through the cribbing channel L⊗nA1→A′

1E
.

Alice 2 gains access to the system E n, and performs a measurement.

Then, Alice 2 encodes and transmits An
2
to Bob.

m1
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F1 L
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m̂1 m̂2
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Cribbing Encoder (Cont.)

The noisy cribbing setting is signi�cantly more challenging, and it is closely related
to the relay channel.

It is useful to consider special classes of channels.
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Robust Cribbing

Quantum Markov Chain

The quantum systems A B C form a Markov chain if ∃ PB→BC such that

ρABC = (idA ⊗ PB→BC )(ρAB)

In general, this holds if and only if I (A;C |B)ρ = 0.

Robust Cribbing

Consider an input state θA1G , with G as reference. Let

ρA′
1EG

= LA1→A′
1E

(θA1G )

We call the cribbing robust if G E A′
1
form a quantum Markov chain ∀θA1G .
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Robust Cribbing (Cont.)

• Intuitively, with robust cribbing, Alice 2's copy is at least as good as the one
transmitted through the communication channel.
That is, A′

1
does not contain more information than E .

• Trivial examples:

◦ A′
1 does not have any information (e.g., dim(A′

1) = 1)

◦ classical-quantum MACMX1X2→B with perfect cribbing:

E ≡ A′
1 ≡ X1

Uzi Pereg Quantum MAC Cribbing 12 / 30



Causality

Strictly Causal

Alice 2 transmits A2,i at time i , and then measures Ei after the transmission.
Hence, she only knows the past measurement outcomes z i−1 at time i .

Causal

Alice 2 measures the cribbing system Ei at time i , before she transmits. Hence,
she knows the past and present measurement outcomes z i = (z i−1, zi ) at time i .

Non-Causal

Alice 2 can perform a joint measurement on E n a priori, i.e. before the beginning
of her transmission.

Denote capacity regions by Cs-c(N ◦ L), Ccaus(N ◦ L), and Cn-c(N ◦ L), resp.
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Results: Strictly-Causal Cribbing

De�ne

RDF

s-c (N ◦ L) =
⋃

pUpX1|UpX2|U , θ
x1
A1
⊗ζx2A2

 (R1,R2) : R1 ≤ I (X1;E |U)ρ
R2 ≤ I (X2;B|X1,U)ρ

R1 + R2 ≤ I (X1X2;B)ρ


where the union is over the distributions of the auxiliary variables U, X1, X2, and
the ensembles of product input states {θx1A1

⊗ ζx2A2
}, which yields

ρu,x1,x2A′
1EA2

= LA1→A′
1E

(θx1A1
)⊗ ζx2A2

,

ρu,x1,x2B = NA′
1A2→B(ρu,x1,x2A′

1EA2
)

with |U| ≤ |HB |2 + 2, |X1| ≤ (|HA1 |2 + 2)(|HB |4 + 2), and
|X2| ≤ (|HA2 |2 + 1)(|HB |2 + 2).

Uzi Pereg Quantum MAC Cribbing 14 / 30



Results: Strictly-Causal Cribbing (Cont.)

Theorem

Consider a quantum MAC with strictly-causal cribbing.

1 The rate region RDF
s-c (N ◦ L) is achievable, i.e.

Cs-c(N ◦ L) ⊇ RDF

s-c (N ◦ L) .

2 Given robust cribbing,

Cs-c(N ◦ L) =
∞⋃
n=1

1

n
RDF

s-c (N ⊗n ◦ L⊗n) .

? a new result for classical MAC as well
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Results: Strictly-Causal Cribbing (Cont.)

Corollary

The capacity region of the classical-quantum MAC with perfect strictly-causal
cribbing is given by

Cs-c(N ◦ id) =
⋃

pUpX1|UpX2|U

 (R1,R2) : R1 ≤ H(X1|U)
R2 ≤ I (X2;B|X1,U)ω

R1 + R2 ≤ I (X1X2;B)ω



Uzi Pereg Quantum MAC Cribbing 16 / 30



Results: Strictly-Causal Cribbing (Cont.)

For the analysis, we derived a generalized quantum packing lemma.

