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Communication With Unreliable
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Abstract— Entanglement resources can increase transmission
rates substantially. Unfortunately, entanglement is a fragile
resource that is quickly degraded by decoherence effects. In order
to generate entanglement for optical communication, the trans-
mitter and the receiver first prepare entangled spin-photon pairs
locally, and then the photon at the transmitter is sent to the
receiver through an optical fiber or free space. Without feedback,
the transmitter does not know whether the entangled photon has
reached the receiver. The present work introduces a new model of
unreliable entanglement assistance, whereby the communication
system operates whether entanglement assistance is present or
not. While the sender is ignorant, the receiver knows whether
the entanglement generation was successful. In the case of a
failure, the receiver decodes less information. In this manner, the
effective transmission rate is adapted according to the assistance
status. Regularized formulas are derived for the classical and
quantum capacity regions with unreliable entanglement assis-
tance, characterizing the tradeoff between the unassisted rate
and the excess rate that can be obtained from entanglement
assistance. It is further established that time division between
entanglement-assisted and unassisted coding strategies is optimal
for the noiseless qubit channel, but can be strictly suboptimal for
a noisy channel.
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I. INTRODUCTION

QUANTUM channels represent the physical evolution of a
non-isolated system and provide a mathematical descrip-

tion for a noisy transmission medium, such as an optical
fiber. The channel capacity is the ultimate characteristic for
communication throughput, i.e. the optimal transmission rate
with an asymptotically vanishing error for a given noisy chan-
nel. Generally speaking, quantum communication and security
protocols can be categorized as either entanglement-assisted or
unassisted.

Entanglement resources are instrumental in a wide vari-
ety of quantum network frameworks, such as physical-layer
security [1], interferometry [2], sensor networks [3], [4], and
communication complexity [5]. Furthermore, the data rate can
be significantly higher when the communicating parties are
provided with entangled particles [6], [7], as has recently been
demonstrated in experiments [8]. Unfortunately, entanglement
is a fragile resource that is quickly degraded by decoherence
effects [9].

In order to generate entanglement in an optical commu-
nication system, the transmitter may prepare an entangled
pair of photons locally, and then send one of them to
the receiver [10]. Such generation protocols are not always
successful, as photons are easily absorbed before reaching
the destination. Therefore, practical systems require a back
channel, to inform the transmitter whether the entanglement
has been established to a satisfying degree of quality. In the
case of a failure, the protocol is to be repeated. The backward
transmission may result in a delay, which in turn leads to
a further degradation of the entanglement resources. In this
work, we propose a new principle of operation: Communi-
cation with unreliable entanglement assistance. In our model,
the communication system operates on a rate that is adapted
to the status of the entanglement assistance, whether the
assistance exists or not. Hence, feedback and repetition are not
required.

Driven by new applications such as Industry 4.0, Vehicle-
to-Everything (V2X), and the Tactile Internet [11], future
communication systems such as those beyond the fifth gen-
eration of mobile networks (5G) will significantly differ
from both existing wireless and wired networks. Quantum
communication networks are expected to play an important
role in the communication infrastructure of the modern dig-
ital society [12]. Such systems will have a more involved
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network structure and will impose more diverse and chal-
lenging quality-of-service (QoS) requirements on the network
resilience and reliability, service availability, delay, security,
privacy, and many others. Some of these new requirements
can only be met by using quantum communication [13].
The deployment requirements will go beyond those of the
traditional systems, e.g. the Tactile Internet will allow not only
the control of data, but also of physical and virtual objects.
With such critical applications comes the need to address the
trustworthiness of the system and its services.

Resilience and reliability are core elements of trustworthi-
ness and have been identified as key challenges for future
communication systems [14].

Furthermore, resilience and reliability cannot necessarily
be verified automatically on digital hardware, i.e. on Turing
machines [15]. It is not Turing decidable whether an attacker
can perform a denial-of-service attack or not. Thus, it is
also not Turing decidable whether a communication system
is trustworthy or not [14]. Therefore, it is fundamentally
important to achieve entirely new approaches for resilience
by design and for reliability by design. Here, we develop
the theory for reliability by design for entanglement-assisted
point-to-point quantum communication systems.

Communication through quantum channels can carry classi-
cal or quantum information. For classical communication, the
Holevo-Schumacher-Westmoreland (HSW) Theorem provides
a regularized formula for the classical capacity of a quantum
channel without assistance [16], [17]. Although calculation of
such a formula is intractable in general, it provides computable
lower bounds, and there are special cases where the capacity
can be computed exactly. The reason for this difficulty is that
the Holevo information is super-additive [18]. A similar dif-
ficulty occurs with transmission of quantum information. The
regularized formula for the quantum capacity is given in terms
of the coherent information [19]. The entanglement-assisted
classical capacity and quantum capacity of a noisy quantum
channel were fully characterized by Bennett et al. [6], [7]
in terms of the quantum mutual information, in analogy to
Shannon’s capacity formula for a classical channel [20]. The
tradeoff between transmission, leakage, key, and entanglement
rates is studied extensively in the literature as well [21], [22],
[23], [24], [25], [26], [27], [28], and [29].

The theory of uncertain cooperation was first introduced
to classical information theory in 2014 by Steinberg [30],
and further investigated by Huleihel and Steinberg [31]. The
motivation is based on the engineering aspects of modern
communication networks. In a dynamic ad-hoc communication
setup, the availability of resources, such as bandwidth, time
slots, and energy, is not guaranteed a priori, since their
availability depends on parameters that the network designer
does not control. For example, cooperation can depend on
the battery status of intermediate users (relays or repeaters),
on weather, or simply the willingness of peers in the network
to help. A typical situation, therefore, is that the users are
aware of the possibility that cooperation will take place, but it
cannot be assured before transmission begins. Our framework
is inspired by Steinberg’s model [30]. The classical models of
unreliable cooperation mainly focus on dynamic resources in

multi-user settings, such as the multiple-access channel [32]
and the broadcast channel [33], [34], [35]. Other approaches
for unreliable communication links include the outage analy-
sis [36], [37], automatic repeat request (ARQ) [38], [39], and
cognitive radios [40]. Our focus here, however, is on a point-
to-point quantum channel and the reliability of static resources.

In this paper, we consider communication of either classical
or quantum information over a quantum channel, while Alice
and Bob are provided with unreliable entanglement resources,
as the communicating parties are uncertain about the avail-
ability of entanglement assistance. Specifically, Alice wishes
to send two messages, at rates R and R′. She encodes both
messages using her share of the entanglement resources, as she
does not know whether Bob will have access to the entangled
resources. Bob has two decoding procedures. If the entangle-
ment assistance has failed to reach Bob’s location, he performs
a decoding operation to recover the first message alone. Hence,
the communication system operates on a rate R. Whereas if
Bob has entanglement assistance, he decodes both messages,
hence the overall transmission rate is R+R′. In other words, R
is a guaranteed rate, and R′ is the excess rate of information
that entanglement assistance provides. We define the capacity
region as the set of all rate pairs (R,R′) that can be achieved
with asymptotically vanishing decoding errors. We establish
a regularized characterization for the classical and quantum
capacity regions. We are developing reliability by design. If the
entanglement resource is unreliable, then the rate R can be
guaranteed regardless. For the applications mentioned above,
this is of central importance, because absolutely critical data
can be transmitted at rate R and the communication does not
break down.

The communication design makes a compromise. In gen-
eral terms, the extreme options are to use the entanglement
resources to the fullest extent, or ignore them completely.
Those extreme strategies attain the corner points of the capac-
ity region. The former strategy achieves the point (0, R′),
and the latter achieves (R, 0). A communication protocol
that relies heavily on the entanglement resources reaps the
benefits of entanglement to a high extent, if the assistance is
present. However, if the entanglement generation fails, then
the transmission rate will be very low. That is, the excess
rate R′ will be close to optimal, while the guaranteed rate R
will be low. If the designer decides to sacrifice excess rate
and reduce R′, i.e. reduce the gain from the entanglement
resources, then we can guarantee a higher transmission rate.
Our results characterize the optimal tradeoff.

Consider the simple scenario of a noiseless qubit channel
idA→B , for which we have two elementary communication
methods:

1) Send one classical bit of information.
2) Employ the super-dense coding protocol in order to send

two classical bits, as illustrated in Figure 1.

The first method is optimal without assistance, while the
second is optimal when entanglement assistance is present.
If Alice follows the super-dense coding protocol, but the
entanglement resources do not reach Bob’s location, then Bob
measures a qubit that has no correlation with the information
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Fig. 1. Super-dense coding with unreliable entanglement assistance. The blue lines indicate the bits and qubits that are affected when the entanglement
resources fail to reach Bob’s location.

bits. In the framework of unreliable entanglement assistance,
Method 2 achieves a zero guaranteed rate and an excess rate
of two information bits per transmission. Suppose that Alice
employs time division: She sends (1−λ)n transmissions using
Method 1, and λn transmissions following Method 2, where
0 ≤ λ ≤ 1. Hence, the communication system operates on
a guaranteed rate of R = 1 − λ information bits per trans-
mission, and an excess rate of R′ = 2λ information bits per
transmission. We show that the time division region is optimal
for the noiseless qubit channel. Nevertheless, we demonstrate
that time division can be strictly suboptimal for a very simple
noisy channel.

