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Motivation

Quantum Communication and Information Theory

Natural extension of the classical theory to quantum systems

reveals �strange� phenomena: negative conditional entropy,

super-activation, etc.

Progress in practice

◦ Quantum key distribution for secure communication

(307 km in optical �bers, 1200 km through space)

◦ Computation power: Google's supremacy experiment
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Motivation (Cont.)

Channels that depend on a random parameter

Channel side information (CSI)

◦ classical applications: cognitive radio in wireless systems, memory

storage, digital watermarking, etc.
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Motivation (Cont.)

Channels that depend on a random parameter

Parameter estimation (RnS channel): the parameter sequence

represents information that the decoder needs to reconstruct

◦ recover digital watermarking + host data

◦ multicast of control information on top of analog signal
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Background: Random-Parameter Channel

Classical results with channel side information (CSI) at the encoder:

Causal CSI [Shannon 1958]

Strictly-causal CSI [Csiszár and Körner 1981]

Non-causal CSI [Gel'fand and Pinsker 1980]

Random-parameter classical-quantum channels

Causal and Non-causal CSI [Boche, Cai, and Nötzel 2016]
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Background: Random-Parameter Channels (Cont.)

Classical results with parameter estimation:

Without CSI [Zhang, Vedantam, and Mitra 2011]

Causal, strictly-causal CSI [Choudhuri, Kim, and Mitra 2013]

Non-causal CSI [Sutivong, Chiang, Cover, and Kim 2005]

CSI + feedback [Bross and Lapidoth 2018]
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Main Contributions

We consider random-parameter quantum channels when the receiver

reconstructs the parameter sequence with distortion

Strictly-causal and causal CSI

◦ Regularized formulas; single-letter for measurement channels

Non-causal CSI

◦ Regularized formula

without CSI

◦ Regularized formula; single-letter for entanglement-breaking channels

◦ generalized Shor inequality
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De�nitions

Outline

De�nitions

Related Work

Main Results
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De�nitions

Quantum States

A pure quantum state |ψ〉 is a vector in the Hilbert space HA.

Qubit

For a qubit, |ψ〉 = |0〉, |1〉, or

|ψ〉 = α|0〉+ β|1〉 , with |α|2 + |β2| = 1

For α, β ∈ R :
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De�nitions

Quantum States

A pure quantum state |ψ〉 is a vector in the Hilbert space HA.

Qubit

For a qubit, |ψ〉 = |0〉, |1〉, or

|ψ〉 = α|0〉+ β|1〉 , with |α|2 + |β2| = 1

Entanglement

Systems A and B are entangled if |ψAB〉 6= |ψA〉 ⊗ |ψB〉

For example, |ΦAB〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉).
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De�nitions

Quantum States (Cont.)

The state ρA of a quantum system A is an Hermitian, positive semide�nite,

unit-trace density matrix over HA.

Measurement

A POVM (= positive-operator valued measure) is a set of positive semi-de�nite

operators {Λ j} such that
∑

j Λ j = 1. Born rule: the probability of the

measurement outcome j is pA(j) = Tr(Λ jρA).
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De�nitions

Quantum Entropy and Mutual Information

Given ρAB , de�ne

H(A)ρ ≡ −Tr(ρA log ρA)

H(A|B)ρ ≡ H(AB)ρ − H(B)ρ

I (A;B)ρ ≡ H(A)ρ + H(B)ρ − H(AB)ρ
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De�nitions

Random Parameter Quantum Channel

A random-parameter quantum channel NSA→B is a linear, completely

positive, trace preserving map corresponding to a quantum physical

evolution:

ρA
N (s)

A→B−−−−−−→ ρB

with

S ∼ q(s)
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De�nitions

Random Parameter Quantum Channel (Cont.)

De�nition

A random-parameter quantum channel NSA→B is called entanglement

breaking if for every state ρAE with arbitrary E , the output state

(N (s) ⊗ 1)(ρAE ) is separable, i.e.