Decode-Forward Coding Scheme

• Block Markov coding scheme: (in analogy to the classical case)

◦ Alice 1 encodes two messages in each block, `fresh information' & `resolution'.

◦ Alice 2 measures the previous block, decodes the resolution, and then encodes
together with her own message.

◦ Bob decodes in reversed order (backward decoding).

• Poor performance if cribbing is too noisy.

Uzi Pereg Quantum MAC Cribbing 17 / 30



Results: Strictly-Causal Cribbing (Cont.)

For the analysis, we derived a generalized quantum packing lemma.

Decode-Forward Coding Scheme

• Block Markov coding scheme: (in analogy to the classical case)

◦ Alice 1 encodes two messages in each block, `fresh information' & `resolution'.

◦ Alice 2 measures the previous block, decodes the resolution, and then encodes
together with her own message.

◦ Bob decodes in reversed order (backward decoding).

• Poor performance if cribbing is too noisy.

Uzi Pereg Quantum MAC Cribbing 17 / 30



Results: Strictly-Causal Cribbing (Cont.)

For the analysis, we derived a generalized quantum packing lemma.

Decode-Forward Coding Scheme

• Block Markov coding scheme: (in analogy to the classical case)

◦ Alice 1 encodes two messages in each block, `fresh information' & `resolution'.

◦ Alice 2 measures the previous block, decodes the resolution, and then encodes
together with her own message.

◦ Bob decodes in reversed order (backward decoding).

• Poor performance if cribbing is too noisy.

Uzi Pereg Quantum MAC Cribbing 17 / 30



Results: Causal and Non-Causal Cribbing

With causal cribbing, Alice 2 measures Ei before she transmits.

Thereby, Alice 2's measurement may cause a �state collapse" of Alice 1's input.

The cribbing a�ects both inputs!
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Results: Causal and Non-Causal Cribbing (Cont.)

De�ne

RDF

caus(N ◦ L) =
⋃

pUpX1|U ,WE→ĒZ ,

pX2|Z,U , θ
x1
A1
⊗ζx2A2

 (R1,R2) : R1 ≤ I (X1; ĒZ |U)ω
R2 ≤ I (X2;B|X1U)ω

R1 + R2 ≤ I (X1X2;B)ω


where the union is over the probability distributions pUpX1|U , the measurement
instruments WE→ĒZ (ρ), the conditional distributions pX2|Z ,U , and the input state
collections {θx1A1

⊗ ζx2A2
}, with

ωUX1A′
1ĒZX2A2

=
∑
u,x1,z

pU(u)pX1|U(x1|u)|u〉〈u| ⊗ |x1〉〈x1|

⊗Wz

(
LA1→A′

1E
(θx1A1

)
)
W †z ⊗ |z〉〈z | ⊗

(∑
x2

pX2|Z ,U(x2|z , u)|x2〉〈x2| ⊗ ζx2A2

)
,

ωUX1X2B = NA′
1A2→B(ωUX1X2A′

1A2
) .
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Results: Causal and Non-Causal Cribbing (Cont.)

In the last formula, we have a quantum instrument of a measurement,

WE→ĒZ (ρ) =
∑
z

WzρW
†
z ⊗ |z〉〈z |

where Ē is the post-measurement cribbing system, and Z is the measurement
outcome.

Uzi Pereg Quantum MAC Cribbing 20 / 30



Results: Causal and Non-Causal Cribbing (Cont.)

Theorem

Consider a quantum MAC with causal cribbing.

1 The rate region RDF
caus(N ◦ L) is achievable, i.e.

Ccaus(N ◦ L) ⊇ RDF

caus(N ◦ L) .

2 For the classical-quantum MAC with perfect cribbing,

Ccaus(N ◦ id) = Cn-c(N ◦ id) =
⋃

pX1X2

 (R1,R2) : R1 ≤ H(X1)
R2 ≤ I (X2;B|X1)ω

R1 + R2 ≤ I (X1X2;B)ω



? Part 1 is a new result for the classical MAC as well

? Part 2 extends the classical result of Willems and van der Meullen (1985) to
the classical-quantum MAC with perfect cribbing.
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Bosonic MAC

Bosonic MAC with Noisy Cribbing

Consider a single-mode bosonic MAC that is composed of beam splitters as
illustrated below:

â1
η1
ê

ĉ

â′
1

â′
1

η2
b̂

â2
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Bosonic MAC (Cont.)