The analysis is based on a novel method that is inspired
by the classical network technique of superposition coding
(SPC) [41]. Originally, the classical SPC scheme consists of
a collection of sequences un(m) and vn(m,m′) of length
n, where m and m′ are messages that are associated with
different users in a multi-user network. The sequences un(m)
are called cloud centers, while vn(m,m′) are displacement
vectors, and the codewords cn(m,m′) = un(m) + vn(m,m′)
are thought of as satellites. In analogy, we use conditional
quantum operations that map quantum cloud centers to quan-
tum satellite states. Suppose that Alice and Bob share an
entangled state φ a priori. Each cloud center is associated
with a classical sequence xn(m), and at the center of each
cloud there is a state, σm = F (xn(m))(φ), where F (xn(m))

is a quantum encoding map that is conditioned on xn(m).
Applying random Pauli operators that encode the message m′

takes us from the cloud center to a satellite ρm,m′ on the
cloud that depends on both messages, m and m′. The channel
input is the satellite state. See Figure 2. Bob decodes in two
steps. First, Bob recovers the cloud, i.e. he estimates m. If the
entanglement assistance is absent, then Bob quits after the
first step. Otherwise, if Bob has entanglement assistance, then
he continues to decode the satellite m′. We show that even
in our fundamental point-to-point setting, quantum SPC can
outperform time division.

II. DEFINITIONS AND RELATED WORK

A. Notation and Information Measures

The quantum state of a system A is a density operator ρ on
the Hilbert space HA. The set of all such density operators is

Fig. 2. Superposition coding (SPC): The quantum version.

denoted by S (HA). A measurement of a quantum system is
a set of operators {Λj} that forms a positive operator-valued
measure (POVM), i.e. Λj ⪰ 0 and

∑
j Λj = 1, where 1 is the

identity operator. According to the Born rule, if the system is
in state ρ, then the probability of the measurement outcome j
is given by Tr(Λjρ). The trace distance between two density
operators ρ and σ is ∥ρ− σ∥1, where ∥F∥1 = Tr(

√
F †F ).

Given a bipartite state ρAB onHA⊗HB , define the quantum
mutual information as

I(A;B)ρ = H(ρA) +H(ρB)−H(ρAB), (1)

where H(ρ) ≡ −Tr[ρ log(ρ)] is the von Neumann entropy
of the state ρ. Furthermore, conditional quantum entropy and
mutual information are defined by H(A|B)ρ = H(ρAB) −
H(ρB) and I(A;B|C)ρ = H(A|C)ρ + H(B|C)ρ −
H(A,B|C)ρ, respectively. The coherent information is then
defined as

I(A⟩B)ρ = −H(A|B)ρ. (2)

The maximally entangled state between two systems of dimen-
sion d is denoted by |ΦAB⟩ = 1√

d

∑d−1
j=0 |j⟩A ⊗ |j⟩B , where

{|j⟩A} and {|j⟩B} are respective orthonormal bases.
We also use the following notation conventions. Calligraphic

letters X , Y , Z , . . . are used for finite sets. Lowercase letters
x, y, z, . . . represent constants and values of classical random
variables, and uppercase letters X,Y, Z, . . . represent random
variables.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on August 31,2024 at 12:59:23 UTC from IEEE Xplore.  Restrictions apply. 



4582 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 7, JULY 2023

We use xj = (x1, x2, . . . , xj) to denote a sequence of letters
from X , and [i : j] for the index set {i, i + 1, . . . , j}, where
j > i.

B. Quantum Channel

A quantum channel maps a state at the sender system to
a state at the receiver system. Formally, a quantum chan-
nel NA→B : S (HA) → S (HB) is defined by a linear,
completely positive, trace preserving map NA→B . In the
Stinespring representation, a quantum channel is specified by
NA→B(ρA) = TrE(UρAU†), where the operator U is an
isometry, i.e. U†U = 1. We assume that the quantum channel
has a product form: If An = (A1, . . . , An) are sent through
n channel uses, then the input state ρAn undergoes the tensor
product mapping NAn→Bn ≡ N⊗n

A→B . The sender and the
receiver are often referred to as Alice and Bob.

C. Coding With Unreliable Assistance

We give coding definitions for communication with unre-
liable entanglement resources. We denote Alice and Bob’s
entangled systems by GA and GB , respectively.

1) Classical Codes:
Definition 1: A (2nR, 2nR

′
, n) classical code with unreli-

able entanglement assistance consists of the following: Two
message sets [1 : 2nR] and [1 : 2nR

′
], where 2nR, 2nR

′

are assumed to be integers, a pure entangled state ΨGA,GB
,

a collection of encoding maps Fm,m
′

GA→An : S (HGA
) →

S (H⊗nA ) for m ∈ [1 : 2nR] and m′ ∈ [1 : 2nR
′
], and two

decoding POVMs DBnGB
= {Dm,m′} and D∗Bn = {D∗m}.

We denote the code by (F ,Ψ,D,D∗).
The communication scheme is depicted in Figure 3. The

sender Alice has the systems GA, An and the receiver Bob
has the system Bn, and possibly GB as well, where GA
and GB are entangled. The model captures two scenarios,
i.e. when entanglement assistance is present or absent. This is
illustrated in Figure 3 by an imaginary switch that controls the
assistance. Without assistance, Bob is only required to decode
one message, and given entanglement assistance, he should
recover both messages.

Specifically, Alice chooses two classical messages, m ∈
[1 : 2nR] and m′ ∈ [1 : 2nR

′
]. She applies the encoding

channel Fm,m
′

GA→An to her share of the entangled state ΨGA,GB
,

and then transmits An over n channel uses of NA→B . Bob
receives the channel output Bn. If the entanglement assistance
is present, i.e. Bob has access to the entanglement resource
GB , then he should recover both messages. He combines the
output with the entangled system GB , and performs the POVM
DBnGB

= {Dm,m′} to obtain an estimate (m̂, m̂′).
Otherwise, if entanglement assistance is absent, then Bob

does not have GB , and he is only required to recover m.
Hence, he performs the measurement DBn = {D∗m} to obtain
an estimate ˆ̂m of the first message alone. In the presence of
entanglement assistance, the conditional probability of error
given that the messages m and m′ were sent, is

P
(n)
e|m,m′(F ,Ψ,D) =

1− Tr
[
Dm,m′(N⊗n

A→B ⊗ id)(Fm,m
′
⊗ id)(ΨGA,GB

)
]

(3)

Fig. 3. Illustration of unreliable entanglement assistance that is controlled by
an imaginary switch. The quantum systems of Alice and Bob are marked in
red and blue, respectively. Alice encodes the messages m and m′ by applying
the encoding map Fm,m′

GA→An to the system GA, which is entangled with GB .
The model assumes that entanglement assistance may fail to reach Bob. Thus,
there are two scenarios: (a) “On”: Bob performs a measurement DBnGB

in
order to estimate m and m′. (b) “Off”: Bob performs a measurement D∗Bn

to estimate m, and does not recover m′, as he cannot access GB .

and without assistance,

P
∗(n)
e|m,m′(F ,Ψ,D

∗) = 1− Tr
[
D∗mN⊗n

A→B F
m,m′(ΨGA

)
]
.

(4)

Notice that the encoded input remains the same, since Alice
does not know whether entanglement assistance is present or
not. Therefore, the error depends on m and m′ in both cases.

Given ε > 0, we say that the code is a (2nR, 2nR
′
, n, ε)

classical code if the error probabilities are bounded by ε.
That is, P (n)

e|m,m′(F ,Ψ,D) ≤ ε and P
∗(n)
e|m,m′(F ,Ψ,D

∗) ≤ ε

for all m ∈ [1 : 2nR] and m′ ∈ [1 : 2nR
′
]. A rate pair

(R,R′) is called achievable if for every ε > 0 and sufficiently
large n, there exists a (2nR, 2nR

′
, n, ε) code with unreliable

entanglement assistance.
The classical capacity region CEA*(N ) with unreliable

entanglement assistance is defined as the set of achievable
rate pairs.

Remark 1: Our model accounts for two extreme cases, i.e.
either the entire entanglement resources are available or not
at all. In digital communications, this approach is referred to
as a hard decision [42]. Here, the decoder performs a hard
decision on whether the entanglement resources are usable or
not. In analogy to the classical cooperation model [31], our
model is based on the engineering aspects and the architecture
of modern communication networks. We expect that quantum
communication networks in the future will follow similar
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reliability guidelines. In particular, we envision that in a large
quantum communication network, the availability of entangle-
ment resources will not be guaranteed a priori. For example,
entanglement resources will depend on physical conditions
such as the weather, on the status of quantum repeaters, or the
willingness of peers to help. In such a network, the transmitter
and the receiver are aware of the possibility that entanglement
assistance will be available, but it cannot be assured before
transmission begins.

Remark 2: In practical systems, heralded entanglement
generation guarantees that Bob knows whether the procedure
was successful or not. Thus, our assumption that Bob knows
whether the entangled resource is present or absent is a prac-
tical one. Specifically, in optical communication, both Alice
and Bob prepare an entangled photon pair or spin-photon pair
locally, see Figure 4. Let us denote the pairs by |ΦGAPA

⟩ and
|ΦGBPB

⟩, respectively, where PA and PB represent photons.
In order to generate entanglement with Bob, Alice transmits
the photon PA. If the photon transmission was successful, then
Bob has the two photons PA and PB in his lab, as well as the
quantum system GB . In this case, a Bell measurement on PA
and PB eliminates the photons, but the remaining systems of
Alice and Bob, GA and GB , become entangled. If the photon
has not reached Bob, then the measurement outcome indicates
so.

