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Motivation: Quantum Repeaters

• Attenuation in optical �bers poses a great challenge for

long-distance quantum communication protocols.

◦ Current applications: quantum key distribution (QKD)

→ Security based on one-time pad encryption

◦ Future implementation of the quantum internet and networks

• Potential Solution: Quantum repeaters [Briegel et al., 1998]

◦ The distance is divided into smaller segments with quantum

repeaters at the intermediate stations.

◦ Implementation: [van Loock et al., 2020]; quantum dots, trapped

ions. [Rozp�fmmode et al.,2019] diamond color centers.
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Motivation: Quantum Repeaters (Cont.)

• Straightforward ampli�cation is not an option due to the no-cloning

theorem, i.e. universal copying of quantum states stands in

violation of quantum mechanics.

2



Motivation: Quantum Repeaters (Cont.)

• Basic scheme:

◦ Use quantum communication and entanglement distillation to

prepare |ΦAP1〉 between the sender and the repeater, and |ΦP2B〉
between the repeater and the receiver.

◦ The repeater teleports the quantum state of P1 onto B1 thus

swapping the entanglement; A and B1 are now entangled at twice

the distance.

teleportation

A P1 P2 B B1
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Background: Quantum Shannon Theory

Di�erent categories for capacity of quantum channels:

• Classical capacity [Holevo 1998, Schumacher and Westmoreland

1997]

◦ transmission of classical bits using a quantum channel

◦ multi-letter formula §

• Quantum capacity [Loyd 1998, Shor 2002, Devetak 2005]

◦ transmission of qubits (= quantum bits)

◦ multi-letter formula §
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Background: Quantum Shannon Theory (Cont.)

• Entanglement-assisted capacity [Bennett et al. 1999]

◦ Alice and Bob share entanglement resources

◦ strictly higher capacity

◦ single-letter formula ©

• Classical channel

◦ Single user: entanglement resources do not help [Bennett et al.,

1999]

◦ MAC: entanglement resources between two transmitters can increase

achievable rates! [Leditzky et al., 2020]

The channel is de�ned by a pseudo-telepathy game [Nötzel, 2019]

[Winter, 2019] [Quek and Shor, 2017]

◦ Zero-error capacity [Leung et al., 2012]
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Related Work

Very partial list:

• Classical broadcast channel with cooperation

[Dabora & Servetto, 2006] [Steinberg, 2015]

• Quantum broadcast channels [Yard, Hayden & Devetak, 2011]

◦ Entanglement assistance [Dupuis, Hayden & Li 2010]

◦ Hadamard BC [Wang, Das & Wilde, 2017]

• Classical-quantum relay channel [Savov & Wilde, 2015]

• Environment assistance [Smolin, Verstraete & Winter, 2005]

[Winter, 2005]

• Repeater assistance [Pirandola, 2016] [Ghalaii and Pirandola, 2020]

· · ·
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In this talk, ...

we consider quantum broadcast channels in di�erent settings of

cooperation between two receivers.

• Entanglement resources

• Classical conferencing:

Receiver 1 can send classical messages to Receiver 2

• Quantum conferencing:

Receiver 1 can teleport a quantum state to Receiver 2
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In this talk, ... (Cont.)

• Primitive relay channel: Receiver 1 �serves� Receiver 2

• Observations

◦ tradeo� between repeater-aided and repeater-less communication

◦ bottleneck behavior
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Outline

De�nitions

Entanglement Resources

Classical Conferencing

Quantum Conferencing

Observations on Quantum Repeaters
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Quantum States

The state ρA of a quantum system A is an Hermitian, positive

semide�nite, unit-trace density matrix over HA.

Entropy

Given ρAB , de�ne

H(A)ρ ≡ −Tr(ρA log ρA)

H(A|B)ρ ≡ H(AB)ρ − H(B)ρ

10



Quantum States (Cont.)

Information Measures

• Mutual information I (A;B)ρ = H(A)ρ + H(B)ρ − H(AB)ρ

• Coherent information I (A〉B)ρ = −H(A|B)ρ.
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Quantum Broadcast Channel

A quantum broadcast channel NA→B1B2
is a linear, completely positive,

trace preserving map corresponding to a quantum physical evolution:

ρA
N−−−−→ ρB1B2

Interpretation

Alice � the transmitter

Bob 1 � the repeater

Bob 2 � the destination receiver
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Coding with Entangled Decoders

N

D1

D2

Bn
1 m̂0, m̂1

Bn
2 m̃0

|ΨSB1SB2
〉

SB1 SB2

F
m0,m1 An

14



Coding with Entangled Decoders

Communication Scheme

Alice chooses a common message m0 for both users and a private

message m1 for Bob 1.