(N (s) ⊗ 1)(ρAE ) =
∑
y

pY |S(y |s)φy ,sB ⊗ φ
y ,s
E

In particular, classical-quantum channels and quantum-classical channels

are entanglement breaking.

De�nition

A quantum-classical channel is called a measurement channel.

DenoteMSA→Y .
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De�nitions

Coding

Types of CSI

None: Alice sends ρmAn

Strictly-causal: At time i ∈ [1 : n], Alice sends ρ
m,s1,s2,...,si−1
Ai

Causal: At time i ∈ [1 : n], Alice sends ρm,s1,s2,...,siAi

Non-causal: Alice sends ρm,s
n

An

Uzi Pereg Quantum Channels with Estimation 14 / 35



De�nitions

Coding

Types of CSI

None: Alice sends ρmAn

Strictly-causal: At time i ∈ [1 : n], Alice sends ρ
m,s1,s2,...,si−1
Ai

Causal: At time i ∈ [1 : n], Alice sends ρm,s1,s2,...,siAi

Non-causal: Alice sends ρm,s
n

An

Uzi Pereg Quantum Channels with Estimation 14 / 35



De�nitions

Coding

Types of CSI

None: Alice sends ρmAn

Strictly-causal: At time i ∈ [1 : n], Alice sends ρ
m,s1,s2,...,si−1
Ai

Causal: At time i ∈ [1 : n], Alice sends ρm,s1,s2,...,siAi

Non-causal: Alice sends ρm,s
n

An

Uzi Pereg Quantum Channels with Estimation 14 / 35



De�nitions

Coding

Types of CSI

None: Alice sends ρmAn

Strictly-causal: At time i ∈ [1 : n], Alice sends ρ
m,s1,s2,...,si−1
Ai

Causal: At time i ∈ [1 : n], Alice sends ρm,s1,s2,...,siAi

Non-causal: Alice sends ρm,s
n

An

Uzi Pereg Quantum Channels with Estimation 14 / 35



De�nitions

Coding with Strictly-causal CSI

Code

A (2nR , n) code with strictly-causal CSI at the encoder consists of a

message set [1 : 2nR ], a sequence of n consistent preparation maps

E(i)

M,S i−1→Ai , for i ∈ [1 : n], and a decoding POVM {Λm,ŝn

Bn }m∈[1:2nR ],ŝn∈Ŝn .

Denote the code by (E ,Λ).

Let d : S × Ŝ → [0, dmax ] be a given distortion measure, and

dn(sn, ŝn) ≡ 1

n

n∑
i=1

d(si , ŝi )
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De�nitions

Coding with Strictly-causal CSI (Cont.)

Probability of Error

P
(n)
e|m =

∑
sn∈Sn

qn(sn)Tr

[
(1−

∑
ŝn∈Ŝn

Λm,ŝn

Bn )N (sn)
An→Bn(ρm,s

n−1

An )

]

with N (sn)
An→Bn ≡

⊗n
i=1N

(si )
A→B .

Distortion

∆(n) = Edn(Sn, Ŝn)

=
∑

m,m̂,sn,ŝn

dn(sn, ŝn)qn(sn) · 1

2nR
Tr

[
Λm̂,ŝn

Bn N (sn)
An→Bn(ρm,s

n−1

An )

]
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De�nitions

Coding with Strictly-causal CSI (Cont.)

Capacity-Distortion Region

A (2nR , n, ε,D) code satis�es P
(n)
e|m ≤ ε ∀m and ∆(n) ≤ D

A rate-distortion pair (R,D) is called achievable if ∀ ε, δ > 0 and n ≥ n0,

there exists a (2nR , n, ε,D + δ) code.

The capacity-distortion region Cs-c(N ) is de�ned as the set of achievable

pairs (R,D) with strictly-causal CSI.