Remark 3: It is important to note that unreliable assistance
is not equivalent to noisy assistance, which was considered
by Zhuang et al. [27]. In particular, we do not associate
a statistical model to the availability of the entanglement
resources. Instead, we consider a rate region that reflects
the tradeoff between the guaranteed rate and the excess rate.
The guaranteed rate R corresponds to information that Bob
recovers whether the entanglement assistance is present or not,
while the excess rate R′ represents the additional information
that is sent if entanglement assistance is present. In other
words, the rate R represents the worst-case scenario, whereas
R′ is associated with the best-case scenario. As opposed to
the average performance that is considered in the statistical
model [27], we provide a worst-case best-case performance
analysis. In the next remark, we give an illustration.

Remark 4: To illustrate the reliability approach, consider
the following metaphor. N travelers are embarking on a long
journey on a ship that may have a varying number of lifeboats.
Overall, the lifeboats can accommodate L travelers. In the
event that the ship sinks, (N − L) travelers will be rescued
and brought back to their starting point, and the journey will
continue with the remaining travelers in the lifeboats. The
speed of the ship is V = V (N,L), and the speed of the
lifeboats is v0. If the ship does not sink, the speed of each
traveler will be V . However, if the ship sinks, the travel speed
will be calculated as the average speed of the lifeboats, R =
(L/N)v0. In this case, R represents the guaranteed speed of
travel for the remaining travelers, and R′ = V −R represents
the excess speed that the ship would have provided. Using
more lifeboats will increase the guaranteed speed of travel,
but decrease the excess speed, while using fewer lifeboats
will have the opposite effect. It is important to consider both
speeds, R and R′, rather than just the average speed, when

Fig. 4. Heralded entanglement generation.

planning for the worst-case scenario of the ship sinking. In the
result section, we will discuss the option of dividing the
travelers between different ships, and the advantage that may
arise if a traveler can be in a quantum superposition between
two ships.

2) Quantum Codes: Next, we give a definition of a quantum
code with unreliable entanglement assistance.

Definition 2: A (2nQ, 2nQ
′
, n) quantum code with unre-

liable entanglement assistance consists of the following: A
product Hilbert space HM ⊗ HM̄ with dimensions |HM | =
2nQ and |HM̄ | = 2n(Q+Q′), a pure entangled state ΨGA,GB

,
an encoding channel FGAMM̄→An : S (HGA

⊗ HM ⊗
HM̄ ) → S (H⊗nA ), and two decoding channels D

BnGB→M̃ :
S (H⊗nB ⊗ HGB

) → S (HM̄ ) and D∗
Bn→M̂ : S (H⊗nB ) →

S (HM ).
The sender Alice has the systems GA,M, M̄,An and the

receiver Bob has the systems Bn, M̂, M̃ , and possibly GB ,
where GA and GB are entangled. We think of M and M̄ as
quantum message systems. Alice has a product state θM⊗ξM̄ .
Let |θMK⟩ ⊗ |ξM̄K̄⟩ be a purification of Alice’s state, while
K, K̄ are arbitrary purifying systems. Alice encodes the input
state by applying the encoding channel FGAMM̄→An to M ,
M̄ , and to her share of the entangled state ΨGA,GB

, and
transmits the system An over n channel uses of NA→B . Bob
receives the channel output systems Bn. If the entanglement
assistance is present, then he combines the output with the
entangled system GB , and applies the decoding channel
D
BnGB→M̃ . Otherwise, if entanglement assistance is absent,

then he performs D∗
Bn→M̂ .

Given ε > 0, the code is said to be a (2nQ, 2nQ
′
, n, ε)

quantum code with unreliable entanglement assistance if the
trace distance between the original state and the resulting state
at the receiver is bounded by ε in each scenario, i.e.

1
2

∥∥ξM̄K̄ −DN⊗n
A→BF (θMK ⊗ ξM̄K̄ ⊗ΨGA,GB

)
∥∥

1
≤ ε,

(5)

and
1
2

∥∥θMK −D∗N⊗n
A→BF (θMK ⊗ ξM̄K̄ ⊗ΨGA

)
∥∥

1
≤ ε,

(6)

where ∥·∥1 denotes the trace norm. Observe that the second
error depends on the entangled state only through the reduced
state of GA, since the receiver does not have access to GB in
the scenario of absent assistance. A rate pair (Q,Q′) is said to
be achievable if for every ε > 0 and sufficiently large n, there
exists a (2nQ, 2nQ

′
, n, ε) code with unreliable entanglement
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assistance. The quantum capacity region QEA*(N ) is defined
in a similar manner as before.

In the following remark, we discuss the relation between
the classical and quantum formulations above. In many com-
munication models in the literature, it does not matter whether
the messages are chosen by the sender Alice, or given to her
by an external source. However, in the quantum model, there
is a fundamental distinction between the general task of sub-
space transmission and remote state preparation, as we explain
below.

Remark 5: In the classical code in Definition 1, if entan-
glement assistance is present, then Bob decodes the composite
message m̄ = (m,m′). Hence, the overall transmission rate
with entanglement assistance is REA = R + R′. In the
quantum code in Definition 2, M and M̄ are two independent
systems of dimensions 2nQ and 2n(Q+Q′). Hence, the overall
quantum rate with entanglement assistance is QEA = Q +
Q′. In some applications of quantum error correction, Alice
receives the system M from another source, and does not
prepare it herself. While Alice can perform any operation on
this system, she does not necessarily know its state in this
case. Due to the no-cloning theorem, Alice cannot duplicate
a general state of M either. Thus, our definition of quantum
transmission with unreliable entanglement describes a more
restricted problem.

D. Related Work

We briefly review known results without assistance and with
reliable entanglement assistance. We denote the corresponding
classical and quantum capacities with reliable entanglement
assistance by CEA(N ) and QEA(N ), and without assistance
by C(N ) and Q(N ), respectively.

Define the following information measures: The channel
Holevo information

χ(N ) ≡ max
pX(x),|ψx

A⟩
I(X;B)ω,

ωXB ≡
∑
x∈X

pX(x)|x⟩⟨x| ⊗ N (ψxA), |X | ≤ |HA|2 , (7)

and the channel coherent information

Ic(N ) ≡ max
|ϕA1A⟩

I(A1⟩B)ω,

ωA1B ≡ (id⊗N )(|ϕA1A⟩⟨ϕA1A|), |HA1 | ≤ |HA| . (8)

Observe that the Holevo information is maximized over
ensembles of pure states, while the quantum capacity is
maximized over entangled states. We will see the implications
of those properties in the results section. The classical capacity
theorem and the quantum capacity theorem are given below.

Theorem 1: The classical capacity of a quantum channel
NA→B without assistance is given by [16] and [17]

C(N ) = lim
k→∞

1
k
χ

(
N⊗k) . (9)

Theorem 2: The quantum capacity of a quantum channel
NA→B without assistance is given by [19], [43], [44], and [45]

Q(N ) = lim
k→∞

1
k
Ic(N⊗k). (10)

Next, consider communication with reliable entanglement
assistance. The entanglement-assisted capacity formula turns
out to be the quantum analog of Shannon’s classical for-
mula [6], [7]. Define

I(N ) = max
|ϕA1A⟩

I(A1;B)ω,

ωA1B ≡ (id⊗N )(|ϕA1A⟩⟨ϕA1A|), |HA1 | ≤ |HA| . (11)

Theorem 3: The classical capacity and the quantum capac-
ity of a quantum channel NA→B with reliable entanglement
assistance are given by [6], [7]

CEA(N ) = I(N ), (12)

QEA(N ) =
1
2
I(N ). (13)

The classical capacity and the quantum capacity have dif-
ferent units, i.e. CEA(N ) is measured in classical information
bits per channel use, whereas QEA(N ) in information qubits
per channel use. Nonetheless, the capacity values satisfy
QEA(N ) = 1

2CEA(N ), given reliable entanglement assistance.
This relation can be inferred from the fundamental single-
unit protocols. Specifically, super-dense coding [46] is a well
known communication protocol whereby two classical bits are
transmitted using a single use of a noiseless qubit channel and
a maximally entangled pair. In the other direction, by employ-
ing the teleportation protocol [47], qubits can be sent at half
the rate of classical bits given entanglement resources.

III. RESULTS

We establish a regularized characterization for the capacity
region with unreliable entanglement assistance, for the trans-
mission of either classical information or quantum informa-
tion.

A. Classical Communication

Let NA→B be a given channel, and define

REA*(N ) =⋃
pX , φA0A1 , F(x)

{
(R,R′) : R ≤ I(X;B)ω

R′ ≤ I(A1;B|X)ω

}
(14)

with

ωXA1A =
∑
x∈X

pX(x)|x⟩⟨x| ⊗ (id⊗F (x)
A0→A)(φA1A0), (15)

ωXA1B = (id⊗NA→B)(ωXA1A). (16)

Intuitively, the classical variable X is associated with the
classical message m, which Bob decodes whether there is
entanglement assistance or not. The reference system A0 can
be thought of as Alice’s share of the entanglement resources.
Since the resources are pre-shared before communication
takes place, the entangled state φ is non-correlated with the
messages. Alice encodes the message m′ using the encoding
operator F (x). Before we state the capacity theorem, we give
the following lemma. The property below simplifies the com-
putation of the above region and the achievability proof as
well.
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Lemma 4: The union in (14) is exhausted by pure states
|ϕA0A1⟩ and with the cardinality of |X | ≤ |HA|2 + 1.
The restriction to pure states is based on state purifica-
tion, while the alphabet bound follows from the Fenchel-
Eggleston-Carathéodory lemma [48], using similar arguments
that Yard et al. [49] use. The details are given in Appendix B.
Our main result on classical communication with unreliable
entanglement assistance is stated below.