Input: Alice prepares ρm0,m1

An = F (m0,m1), and transmits An.

Output: Bob 1 and Bob 2 receive Bn
1 and Bn

2 ,

ρm0,m1

Bn
1B

n
2

= N ⊗n(ρm0,m1

An )

Bob 1 receives Bn
1 , combines with SB1

, and performs the measurement

Λ. Similarly, Bob 2 performs Γ on Bn
2 , SB2

.
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Results: Entanglement Resources

BC-MAC Duality

• The duality between the broadcast/multiple-access channels is a

useful property in the study of classical MIMO channels

[Jindal et al., 2004]

• Recently, Leditzky et al. (2020) showed that entanglement between

two transmitters can strictly increase the achievable rates for a

MAC, even when the channel is classical (!)

• Does the dual property hold? That is, can entanglement between

decoders increase the achievable rates?
magic square

Theorem

The capacity region of a brodacast channel with entangled decoders is

the same as without entanglement resources.

Preprint available on arXiv:2011.09233
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Classical Conferencing

Bob 1 can send a classical conferencing message g ∈ [1 : 2nC12 ] to Bob 2:

N

D1

D2

Bn
1 m̂0, m̂1

g

Bn
2 m̃0

F
m0,m1 An

18



Results: Classical Conferencing

De�ne

RCl(N ) ,
⋃




(R0,R1) : R0 ≤ I (X0;B2)ρ + C12

R1 ≤ I (X1;B1|X0)ρ
R0 + R1 ≤ I (X0,X1;B1)ρ





where the union is over the set of all distributions pX0,X1
, and state

collection {θx0,x1A },

ρX0X1B =
∑

x0∈X0

∑

x1∈X1

pX0,X1
(x0, x1)|x0〉〈x0| ⊗ |x1〉〈x1| ⊗N (θx0,x1A )

with |X0| ≤ |HA|2 + 2 and |X1| ≤ (|HA|2 + 2)|HA|2 + 1.

19



Results: Classical Conferencing (Cont.)

Theorem

The classical capacity region of the quantum broadcast channel

NA→B1B2
with conferencing and degraded message sets is given by

RCl(N ) =
∞⋃

k=1

1

k
RCl(N

⊗k)

For a Hadamard broadcast channel,

RCl(N ) = RCl(N )

Proof Key Ideas

• Classical construction: �super-position coding" + binning

The bins are indexed by the conference message g .

• Quantum packing lemma (square-root measurement)

• Gentle measurement lemma to perform consecutive measurements

without collasing the output [P., ISIT 2020]
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Quantum Conferencing

Given entanglement resources, Bob 1 can teleport a quantum state to

Bob 2 at a conferencing rate CQ,12 = 1
2C12.

N

D1

D2

Bn
1

̂M1

G

Bn
2

̂M2

F
M1,M2 An

No-Cloning

• The receivers cannot recover a common quantum state.

Thus, we consider two private messages M1 and M2.
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Given entanglement resources, Bob 1 can teleport a quantum state to

Bob 2 at a conferencing rate CQ,12
qubits

transmission = 1
2C12

cbits
transmission .

N

D1

D2

Bn
1

̂M1
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Bn
2

̂M2

F
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Coding with Quantum Conferencing (Cont.)

Subspace Transmission

Quantum communication is also referred to as entanglement

transmission and can be extended to strong subspace transmission,

where the entanglement between the message systems and their

environment is also recovered.

23



Coding with Quantum Conferencing (Cont.)

Entanglement Generation

• By the monogamy property of quantum entanglement, Alice cannot

generate a maximally entangled state with both Bob 1 and Bob 2

simultaneously.

• Alice can generate a GHZ state with Bob 1 and Bob 2, using

|ψĀM1M2
〉 = 1√

d

∑d
x=1 |x〉 ⊗ |x〉 ⊗ |x〉. [Yard et al., 2011]

• She can also generate two entangled pairs by preparing

|ΦĀ1M1
〉 ⊗ |ΦĀ2M2

〉 .
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Results: Quantum Conferencing

Theorem (achievable region)

A rate pair (Q1,Q2) is achievable with quantum conferencing if

Q1 ≤ I (Ā1〉B1)ρ

Q2 ≤ I (Ā2〉B2)ρ + CQ,12

Q1 + Q2 ≤ I (Ā1〉B1)ρ + I (Ā2〉B2)ρ

for some input state ρĀ1Ā2A
, where ρĀ1Ā2B1B2

= (idĀ1Ā2
⊗N )(ρĀ1Ā2A

).