⇒ The capacity-distortion function Cs-c(N ,D)

⇒ The capacity Cs-c(N , dmax)
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Related Work

Related Work: Without Parameters

Let N 0
A→B be quantum channel without parameters. De�ne the Holevo

information

χ(N 0) = max
pX (x),|φxA〉

I (X ;B)ρ

with |X | ≤ |HA|2 and ρXB ≡
∑

x∈X pX (x)|x〉〈x | ⊗ N 0(φxA).

HSW Theorem

The capacity of a quantum channel N 0
A→B without parameters is given by

C (N 0, dmax) = lim
n→∞

1

n
χ
(
(N 0)⊗n

)

If N 0
A→B is entanglement-breaking, then C (N 0, dmax) = χ(N 0).
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Related Work

Related Work: Without Parameters (Cont.)

Additivity Conjecture (lasted until 2009)

For every pair of quantum channels PA1→B1 and ΥA2→B2 ,

χ(P ⊗Υ) = χ(P) + χ(Υ)

and thus, the regularization in the HSW theorem can be removed.

Additivity for Entanglement-Breaking Channels (Shor 2002)

If PA1→B1 is entanglement-breaking and ΥA2→B2 is arbitrary, then

χ(P ⊗Υ) = χ(P) + χ(Υ)

Uzi Pereg Quantum Channels with Estimation 20 / 35



Related Work

Related Work: Without Parameters (Cont.)

Super-Additivity Property (Hastings 2009)

There exist quantum channels PA1→B1 and ΥA2→B2 such that

χ(P ⊗Υ) > χ(P) + χ(Υ)

and thus, the regularization in the HSW theorem is necessary.

Additivity for Entanglement-Breaking Channels (Shor 2002)

If PA1→B1 is entanglement-breaking and ΥA2→B2 is arbitrary, then

χ(P ⊗Υ) = χ(P) + χ(Υ)

Uzi Pereg Quantum Channels with Estimation 20 / 35



Related Work

Related Work: Without Parameters (Cont.)

Super-Additivity Property (Hastings 2009, Fukuda and Wolf, 2007)

There exist quantum channels PA1→B1 and ΥA2→B2 such that

χ(P ⊗Υ) > χ(P) + χ(Υ)

and thus, the regularization in the HSW theorem is necessary.

Additivity for Entanglement-Breaking Channels (Shor 2002)

If PA1→B1 is entanglement-breaking and ΥA2→B2 is arbitrary, then

χ(P ⊗Υ) = χ(P) + χ(Υ)

Uzi Pereg Quantum Channels with Estimation 20 / 35



Related Work

Related Work: Without Parameters (Cont.)

Super-Additivity Property (Hastings 2009, Fukuda and Wolf, 2007)

There exist quantum channels PA1→B1 and ΥA2→B2 such that

χ(P ⊗Υ) > χ(P) + χ(Υ)

and thus, the regularization in the HSW theorem is necessary.

Additivity for Entanglement-Breaking Channels (Shor 2002)

If PA1→B1 is entanglement-breaking and ΥA2→B2 is arbitrary, then

χ(P ⊗Υ) = χ(P) + χ(Υ)

Uzi Pereg Quantum Channels with Estimation 20 / 35



Related Work

Back to our problem:

Random-Parameter Quantum Channels with Parameter

Estimation
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Main Results

Main Results: No CSI

Alice has no knowledge on the parameters. Let

R(N ) ,
⋃

(R,D) :

R ≤ I (X ;B)ρ

D ≥
∑
s,ŝ,x

q(s)pX (x)Tr(Γŝ
B|xN

(s)
A→B(φxA))d(s, ŝ)


with |X | ≤ |HA|2 + 1, where the union is over pX (x) , state collection

{|φxA〉} , and set of POVMs {Γŝ
B|x} , with

ρSXB =
∑
s,x

q(s)pX |S(x |s)|s〉〈s| ⊗ |x〉〈x | ⊗ N (s)
A→B(φxA) .
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Main Results

Main Results: No CSI (Cont.)

Theorem

The capacity-distortion region of a random-parameter quantum channel

NSA→B without CSI is given by

C(N ) =
∞⋃
n=1

1

n
R(N⊗n)

If NSA→B is entanglement-breaking, then C(N ) = R(N ).