Theorem 5: The classical capacity region of a quantum
channel NA→B with unreliable entanglement assistance sat-
isfies

CEA*(N ) =
∞⋃
n=1

1
n
REA*(N⊗n). (17)

The proof of Theorem 5 is given in Appendix C. In general,
there is a tradeoff between the rates R and R′, and we
cannot necessarily achieve the maximum rate for both of
them simultaneously. Intuitively, the excess rate R′ that is
provided by entanglement assistance depends on the level of
entanglement between the ancilla A1 and the channel input A,
or equivalently, on how entanglement-breaking the encoding
map is. We give a more precise explanation below.

In the region formula in (14), we have a union over the
probability distributions pX , states φA0A1 , and collections
of mappings {F (x)

A0→A}x∈X . The boundary of this region is
attained by optimizing over these objects. Observe that in order
for R′ to achieve the entanglement-assisted capacity, we may
set φA0A1 as the entangled state that attains the maximum
in (11), and take F (x)

A0→A to be the identity map. Since the
output has no correlation with X , this assignment achieves
the rate pair (R,R′) = (0, CEA(N )) (cf. (11) and (14)).

To maximize the unassisted rate, set an encoding channel
F (x)
A0→A that outputs the pure state |ψxA⟩ that is optimal in (7),

i.e.

F (x)(φA1A0) = φA1 ⊗ ψxA. (18)

Such an assignment achieves (R,R′) = (χ(N ), 0) (cf. (7)
and (14)). In other words, the Holevo information is achieved
for an entanglement-breaking encoder.

Remark 6: Our model has a deep relation to the quantum
broadcast channel. We point out a heuristic connection, while
the precise formulation is delegated to the discussion section
(see Subsection IV-C). The characterization of the classical
capacity region in Theorem 5 clearly resembles the classical
SPC1 region of the broadcast channel without assistance [50]
(see Theorem 2 therein). The difference is that here the
encoding involves quantum operations. Nevertheless, we can
portray a similar metaphorical image: Let m be an index over
2nR clouds. Recall that the region formula in (14) involves an
ancillary state φA0A1 and a collection of encoding mappings
{F (x)}x∈X . Each cloud center is associated with a classical
codeword xn(m), and at the center of each cloud there is the
state ⊗ni=1F (xi(m))(φ). Applying random Heisenberg-Weyl
operators that encode the message m′ takes us from the
cloud center to a satellite on the cloud that depends on both

1A superposition code should not be confused with quantum superposition.
The two notions are unrelated.

m and m′. The channel input is the satellite state. See Figure 2.
Bob decodes in two steps. First, Bob recovers the cloud, i.e. he
estimates m. If the entanglement assistance is absent, then Bob
quits after the first step. Otherwise, if Bob has entanglement
assistance, then he continues to decode the satellite m′.

Remark 7: The results are very surprising when compared
with classical systems. SPC is a sophisticated network tech-
nique that is mainly used for multi-user channels or other
network configurations in order to achieve a tradeoff between
different users or resources. For example, consider a trans-
mitter X that communicates two messages over a classical
broadcast channel with two receivers, Y1 and Y2, while each
message is intended for a different receiver. Of course, it is
not necessarily possible to maximize the transmission rates
for both users simultaneously. However, if the outputs are
identical, i.e. Y1 = Y2 ≡ Y , then the capacity region is given
by the set of rate pairs (R1, R2) such that R1 + R2 ≤ C1,
where C1 the Shannon capacity of the point-to-point channel
PY |X . In such a simple case, the elaborate SPC scheme is
not needed, and the capacity region can be achieved by the
much simpler time division approach. That is, a concatenation
of two single-user codes is optimal.

In our model, we consider a point-to-point quantum channel
NA→B . Thereby, it may appear at a first glance as if time
division should be optimal, regardless of whether the channel
is noisy or not. In the example below, we show that time
division can be sub-optimal. To this end, we apply Theorem 5
with a quantum state |ϕA0A1⟩ that is formed by the super-
position of a product state and a maximally entangled Bell
state. Hence, despite the simplicity of this single-user point-
to-point model, one can outperform time division by inserting
a quantum superposition state into an SPC scheme.

Remark 8: Returning to our metaphor of travelers on a sea
journey, we now consider a division plan. In this scenario, N
travelers are divided between two ships: a light ship without
lifeboats and a heavy ship with lifeboats that can accommodate
all passengers. The light ship has a maximum excess speed of
R′light = V (N, 0), but no guaranteed speed since it does not
have any lifeboats (L = 0). The heavy ship, on the other hand,
has a high guaranteed speed of Rheavy = v0, but a low excess
speed of R′heavy. Although the heavy ship is less efficient, it is
more reliable. By dividing the passengers between the two
ships, we can achieve an average speed pair of (R,R′) =
(1 − λ)(Rlight, R

′
light) + λ(Rheavy, R

′
heavy), where λ represents

the fraction of passengers on the heavy ship normalized by
the total number of passengers. Figuratively, our results show
that if the journey is subject to a quantum evolution, then we
may outperform the division plan by allowing travelers to be
in a quantum superposition state between the two ships.

To demonstrate our results, we give an example.
Example 1: Consider the qubit depolarizing channel

N (ρ) = (1− ε)ρ+ ε
1

2
, (19)

with ε ∈ [0, 1]. The classical capacity without assistance is
given by C(N ) = 1 − H2

(
ε
2

)
, and it is achieved with a

symmetric distribution over the ensemble {|0⟩, |1⟩}, where
H2(t) ≡ −t log(t) − (1 − t) log(1 − t) is the binary entropy
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function [51]. On the other hand, the classical capacity with
reliable entanglement assistance is given by CEA(N ) = 2 −
H

(
1− 3ε

4 ,
ε
4 ,

ε
4 ,

ε
4

)
, and it is achieved with a maximally

entangled input state [6].
A natural compromise is to mix the strategies above. Let

Z be an independent random bit that chooses between the
strategies, where Z ∼ Bernoulli(λ) for a given λ ∈ [0, 1]. That
is, we define F (x,z) by F (x,0)(ρA) = ψxA and F (x,1) = id.
Plugging X̃ ≡ (X,Z), we obtain the time-division achievable
region,

REA*(N ) ⊇
⋃

0≤λ≤1

{
(R,R′) : R ≤ (1− λ)C(N )

R′ ≤ λCEA(N )

}
.

(20)

Next, we numerically compute an achievable region that
outperforms the time-division bound. Instead of using a clas-
sical mixture of the strategies, we use quantum superposition.
Define a non-normalized vector,

|uβ⟩ ≡
√

1− β |0⟩ ⊗ |0⟩+
√
β |Φ⟩ . (21)

Then, set

|ϕA0A1⟩ ≡
1

∥uβ∥
|uβ⟩ , (22)

pX =
(

1
2
,
1
2

)
, (23)

F (x)(ρ) ≡ XxρXx, (24)

where X is the bitflip Pauli operator. Observe that for β = 0,
the input state is F (x)(|0⟩⟨0|) = |x⟩⟨x|, which achieves the
classical capacity without assistance. On the other hand, for
β = 1, the parameter x chooses one of two Bell states.

Figure 5 depicts the resulting region for a depolarization
probability of ε = 1

2 . The triangular region below the dashed
red line is the time-division bound, which is obtained by a
classical mixture, whereas the solid blue line indicates the
achievable region corresponding to the superposition state
|uβ⟩
∥uβ∥ , as in (21).

For a noiseless qubit channel, time division is optimal.
Corollary 6: The classical capacity region of a noiseless

qubit channel with unreliable entanglement assistance is given
by the time-division region, i.e.

CEA*(id) =
⋃

0≤λ≤1

{
(R,R′) : R ≤ 1− λ

R′ ≤ 2λ

}
. (25)

Proof: As explained in the introduction, to achieve the rate
pair (R,R′) = (1 − λ, 2λ), Alice and Bob simply perform
super-dense coding repeatedly, over a fraction of λ of the
block, and communicate over the 0-1 basis in the remaining
part. To show the converse part, let (R,R′) ∈ 1

nREA*(N⊗n)
(see (16)), hence

R ≤ 1
n
I(X;Bn)ω =

1
n

[H(Bn)ω−H(Bn|X)ω]

≤ 1− 1
n
H(Bn|X)ω (26)

and

R′ ≤ 1
n
I(A1;Bn|X)ω

≤ 1
n
· 2H(Bn|X)ω. (27)

The last inequality holds since the quantum conditional
entropy satisfies |H(B| A)ρ| ≤ H(B)ρ in general, hence
H(Bn|A1X)ω =

∑
x pX(x)H(Bn|A1, X = x)ω ≥

−
∑
x pX(x)H(Bn|X = x)ω = −H(Bn|X)ω . The converse

part for the corollary follows, as we define λ ≡ 1
nH(Bn|X)ω .

B. Quantum Communication

Consider quantum communication over NA→B with unre-
liable entanglement assistance. Define

LEA*(N ) =
⋃

φA1A2A

(Q,Q′) :
Q ≤ min{I(A1⟩B)ω, H(A1|A2)ω},
Q+Q′ ≤ 1

2I(A2;B)ω


(28)

with

ωA1A2B = (id⊗NA→B)(φA1A2A) . (29)

Theorem 7: The quantum capacity region of a quantum
channel NA→B with unreliable entanglement assistance sat-
isfies

QEA*(N ) =
∞⋃
n=1

1
n

LEA*(N⊗n). (30)

The proof of Theorem 7 is given in Appendix D.