With strictly-causal cribbing, we obtain

Cs-c(N ◦ L) ⊇ (R1,R2) : R1 ≤ g(η1NA1 + (1− η1)NC )− g((1− η1)NC )
R2 ≤ g(η2η1NC + (1− η2)NA2)− g(η2η1NC )

R1 + R2 ≤ g(η2(1− η1)NA1 + η2η1NC + (1− η2)NA2)− g(η2η1NC )


where g(N) = (N + 1) log(N + 1)− N log(N). On the other hand, without
cribbing, [Yen and Shapiro, 2005]

Cnone(N ◦ L) = (R1,R2) : R1 ≤ g(η2(1− η1)NA1 + η2η1NC )− g(η2η1NC )
R2 ≤ g(η2η1NC + (1− η2)NA2)− g(η2η1NC )

R1 + R2 ≤ g(η2(1− η1)NA1 + η2η1NC + (1− η2)NA2)− g(η2η1NC )


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Bosonic MAC (Cont.)

The decode-forward achievable region with strictly-causal cribbing and the
capacity region without cribbing are depicted in the �gure below:
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Results: Partial Decode-Forward

De�ne

RPDF

s-c (N ◦ L) =⋃
pUV pX1|U,V pX2|U,V , θ

x1
A1
⊗ζx2A2

 (R1,R2) : R1 ≤ I (V ;E |U)ω + I (X1;B|X2UV )ω
R2 ≤ I (X2;B|X1U)ω

R1 + R2 ≤ I (X1X2;B)ω


with ωu,v ,x1,x2

A′
1EA2

= LA1→A′
1E

(θx1A1
)⊗ ζx2A2

and ωu,v ,x1,x2
B = NA′

1A2→B(ωu,v ,x1,x2
A′
1A2

).

The superscript `PDF' stands for partial decode-forward coding.

Theorem

The rate region RPDF
s-c (N ◦ L) is achievable for the quantum MAC with

strictly-causal cribbing.
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Results: Classical-Quantum MAC

For the c-q MAC NX1X2→B ◦ QZ |X1
with noisy cribbing, we also prove a cutset

outer bound:

RCS

s-c(N ◦ Q) =⋃
pUpX1|UpX2|U

 (R1,R2) : R1 ≤ I (X1;BZ |X2U)ω
R2 ≤ I (X2;B|X1U)ω

R1 + R2 ≤ I (X1X2;B)ω


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Results: Classical-Quantum MAC

Theorem

1 The capacity region of the c-q MAC with strictly-causal noisy cribbing is

bounded by

Cs-c(N ◦ Q) ⊆ RCS

s-c(N ◦ Q) .

2 If the cribbing observation Z is a deterministic function of X1, then

Cs-c(N ◦ Q) = RPDF

s-c (N ◦ Q) = RCS

s-c(N ◦ Q) =

⋃
pUpX1|UpX2|U


(R1,R2) :
R1 ≤ H(Z |U) + I (X1;B|X2UZ )ω
R2 ≤ I (X2;B|X1U)ω
R1 + R2 ≤ I (X1X2;B)ω



? Part 1 is a new result for the classical MAC as well

? Part 2 extends the classical result of Asnani and Permuter (2013) on partial
cribbing to the classical-quantum MAC.
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Conclusion

We considered the quantum MAC with a cribbing encoder.

• The quantum description is more delicate. Perfect cribbing is against the
laws of nature (no-cloning theorem).

• noisy cribbing

◦ achievable region for the strictly-causal, causal, and non-causal settings

◦ In quantum communication, the cribbing operation can interfere with the �rst
input to the communication channel.
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Conclusion (Cont.)

• For a MAC with robust cribbing, there is a recovery channel that recovers
Alice 1's input.

◦ regularized capacity formula; single-letter for c-q MAC with perfect cribbing.

• connection to the relay channel

◦ partial decode-forward achievable region

◦ c-q MAC with partial cribbing: full capacity characterization
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