Proof of 2nd part is not based on additivity R(N⊗n)
?
= nR(N )
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Main Results

Analysis: No CSI, Entanglement-Breaking

Lemma (Shor Inequality)

Let PA1→B1 and ΥA2→B2 be quantum channels, where PA1→B1 is

entanglement breaking. Consider the classical-quantum states

ρXA1A2 =
∑
x∈X

pX (x)|x〉〈x | ⊗ ρxA1A2

ρXB1B2 ≡(1⊗ P ⊗Υ)(ρXA1A2)

Then, there exists a classical-classical-quantum extension ρXYB1B2 such

that

I (X ;B1,B2)ρ ≤ I (X ;B1)ρ + I (X ,Y ;B2)ρ .
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Main Results

Analysis: No CSI, Entanglement-Breaking

Lemma (Generalized Shor Inequality)

Let NSA→B be an entanglement-breaking random-parameter channel, and

let n ≥ 2. Consider the classical-quantum states

ρXAn =
∑
x∈X

pX (x)|x〉〈x | ⊗ ρxAn

ρXBn ≡
∑
sn∈Sn

qn(sn)(1⊗N (sn)
An→Bn)(ρXAn)

Then, there exists a classical-classical-quantum extension ρXY n−1Bn such

that

I (X ;Bn)ρ ≤
n∑

i=1

I (X ,Y i−1;Bi )ρ .
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Main Results

Main Results: Strictly-Causal CSI

At time i , Alice knows S1, . . . ,Si−1. Let

Rs-c(N ) ,
⋃


(R,D) :

R ≤ I (Z ,X ;B)ρ − I (Z ; S |X )

D ≥
∑

s,ŝ,x ,z

q(s)pX (x)pZ |X ,S(z |x , s)

· Tr(Γŝ
B|x ,zN

(s)
A→B(φz,xA ))d(s, ŝ)


with |X | ≤ |HA|2 + 1 and |Z| ≤ |HA|2 + |S|, where the union is over the

set of all distributions pX (x)pZ |X ,S(z |x , s) , state collection {|φz,xA 〉} , and

set of POVMs {Γŝ
B|x ,z} , with

ρSZXB =
∑
s,z,x

q(s)pX (x)pZ |X ,S(z |x , s)|s〉〈s|

⊗ |z〉〈z | ⊗ |x〉〈x | ⊗ N (s)
A→B(φz,xA ) .
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Main Results

Main Results: Strictly-Causal CSI (Cont.)

Theorem

The capacity-distortion region of a random-parameter quantum channel

NSA→B with strictly-causal CSI at the encoder is given by

Cs-c(N ) =
∞⋃
n=1

1

n
Rs-c(N⊗n)

For a random-parameter measurement channel, Cs-c(M) = Rs-c(M).
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Main Results

Main Results: Strictly-Causal CSI (Cont.)

Proof Key Ideas

Extension of the methods of Choudhuri et al. (2013):

a block Markov coding scheme where in each block we encode a fresh

message and a compressed representation of the parameter sequence

from the previous block.

Quantum packing lemma and classical covering lemma

Gentle measurement lemma ⇒ multiple measurements can be

performed with negligible disturbance

Proof
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Main Results

Main Results: Causal CSI

At time i , Alice knows S1, . . . ,Si−1, Si . Let

Rcaus(N ) ,
⋃


(R,D) :

R ≤ I (Z ,X ;B)ρ − I (Z ;S |X )

D ≥
∑

s,ŝ,x ,z

q(s)pX (x)pZ |X ,S(z |x , s)

· Tr(Γŝ
B|x ,zN

(s)
A→B(F (s)

K→A(φz,xK ))d(s, ŝ)


where the union is over pX (x)pZ |X ,S(z |x , s) , state collection {|φz,xK 〉} ,

quantum channels F (s)
K→A , and set of POVMs {Γŝ

B|x ,z} , with

ρSZXB =
∑
s,z,x

q(s)pX (x)pZ |X ,S(z |x , s)|s〉〈s|

⊗ |z〉〈z | ⊗ |x〉〈x | ⊗ N (s)
A→B(F (s)

K→A(φz,xK )) .
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Main Results

Main Results: Causal CSI (Cont.)