IV. SUMMARY AND DISCUSSION

We summarize our results and compare the techniques in
our work and in previous works. We consider communication
over a quantum channel NA→B , where Alice and Bob are
provided with unreliable entanglement resources. Suppose that
Alice wishes to send two messages, at rates R and R′. She
encodes both messages using her share of the entanglement
resources, as she does not know whether Bob will have access
to the entangled resources. Bob has two decoding procedures.
If the entanglement assistance has failed to reach Bob’s
location, he performs a decoding operation to recover the first
message alone. Hence, the communication system operates
on a rate R. Whereas if Bob has entanglement assistance,
he decodes both messages, hence the overall transmission
rate is R + R′. In other words, R is a guaranteed rate,
and R′ is the excess rate of information that entanglement
assistance provides. The communication setting is illustrated
in Figure 3, in which the resource uncertainty is represented
by the unknown position of a switch.

We define the capacity region as the set of all rate pairs
(R,R′) that can be achieved with asymptotically vanishing
decoding errors. The characterization of the corner points
(R, 0) and (0, R′) already follows from previous results in
the literature (see Subsection II-D). However, our interest goes
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Fig. 5. Achievable classical rate regions for the depolarizing channel with unreliable entanglement assistance, for a depolarization probability ε = 1
2

.

beyond those cases, as we focus on the tradeoff, and not the
extreme points. That is, we characterize the entire capacity
region.

In the transmission of quantum information, Alice chooses
a product state θM ⊗ ξM̄ over Hilbert spaces of dimension
|HM | = 2nQ and |HM̄ | = 2n(Q+Q′). Alice encodes the input
state by applying the encoding channel FGAMM̄→An to M ,
M̄ , and to her share of the entangled state ΨGA,GB

, and
transmits the system An over n channel uses of NA→B . Bob
receives the channel output systems Bn. If the entanglement
assistance is present, then he applies the decoding channel D
to the joint output BnGB in order to recover ξM̄ . Otherwise,
if entanglement assistance is absent, then he performs D∗ on
Bn in order to recover θM .

We have established a regularized characterization for the
classical and quantum capacity regions. The communication
design makes a compromise. We have seen that the unassisted
rate is high when the channel input is in a pure state.
Such an assignment achieves (R,R′) = (χ(N ), 0), where
χ(N ) is the Holevo information of the channel. On the
other hand, high excess rates are achieved when the encoder
preserves the entanglement between the input system and
the ancilla (see (14)). Such an encoding operation achieves
the rate pair (R,R′) = (0, CEA(N )), where CEA(N ) is the
entanglement-assisted capacity. Time division between these
coding strategies achieves the rate pairs (R,R′) = ((1 −
λ)χ(N ), λCEA(N )), for 0 ≤ λ ≤ 1.

In the simple scenario of classical communication over a
noiseless qubit channel, we have shown that the optimal strat-
egy is to perform time division between super-dense coding
and unassisted transmission over the 0-1 basis (see Figure 1).
For the noiseless qubit channel, the classical capacity region
with unreliable entanglement assistance is thus CEA∗(N ) =⋃

0≤λ≤1{(R,R′) : R ≤ 1 − λ, R′ ≤ 2λ}. Nevertheless,
we established that time division is not optimal in general,
even for a simple noisy quantum channel. Specifically, time
division is strictly suboptimal for the depolarizing channel (see
Figure 5).

Thereby, more advanced coding techniques are necessary to
obtain the full capacity region. Indeed, our characterization in
Theorem 5 and the coding method in the achievability proof

are much more sophisticated than time division. The analysis
is based on a novel method that is inspired by the classical
network technique of superposition coding (SPC) [41]. Sur-
prisingly, this network technique yields an advantage even
for a simple point-to-point quantum channel. This advantage
is obtained by exploiting quantum superposition. That is,
we combine superposition coding with superposition states.

Next, we discuss capacity computation, the side-information
interpretation, and the consequences on the quantum broadcast
channel with one-sided entanglement assistance.

A. Computing Channel Capacities

For communication system design nowadays, it is crucial
to evaluate the current performance and how close it is to the
optimum [52], [53].

Classical commercial systems today already employ sophis-
ticated error correction codes with near-Shannon limit per-
formance [54], [55]. At the time of writing, a realization of
a full-scale quantum communication system that approaches
the Shannon-theoretic limits does not exist, and we can
only hope that future systems of quantum communication
will reach this level of maturity. Given a specific quantum
channel, e.g. an optical fiber channel with specific param-
eters, a practitioner is usually interested in computing the
channel capacity as a number. For such practical purposes,
a regularized characterization as in Theorems 1-2, 5, and 7
is not necessarily a problem (see a further explanation in
Remark 7 by the authors [29]). Yet, in Shannon theory, it is
generally considered desirable to establish a single-letter com-
putable capacity formula [56], [57]. Beyond computability, the
disadvantage of a regularized multi-letter formula of the form
limn→∞

1
nF(N⊗n), is that such characterization is not unique

(see [58, Section 13.1.3]).
Under practical encoding constraints [57], regularized

capacity results yield computable formulas. Encoding con-
straints are particularly relevant when the transmitter has
access to a cluster of multiple small or moderate-size quan-
tum computers without interaction between them, and also
in nearest-neighbor qubit architectures [59], [60]. Consider
classical communication without assistance, as in Theorem 1,
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and suppose that the encoder’s quantum systems An are
partitioned into sub-blocks of a small size b, such that the
input state has the form ρAn = ρAb

1
⊗ ρA2b

b+1
⊗ · · · ⊗ ρAn

n−b+1
.

As recently observed [57], the capacity of a quantum channel
NA→B under an encoding constraint b > 0, is given by

C(N , b) =
1
b
χ(N⊗b). (31)

This formula is computable, since b > 0 is assumed to be a
small constant. This trivial observation and its consequences
can be extended to other models as well.

Another shortcoming of our results is that we do not have a
bound on the dimension of the ancillas A1 and A2. One could
always compute an achievable region by simply choosing the
dimensions of A1 and A2. However, the optimal rates cannot
be computed with absolute precision in general. A similar
difficulty appears in other quantum models such as broad-
cast communication [61, Section VIII], the wiretap channel
[62, Remark 5], squashed entanglement [63, Section 1], and
state-dependent channels [64] [29, Section V].

B. Side Information Interpretation

We mentioned that our coding approach can be interpreted
as a quantum version of SPC (see Remark 6). Consider the
second decoding step for the message m′. As the message
m has already been estimated, we can think of xn(m) as
side information for this decoding operation. Thus, it is not
surprising that the bound on the excess rate R′ in (14) has a
similar form as in the capacity formula for a quantum channel
with classical side information at the encoder and the decoder
(see [65, Corollary 12]).

For the quantum capacity region, we point out a connection
to quantum side information. A quantum state-dependent
channel (PSA→B , |θSS0⟩) is defined by a linear, completely
positive, trace preserving map PSA→B and a fixed quantum
state |θSS0⟩ [64]. We refer to the system S as a quantum
channel state. Given quantum side information, the encoder
has access to the system S0, which is entangled with the
channel state system S. This model can be interpreted as if the
channel is entangled with the systems S and S0. The quantum
capacity with quantum side information and no assistance
is given by the regularization of the following formula (see
[29, Theorem 11]),

L(P) = sup
φA1SA : φS=θS

min{I(A1⟩B)ω, H(A1|S)φ}, (32)

with ωA1B = PSA→B(φA1SA). Thus, we interpret the guar-
anteed rate Q in (28) as the quantum coding rate, given access
to a channel state system A2.

C. The Broadcast Channel With One-Sided Assistance

Beyond the heuristic connection, the mathematical formula-
tion of our problem is close to that of a broadcast channel with
one-sided assistance. Let N broadcast

A→B1B2
be a quantum broadcast

channel with two receivers, Bob 1 and Bob 2. Suppose that
Alice wishes to send a common message m0 ∈ [1 : 2nR0 ] to
both users and a dedicated message m1 ∈ [1 : 2nR1 ] to the

first user alone. That is, Bob 1 decodes both m0 and m1, while
Bob 2 is only required to decode m0. This model is referred
to as the broadcast channel with degraded message sets [50].
Now, assume that Alice and Bob 1 share reliable entanglement
resources ΨGA,GB1

, while Bob 2 has no resources at all.
The error criterion is the probability that at least one of the

receivers decodes erroneously. However, it is sufficient to con-
sider each receiver separately, since the coding performance
depends on the broadcast channel N broadcast

A→B1B2
only through the

marginals N (1)
A→B1

and N (2)
A→B2

[66],

N (1)(ρA) ≡ TrB2

(
N broadcast(ρA)

)
, (33)

N (2)(ρA) ≡ TrB1

(
N broadcast(ρA)

)
. (34)

Hence, achievable rate pairs (R0, R1) can be defined in terms
of the following error probabilities,

P
(n)
e1|m0,m1

(F ,Ψ,D(1)) = 1−

Tr
[
D(1)
m0,m1

(N (1)⊗n
A→B1

⊗ id)(Fm0,m1 ⊗ id)(ΨGA,GB1
)
]

(35)

for Bob 1, and

P
(n)
e2|m0,m1

(F ,Ψ,D(2)) =

1− Tr
[
D(2)
m0
N (2)⊗n
A→B2

Fm0,m1(ΨGA
)
]

(36)

for Bob 2, where Fm0,m1
GA→An is the encoding map, while

D(1)
GB1B

n
1

= {D(1)
m0,m1} and D(2)

Bn
2

= {D(2)
m0} are the decoding

maps of Bob 1 and Bob 2, respectively.
Observe that the error definitions above are analogous to

those of the classical capacity region with unreliable entan-
glement assistance in Definition 1, where m and m′ are
replaced by m0 and m1, respectively. Although, the error
probabilities for the broadcast channel depend on two different
channels,N (1) andN (2). The same methods as we used in this
paper show that the classical capacity region of the quantum
broadcast channel with one-sided entanglement assistance is
given by the regularization of the following formula,

R2(N broadcast) =⋃
pX , φA0A1 , F(x)

 (R0, R1) : R0 ≤ I(X;B2)ω
R1 ≤ I(A1;B1|X)ω

R0 +R1 ≤ I(XA1;B1)ω


(37)

with

ωXA1A =
∑
x∈X

pX(x)|x⟩⟨x| ⊗ (id⊗F (x)
A0→A)(φA1A0),

ωXA1B1B2 = (id⊗N broadcast
A→B1B2

)(ρXA1A) . (38)

It is now natural to wonder whether this similarity extends
to the quantum capacity. However, in the transmission of
quantum information, Bob 1 and Bob 2 cannot recover
a common state due to the no-cloning theorem. That is,
quantum communication with degraded message sets is not
well defined (see [66, Section III.C]). Yet, the techniques
of Dupuis et al. [61], [67] for the quantum broadcast chan-
nel with dedicated messages were useful in our proof in
Appendix D, for the quantum capacity theorem with unreliable
entanglement assistance.
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APPENDIX A
INFORMATION-THEORETIC TOOLS

In this section, we give the basic information-theoretic tools
that will be used in the achievability proofs later on.