Observations (1)

• The rate region above re�ects a greedy approach, where using the

conferencing link to increase the information rate of User 2 comes

directly at the expense of User 1:

If Q2 = I (Ā2〉B2)ρ + ∆, then Q1 ≤ I (Ā1〉B1)ρ −∆.

25



Results: Quantum Conferencing (Cont.)

Observations (2)

• For classical information, optimal performance is achieved using

superposition coding, where Receiver 1 can recover the message of

User 2 without necessarily �losing" rate.

• The quantum scheme does not involve superposition [Dupuis et al.,

2010]. Without conferencing, it is impossible for Receiver 1 to

decode the message of User 2 by the no-cloning theorem.
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Results: Quantum Conferencing (Cont.)

Observations (3)

• The setting of conferencing decoders imposes a chronological order:

First Bob 1 receives and processes Bn
1 , then Bob 1 sends the

conference message to Bob 2, and at last, Bob 2 receives Bn
2 and

the conference message.

• Hence, Bob 1 can recover the state of M2 and send it to Bob 2 using

the conference link � while destroying the state in his location.
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Results: Quantum Conferencing (Cont.)

Theorem (outer bound)

If a rate pair (Q1,Q2) is achievable with quantum conferencing, then

Q1 ≤
1

n
I (Ā1〉Bn

1 )ρ

Q2 ≤
1

n
I (Ā2T 〉Bn

2 )ρ + CQ,12

Q1 + Q2 ≤
1

n
I (Ā1〉Bn

1 )ρ +
1

n
I (Ā2〉Bn

1B
n
2 )ρ

for some input state ρTĀ1Ā2An , where

ρTĀ1Ā2Bn
1B

n
2

= (idTĀ1Ā2
⊗N ⊗n)(ρTĀ1Ā2An).

28



Quantum Relay Channel

Taking Q1 = 0, the model reduces to the primitive relay channel.

Bob 1 is called a relay in this setting, because his only task is to help the

transmission of information to Bob 2.

sender destination

relay

CQ,12

29



Results: Quantum Relay Channel

Theorem

The quantum capacity of the primitive relay channel N relay
A→B1B2

has the

following bounds:

1) Cutset upper bound

CQ(N relay) ≤ lim
n→∞

sup
ρĀTAn

1

n
min

[
I (ĀT 〉Bn

2 )ρ + CQ,12 , I (Ā〉Bn
1B

n
2 )ρ
]

with ρĀTBn
1B

n
2

= (idĀT ⊗N ⊗n)(ρATA′n).

2) Decode-forward lower bound

CQ(N relay) ≥ max
|φĀ1Ā2A

〉

[
I (Ā2〉B2)ρ + min

(
I (Ā1〉B1)ρ , CQ,12

)]

with ρĀ1Ā2B1B2
= (idĀ1Ā2

N )(φĀ1Ā2A
).
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I (Ā2〉B2)ρ + min

(
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Results: Quantum Relay Channel (Cont.)

Theorem

The quantum capacity of the primitive relay channel N relay
A→B1B2

has the

following bounds:

3) Entanglement-formation lower bound

CQ(N relay) ≥ max
|φĀA〉 , FB1→B̂1

: EF (ρB̂1AB2E
)≤CQ,12

I (Ā〉B̂1B2)φ

with |φĀB1B2E
〉 = (1⊗ UN

A→B1B2E
)|φĀA〉,

ρĀB̂1B2E
= FB1→B̂1

(φĀB1B2E
), where

EF (ρB̂1ĀB2E
) ≡ inf

pX (x) , |ψx
B̂1ĀB2E

〉
H(B̂1|X )ψ

is the entanglement of formation w.r.p. B̂1|ĀB2E .

• Achievability is based on channel simulation [Berta et al., 2013]
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Quantum Repeater

Observations (1)

• We view Alice, Bob 1, and Bob 2 as the sender, repeater, and

destination receiver. In other words, the repeater is the quantum

version of a relay.

• Our results show the tradeo� between repeaterless communication

and relaying information through the repeater.
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Quantum Repeater (Cont.)

Observations (2)

• In the decode-forward lower bound: the term I (A2〉B2)ρ corresponds

to repeaterless communication, while min (I (A1〉B1)ρ , CQ,12)

corresponds to quantum transmission via the repeater.

• Bottleneck �ow: Due to the serial connection between the

sender-repeater link A→ B1 with the repeater-receiver link

B1 → B2, the throughput is dictated by the smaller rate.
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Thank you
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