Theorem

The capacity-distortion region of a random-parameter quantum channel

NSA→B with causal CSI at the encoder is given by

Ccaus(N ) =
∞⋃
n=1

1

n
Rcaus(N⊗n)

For a random-parameter measurement channel, Ccaus(M) = Rcaus(M).

In the proof, similar methods are applied to the virtual channel LSK→B ,

where

L(s)
K→B(ρK ) ≡ N (s)

A→B(F (s)
K→A(ρK ))
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Main Results

Main Results: Non-Causal CSI

Alice knows Sn a priori. Let

Rn-c(N ) ,
⋃


(R,D) :

R ≤ I (X ;B)ρ − I (X ; S)

D ≥
∑
s,ŝ,x

q(s)pX |S(x |s)

· Tr(Γŝ
B|xN

(s)
A→B(θx ,sA ))d(s, ŝ)


where the union is over pX |S(x |s) , state collection {θxA} , and set of

POVMs {Γŝ
B|x} , with

ρSXB =
∑
s,x

q(s)pX |S(x |s)|s〉〈s| ⊗ |x〉〈x | ⊗ N (s)
A→B(θx ,sA ) .
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Main Results

Main Results: Non-Causal CSI (Cont.)

Theorem

The capacity-distortion region of a random-parameter quantum channel

NSA→B with non-causal CSI at the encoder is given by

Cn-c(N ) =
∞⋃
n=1

1

n
Rn-c(N⊗n)

Even in the classical case, a single-letter characterization is an open

problem.
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Main Results

Main Results: Without Estimation

Direct consequences that extend the results of Boche, Cai, and Nötzel

(2016):

Corollary

The capacity of a random-parameter quantum channel NSA→B with

strictly-causal CSI at the encoder is the same as without CSI.

* similar result for quantum feedback (clean channel from Bob to Alice) [Bowen 2004]

and classical feedback for entanglement-breaking channels [Bowen and Nagarajan 2005]

Corollary

The capacity of a random-parameter quantum channel NSA→B with

causal CSI at the encoder is given by

Ccaus(N , dmax) = lim
k→∞

1

k
sup

p
Xk (xk ) , F (sk )

Gk→Ak
, |φxk

Gk 〉

I (X k ;Bk)ρ

with ρSkX kBk =∑
sk ,xk

qk(sk)pX k (xk)|sk〉〈sk | ⊗ |xk〉〈xk | ⊗ N (sk )

Ak→Bk

(
F (sk )

G k→Ak (φx
k

G k )
)

Corollary

The capacity of a random-parameter quantum channel NSA→B with

non-causal CSI at the encoder is given by

Cn-c(N , dmax) = lim
k→∞

1

k
sup

p
Xk |Sk (xk |sk ) , θx

k ,sk

Ak

[I (X k ;Bk)ρ − I (X k ;Sk)]

with

ρSkX kBk =
∑
sk ,xk

qk(sk)pX k |Sk (xk |sk)|sk〉〈sk | ⊗ |xk〉〈xk | ⊗N (sk )

Ak→Bk (θx
k ,sk

Ak )
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Main Results

Summary

We derived regularized capacity-distortion formulas for quantum channels

with parameter estimation in four scenarios.

without CSI

◦ Single-letter formula for entanglement-breaking channels

◦ Alternative approach: generalized Shor inequality (instead of additivity)

Strictly-causal and causal CSI

◦ single-letter formula for measurement channels

◦ Analysis: block Markov coding with binning + quantum packing

lemma + gentle measurement

Non-causal CSI

Regularized capacity formulas without estimation
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Main Results

Thank you

1

Email: uzi.pereg@tum.de
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