A. Quantum Packing Lemma

To prove achievability for the classical capacity theorem,
we will use the quantum packing lemma. Standard method-
of-types concepts are defined as usual [57], [58]. We briefly
introduce the notation and basic properties while the detailed
definitions can be found in the references [57]. In particular,
given a density operator ρ =

∑
x pX(x)|x⟩⟨x| on the Hilbert

space HA, we let Aδ(pX) denote the δ-typical set that is
associated with pX , and Πδ

An(ρ) the projector onto the cor-
responding subspace. The following inequalities follow from
well-known properties of δ-typical sets [68],

Tr(Πδ(ρ)ρ⊗n) ≥ 1− ε (39)

2−n(H(ρ)+cδ)Πδ(ρ) ⪯ Πδ(ρ) ρ⊗n Πδ(ρ) ⪯ 2−n(H(ρ)−cδ)

(40)

Tr(Πδ(ρ)) ≤ 2n(H(ρ)+cδ) (41)

where c > 0 is a constant, and ε > 0 tends to zero as δ → 0.
Furthermore, for σB =

∑
x pX(x)ρxB , let Πδ

Bn(σB |xn) denote
the projector corresponding to the conditional δ-typical set
given the sequence xn. Similarly [58],

Tr(Πδ(σB |xn)ρx
n

Bn) ≥ 1− ε′ (42)

2−n(H(B|X′)σ+c′δ)Πδ(σB |xn) ⪯ Πδ(σB |xn) ρx
n

Bn Πδ(σB |xn)
⪯ 2−n(H(B|X′)σ−c′δ) (43)

Tr(Πδ(σB |xn)) ≤ 2n(H(B|X′)σ+c′δ) (44)

where c′ > 0 is a constant, ε′ > 0 tends to zero as δ → 0,
ρx

n

Bn =
⊗n

i=1 ρ
xi

Bi
, and the classical random variable X ′ is

distributed according to the type of xn. If xn ∈ Aδ(pX), then

Tr(Πδ(σB)ρx
n

Bn) ≥1− ε′ (45)

as well (see [58, Property 15.2.7]).
The lemma below is a simplified version of the quantum

packing lemma in [69].
Lemma 8 (Quantum Packing Lemma [69]): Let

ρ =
∑
x∈X

pX(x)ρx, (46)

where {pX(x), ρx}x∈X is a given ensemble. Furthermore,
suppose that there is a code projector Π and codeword
projectors Πxn , xn ∈ Aδ(pX), that satisfy for every α > 0 and
sufficiently large n,

Tr(Πρxn) ≥ 1− α (47)
Tr(Πxnρxn) ≥ 1− α (48)

Tr(Πxn) ≤ 2nd (49)

Πρ⊗nΠ ⪯ 2−n(D−α)Π (50)

for some 0 < d < D with ρxn ≡
⊗n

i=1 ρxi
. Then, there

exist codewords xn(m), m ∈ [1 : 2nR], and a POVM
{Λm}m∈[1:2nR], such that

Tr
(
Λmρxn(m)

)
≥ 1− 2−n[D−d−R−εn(α)] (51)

for all m ∈ [1 : 2nR], where εn(α) tends to zero as n → ∞
and α→ 0.

B. The Decoupling Theorem

To prove achievability for the quantum capacity theorem,
we will use the decoupling theorem [70]. Before we state
the theorem, we give an intuitive explanation in the spirit of
[58, Section 24.10]. Consider a quantum channel NA→B with-
out entanglement assistance. Let |θMK⟩ be a purification of
the quantum message state θM , where K is Alice’s reference
system. Suppose that |ψKBnEnJ1⟩ is a purification of the
joint state of Alice’s reference system K, the channel output
Bn, and Bob’s environment En, with a purifying system
J1. Observe that if the reduced state ψKEnJ1 is a product
state, i.e. ψKEnJ1 = θK ⊗ ωEnJ1 , then it has a purifica-
tion of the form |θMK⟩ ⊗ |ωEnJ1J2⟩. Since all purifications
are related by isometries [58, Theorem 5.1.1], there exists
an isometry DBn→MJ2 such that |θMK⟩ ⊗ |ωEnJ1J2⟩ =
DBn→MJ2 |ψRBnEnJ1⟩. Tracing out K, En, J1, and J2,
it follows that there exists a decoding map DBn→M that
recovers the message state, i.e. θM = DBn→M (ψBn). There-
fore, in order to show that there exists a reliable coding
scheme, it is sufficient to encode in such a manner that
approximately decouples between Alice’s reference system
and Bob’s environment, i.e., such that ψKEnJ1 ≈ θK⊗ωEnJ1 .

We will make use of the following definitions from [71].
Define the conditional min-entropy by

Hmin(ρAB |σB) = − log inf {λ ∈ R : ρAB ⪯ λ · (1A ⊗ σB)}
Hmin(A|B)ρ = sup

σB

Hmin(ρAB |σB), (52)

where the supremum is over quantum states of the system B.
In general, the conditional min-entropy is bounded by

− log |HB | ≤ Hmin(A|B)ρ ≤ log |HA| . (53)

To see this, observe that if we choose σB = 1B

|HB | , then
the matrix inequality ρAB ⪯ λ(1A ⊗ σB) holds for λ =
|HB |, hence Hmin(ρAB |σB) ≥ − log |HB |. As for the upper
bound, the matrix inequality implies that 1 = Tr(ρAB) ≤
λ |HA|Tr(σB) = λ |HA|, hence Hmin(ρAB |σB) ≤ log |HA|.
Furthermore, the lower bound is saturated when the joint state
of A and B is |ΦAB⟩, whereas the upper bound for a product
state 1A

|HA| ⊗ ρB .
Then, define the smoothed min-entropy by

Hε
min(A|B)ρ = max

σAB : dF (ρAB ,σAB)≤ε
Hε

min(A|B)σ (54)

for arbitrarily small ε > 0, where dF (ρ, σ) =√
1−

∥∥√ρ√σ∥∥2

1
is the fidelity distance between the states.

As for the von Neumann entropy, conditioning cannot increase
the smoothed min-entropy, i.e. Hε

min(A|BC)ρ ≤ Hε
min(A|B)ρ

[71, Lemma 3.1.7].
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The theorem below is due to Dupuis et al. [67], [70]).
Theorem 9 (Decoupling Theorem [70]): Let θA1K be a

quantum state, TA1→E a quantum channel, and ε > 0 arbitrary.
Define

ωAE = TA1→E(ΦA1A). (55)

Then,∫
UA1

∥∥TA1→E(UA1ρA1K)− ωE ⊗ θK
∥∥

1
dUA1

≤ 2−
1
2 [Hε

min(A|E)ω+Hε
min(A1|K)θ] + 12ε (56)

where the integral is over the Haar measure on all unitaries UA.
The decoupling theorem shows that by choosing a uni-

tary UA uniformly at random, we can approximately decou-
ple between E and K provided that Hε

min(A|E)ω >

−Hε
min(A1|K)ρ. Uhlmann’s theorem [72] is often used along

with the decoupling approach to establish the existence of
proper encoding and decoding operations.

Theorem 10 (Uhlmann’s theorem [72] [67, Corollary 3.2]):
For every pair of pure states |ψAB⟩ and |θAC⟩ that satisfy
∥ψA − θA∥1 ≤ ε, there exists an isometry FB→C such that
∥(1⊗ FB→C)ψAB − θAC∥1 ≤ 2

√
ε.

APPENDIX B
PROOF OF LEMMA 4

Consider the regionREA∗(N ) as defined in (14). Fix φA0A1 ,
pX(x), and {F (x)

A0→A}. Let

R = I(X;B)ω, (57)
R′ = I(A1;B|X)ω. (58)

We prove the lemma using similar techniques as in [57] and
[73]. It is easy to see that pure states are sufficient, as every
quantum state φA0A1 has a purification |ϕA0J0A1⟩. Since A0 is
arbitrary, we can extend it and obtain the same characterization
when A0 is replaced by Ā0 = (A0, J0).

To bound the alphabet size of the random variable X , we use
the Fenchel-Eggleston-Carathéodory lemma [48] and similar
arguments as in previous works [49] and [57]. Having fixed
φA0A1 and {F (x)

A0→A}, define

ωxA ≡ F
(x)
A0→A(φA0). (59)

Every quantum state ρA has a unique and real parametric rep-
resentation u(ρA) of dimension |HA|2−1 (see [57, Appendix
B-B]). Then, define a map g : X → R|HA|2+1 by

g(x) =
(
u(ωxA), H(B|X = x)ω, I(A1;B|X = x)ω

)
. (60)

The map g can be extended to probability distributions as
follows:

G : pX 7→
∑
x∈X

pX(x)g(x) =(
u(ωA), H(B|X)ω, I(A1;B|X)ω

)
, (61)

as ωA =
∑
x pX(x)ωxA. According to the Fenchel-Eggleston-

Carathéodory lemma [48], any point in the convex closure of
a connected compact set within Rd belongs to the convex hull
of d points in the set. Since the map G is linear, it maps

the set of distributions on X to a connected compact set
in R|HA|2+1. Thus, for every pX , there exists a probability
distribution pX̄ on a subset X ⊆ X of size |HA|2 + 1, such
that G(pX̄) = G(pX). We deduce that the cardinality of X
can be restricted to |X | ≤ |HA|2 + 1, while preserving ωA,
and thus, the output state ωB ≡ N (ωA) as well, and the
mutual informations I(X;B)ω = H(B)ρ − H(B|X)ω and
I(A1;B|X)ω .

This completes the proof of the lemma. □

APPENDIX C
PROOF OF THEOREM 5

Consider classical communication over a quantum channel
NA→B with unreliable entanglement assistance.

A. Achievability Proof

We show that for every ε0, δ0 > 0, there exists a
(2n(R−δ0), 2n(R′−δ0), n, ε0) code with unreliable entanglement
assistance, provided that (R,R′) ∈ REA*(N ). To this end,
we will use the quantum packing lemma [69], as presented
in Subsection A-A of the previous appendix. Recall that by
Lemma 4, it suffices to consider pure states. Then, let |ϕG1G2⟩
be a pure entangled state on HA0 ⊗ HA0 , and F (x) be a
quantum channel acting on S (HA0) (see (14)-(16)). Suppose
that Alice and Bob share |ϕG1G2⟩

⊗n.
As we explain below, we can restrict ourselves to isometric

encoding maps. For a moment, let us denote the channel input
by S, and consider the channelNS→B . In the derivation below,
we will use the encoding channel F (x)

A0→S . Every quantum
channel F (x)

A0→S has an isometric extension F (x)

A0→SS̆
. Since it

is an encoding mapping, we may as well take S̆ to be Alice’s
ancilla. Then, let A ≡ SS̆ be the augmented channel input.
We are effectively coding over the channel ÑA→B , which is
defined by

ÑA→B(ρSS̆) ≡ NS→B(TrS̆(ρSS̆)), (62)

using the isometric map F (x)
A0→A.

From this point, we will focus on the quantum channel
ÑA→B and use the encoding isometry F (x)

A0→A. Define

|ψxAG2
⟩ = (F (x) ⊗ 1) |ϕG1G2⟩ , (63)

ωxBG2
= (Ñ ⊗ id)(ψxAG2

). (64)

We will often use the notation |ψxn⟩ ≡
⊗n

i=1 |ψxi⟩. The code
construction, encoding and decoding procedures are described
below.

1) Code Construction: First, consider a classical codebook.
Let {xn(m)}m∈[1:2nR] be a set of 2nR classical codewords that
will be chosen later, in Subsection C-A5 below. We define
the encoding operators in terms of this classical codebook.
Denote the Heisenberg-Weyl operators of dimension D by
{Σ(a, b) = ΣaXΣbZ}, where ΣX =

∑D−1
j=0 |j ⊕ 1⟩⟨j ⊕ 1|j

and ΣZ =
∑D−1
j=0 e2πij/D|j⟩⟨j|, for a, b ∈ {0, 1, . . . , D − 1},

with j ⊕ k = (j + k) mod D and i =
√
−1.
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Consider a Schmidt decomposition of the pure state in (63),

|ψxAG2
⟩ =

∑
z∈Z

√
pZ|X(z|x) |ξz,x⟩ ⊗ |ξ′z,x⟩ , (65)

where pZ|X is a conditional probability distribution, while
{|ξz,x⟩} and |ξ′z,x⟩ are orthonormal sets. For every xn ∈ Xn

and every conditional type class Tn(t|xn) in Zn, define the
operators

Vt(at, bt, ct) = (−1)ctΣ(at, bt),
at, bt ∈ {0, 1, . . . , Dt − 1}, ct ∈ {0, 1}, (66)

where Dt = |Tn(t|xn)| is the size of type class associated
with the conditional type t. Then, define the operator

U(γ) =
⊕
t

Vt(at, bt, ct) (67)

with γ = ((at, bt, ct)t). Let Γxn denote the set of all possible
vectors γ.

For every m ∈ [1 : 2nR], choose 2nR
′

vectors
γ(m′|xn(m)), m′ ∈ [1 : 2nR

′
], uniformly at random from

Γxn(m). The mappings are revealed to both Alice and Bob.
2) Encoder: To send the messages (m,m′) ∈ [1 : 2nR] ×

[1 : 2nR
′
], apply the operators F (xi(m)) and U(γ(m′|xn(m))).

This yields the input state

|χγ,x
n

AnGn
2
⟩ ≡ (U(γ)F (xn) ⊗ 1) |ϕG1G2⟩

⊗n
, (68)

for xn = xn(m) and γ = γ(m′|xn), where F (xn) ≡⊗n
i=1 F

(xi). Then, transmit An through the channel.
3) Decoder: Bob receives the systems Bn in a state ργ,x

n

BnGn
2

,
and decodes as follows. (i)

1) Measure Bn using a POVM {Λm}m∈[1:2nR]. Denote the
measurement outcome by m̂.

2) If there is no entanglement assistance, declare m̂ as the
message estimate.

3) If entanglement assistance is present, measure BnGn2
jointly using a second POVM {Υm′|xn(m̂)}m′∈[1:2nR′ ].
Let m̂′ be the outcome of this measurement. Then,
declare (m̂, m̂′) as the estimated message pair.

The POVMs {Λm} and {Υm′|xn(m̂)} will be chosen later in
Subsections C-A5 and C-A6, respectively.

4) Code Properties: Before we go into the error analysis,
we show that Alice’s operations for encoding the second
message m′ can be effectively reflected to Bob’s side. To this
end, we will apply the “ricochet property” [69, Eq. (17)],

(U ⊗ 1) |ΦAB⟩ = (1⊗ UT ) |ΦAB⟩ . (69)

Now, for every xn ∈ Xn,

|ψx
n

AnGn
2
⟩ =

∑
zn∈Zn

√
pZn|Xn(zn|xn) |ξxn,zn⟩ ⊗ |ξ′xn,zn⟩ ,

(70)

where pZn|Xn(zn|xn) =
∏n
i=1 pZ|X(zi|xi). As the space Zn

can be partitioned into conditional type classes given xn,

we may write

|ψx
n

AnGn
2
⟩

=
∑

t∈Pn(Z)

∑
zn∈Tn(t|xn)

√
pZn|Xn(zn|xn) |ξxn,zn⟩ ⊗ |ξ′xn,zn⟩

=
∑

t∈Pn(Z)

√
pZn|Xn(znt |xn)

∑
zn∈Tn(t|xn)

|ξxn,zn⟩ ⊗ |ξ′xn,zn⟩

(71)

where znt is any sequence in the conditional type class
Tn(t|xn). Therefore,

|ψx
n

AnGn
2
⟩ =

∑
t∈Pn(Z)

√
P (t|xn) |Φt⟩ , (72)

where P (t|xn) = PZn|Xn(znt |xn)|Tn(t|xn)| is the conditional
probability of the type class Tn(t|sn), and

|Φt⟩ =
1√

|Tn(t|xn)|

∑
zn∈Tn(t|xn)

|ξxn,zn⟩ ⊗ |ξ′xn,zn⟩ . (73)

Alice applies the operator U(γ(m′|xn(m))) to the entangled
states. Since the state |Φt⟩ is maximally entangled, we have
by (69),

|χγ,x
n

AnGn
2
⟩ ≡ (U(γ(m,m′))⊗ 1) |ψx

n

AGn
2
⟩

= (1⊗ UT (γ(m,m′))) |ψx
n

AnGn
2
⟩ , (74)

where |ψxn

AnGn
2
⟩ ≡

⊗n
i=1 |ψ

xi

AG2
⟩ (see (63)). By the same

considerations,

|ψx
n

AnGn
2
⟩ = (F (xn) ⊗ 1) |ϕG1G2⟩

⊗n

= (1⊗ (F (xn))T ) |ϕAG′2⟩
⊗n

. (75)

That is, Alice’s unitary operations can be reflected and treated
as if performed by Bob.

Bob then receives the systems Bn in the state

ργ,x
n

BnGn
2

= (Ñ⊗n ⊗ id)
(
χγ,x

n

AnGn
2

)
(76)

= (Ñ⊗n ⊗ id)
(
(1⊗ UT (γ))ψx

n

AnGn
2
(1⊗ U∗(γ))

)
,

(77)

where Ñ is as in (62), and the last line is due to (74). Since
a quantum channel is a linear map, the above can be written
as

ργ,x
n

BnGn
2

=(1⊗ UT (γ))(Ñ ⊗ id)(ψx
n

AnGn
2
)(1⊗ U∗(γ))

=(1⊗ UT (γ))ωx
n

BnGn
2
(1⊗ U∗(γ)). (78)

5) Error Analysis Without Assistance: Recall that if entan-
glement assistance is absent, then Bob does not decode m′.
Furthermore, since the decoder cannot measure Gn2 in this
case, we need to consider the reduced state ργ,x

n

Bn of the joint
output state ργ,x

n

BnGn
2

. Observe that by (78), the reduced output
state is

ρ
γ,xn(m)
Bn = ω

xn(m)
Bn . (79)

Thereby, the reduced output is not affected by the encoding
of the message m′ using γ(m′|xn(m)), and we can use the
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standard results on classical communication over a quantum
channel without assistance.

Fix δ > 0. Based on the HSW Theorem [16], [17], there
exists a codebook {xn(m)} and a POVM {Λm} such that

P
∗(n)
e|m,m′(F , ϕ

⊗n
G1G2

,Λ) = 1− Tr(Λmρ
γ(m′|xn(m)),xn(m)
Bn )

= 1− Tr(Λmω
xn(m)
Bn )

≤ 2−n(I(X;B)ω−R−ε1(δ)), (80)

where xn(m) ∈ Aδ(pX) for all m ∈ [1 : 2nR] (see [58,
Section 20.3.1]). We use the notation εj(δ) for terms that
tend to zero as δ → 0. Thus, in the absence of entanglement
assistance, the probability of error tends to zero as n → ∞,
provided that

R < I(X;B)ω − ε1(δ). (81)

6) Packing Lemma Requirements: In the error analysis with
entanglement assistance, we will use the quantum packing
lemma. Fix a sequence xn ∈ Aδ(pX). Consider the ensemble
{p(γ) = 1

|Γxn | , ρ
γ,xn

Bn,Gn
2
}, for which the expected density

operator is

ρx
n

BnGn
2

=
1

|Γxn |
∑
γ∈Γxn

ργ,x
n

BnGn
2
. (82)

Define the code projector and the codeword projectors by

Π ≡ Πδ(ωB |xn)⊗Πδ(ωG2 |xn) (83)

Πγ ≡ (1⊗ UT (γ))Πδ(ωBG2 |xn)(1⊗ U∗(γ)), for γ ∈ Γxn

(84)

where Πδ(ωBG2 |xn), Πδ(ωB |xn) and Πδ(ωG2 |xn) are the
projectors onto the conditional δ-typical subspaces associated
with the states ωxBG2

, ωxB = TrG2(ω
x
BG2

) and ωxG2
=

TrB(ωxBG2
), respectively (see (64)).

Applying the bounds in [69, Appendix II] to the operators
above, we obtain

Tr(Πργ,x
n

BnGn
2
) ≥ 1− 2ε2(δ), (85)

Tr(Πγρ
γ,xn

BnGn
2
) ≥ 1− ε3(δ), (86)

Tr(Πγ) ≤ 2n(H(BG2|X)ω+ε4(δ)), (87)

Πσx
n

B′nGn
2
Π ⪯ 2−n(H(B|X)ω+H(G2|X)ω+ε5(δ))Π,

(88)

where εj(δ) tend to zero as δ → 0. Hence, the requirements
of the packing lemma are satisfied. Then, by Lemma 8, there
exist deterministic vectors γ(m′|xn), m′ ∈ [1 : 2nR

′
], and a

POVM {Υm′|xn}m′∈[1:2nR′ ], such that

Tr
(
Υm′|xnρ

γ(m′|xn),xn

BnGn
2

)
≥ 1− 2−n[I(B;G2|X)ω−R′−ε6(δ)]

(89)

for all m′ ∈ [1 : 2nR
′
].

7) Error Analysis With Entanglement Assistance: Suppose
that entanglement assistance is present, in which case Bob
estimates both m and m′. Hence, the error event is bounded
by the union of the following events,

E1(m) ={m̂ ̸= m} , (90)
E2(m′) ={m̂′ ̸= m′}. (91)

Then, by the union of events bound,

P
(n)
e|m,m′(F , ϕ

⊗n
G1G2

,Υ ◦ Λ) ≤
Pr (E1(m)) + Pr (E2(m′) |E c

1 (m)) . (92)

The first term corresponds to the measurement of {Λm} above.
Based on our previous analysis (see (80)),

Pr (E1(m)) ≤ 2−n(I(X;B)ω−R−ε1(δ)) , (93)

which tends to zero for a rate R as in (81).
Given E c

1 , Bob has recovered the correct m in step (i) of
the decoding procedure. Denote the joint state of the systems
BnGn2 after this measurement by ρ̃

γ,xn(m)
BnGn

2
. As previously

observed [57], [74], by the gentle measurement lemma [75],
[76] and (93), the post-measurement state is close to the
original state in the sense that

1
2

∥∥∥ρ̃ γ,xn(m)
BnGn

2
− ρ

γ,xn(m)
BnGn

2

∥∥∥
1
≤ 2−n

1
2 (I(X;B)ω−R−ε1(δ))

≤ ε7(δ) (94)

for sufficiently large n and R as in (81). Therefore, the distri-
bution of measurement outcomes, when ρ̃ γ,x

n

BnGn
2

is measured,
is roughly the same as if the POVM Λm was never per-
formed. To be precise, the difference between the probability
of a measurement outcome m̂′ when ρ̃ γ,x

n

BnGn
2

is measured

and the probability when ρ γ,x
n

BnGn
2

is measured is bounded
by ε7(δ) in absolute value (see [58, Lemma 9.11]). There-
fore, by (89), the POVM Υm′|xn(m) satisfies Pr (E2 |E c

1 ) ≤
2−n(I(G2;B|X)ρ−R′−ε8(δ)), which tends to zero as n→∞, if

R′ < I(G2;B|X)ω − ε8(δ). (95)

Finally, we let A0, A1 replace G1, G2, respectively. Thus, the
probability of error tends to zero as n → ∞ provided that
R < I(X;B)ω − ε1(δ) and R′ < I(A1;B|X)ω − ε8(δ). This
completes the proof of the direct part.

B. Converse Proof

Suppose that Alice and Bob are trying to distribute random-
ness. An upper bound on the rate at which Alice can distribute
randomness to Bob also serves as an upper bound on the rate at
which they can communicate. In this task, Alice and Bob share
an unreliable entangled resource ΨGAGB

. Alice first prepares
maximally corrleated states,

πKMK′M ′ ≡

 1
2nR

2nR∑
m=1

|m⟩⟨m| ⊗ |m⟩⟨m|


⊗

 1
2nR′

2nR′∑
m′=1

|m′⟩⟨m′| ⊗ |m′⟩⟨m′|

 (96)
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locally. That is, K, M , K ′, and M ′ are classical registers
that store uniformly-distributed indices m and m′. Then, Alice
applies an encoding channel to the classical system MM ′ and
her share GA of the entangled state ΨGAGB

. As Alice applies
FMM ′GA→An , the resulting state is

σKK′AnGB
≡ (id⊗F ⊗ id)(πKK′MM ′ ⊗ΨGAGB

). (97)

After Alice sends the system An through the channel, Bob
receives the system Bn in the state

ωKK′GBBn ≡ (id⊗N⊗n)(σKK′GBAn). (98)

In the presence of entanglement assistance, Bob performs a
decoding channel DBnGB→M̂M̂ ′ , which yields

ρKK′M̂M̂ ′ ≡ (id⊗D)(ωKK′BnGB
). (99)

If the entanglement assistance is not available, Bob performs
D∗
Bn→M̃ , producing

ρ∗
KK′M̃GB

≡ (id⊗D∗ ⊗ id)(ωKK′BnGB
). (100)

Consider a sequence of codes (En,Ψn,Dn,D∗n) of random-
ness distribution with unreliable entanglement assistance, such
that

1
2

∥∥ρKM̂K′M̂ ′ − πKMK′M ′
∥∥

1
≤ αn, (101)

1
2

∥∥ρ∗
KM̃

− πKM
∥∥

1
≤ α∗n, (102)

where ρ∗
KM̃

is the reduced density operator of ρ∗
KK′M̃GB

,
while αn, α

∗
n tend to zero as n → ∞. By the Alicki-

Fannes-Winter inequality [77], [78] [58, Theorem 11.10.3],
this implies∣∣∣H(K ′|M̂ ′K)ρ −H(K ′|M ′K)π

∣∣∣ ≤ nεn, (103)∣∣∣H(K|M̃)ρ∗ −H(K|M)π
∣∣∣ ≤ nε∗n, (104)

where εn, ε∗n tends to zero as n→∞.
Now, suppose that entanglement assistance is absent.

Observe that H(K)ρ∗ = H(K)π = nR implies I(K;M)π −
I(K; M̂)ρ∗ = H(K|M̂)ρ∗ −H(K|M)π . Therefore, by (104),

nR =I(K;M)π
≤I(K; M̂)ρ∗ + nε∗n

≤I(K;Bn)ω + nε∗n, (105)

where the last line follows from (100) and the quantum data
processing inequality [68, Theorem 11.5]. Here, the system
GB need not be included since the decoding measurement D∗
is only applied to Bn.

We move to the case where entanglement assistance
is present. Similarly, I(K ′;M ′|K)π − I(K ′; M̂ ′|K)ρ =
H(K ′|M̂ ′K)ρ −H(K ′|M ′K)π . Therefore, by (103),

nR′ =I(K ′;M ′|K)π
≤I(K ′; M̂ ′|K)ρ + nεn

≤I(K ′;GBBn|K)ω + nεn (106)

by (99) and the quantum data processing inequality. We must
include the entanglemet resource system GB , since the

decoder measures GBBn. By the chain rule, the last bound
can also be written as

nR′ ≤ I(K ′GB ;Bn|K)ρ − I(GB ;Bn|K)ρ
+ I(K ′;GB |K)ρ + nεn

≤ I(K ′GB ;Bn|K)ρ + I(K ′;GB |K)ω + nεn

= I(K ′GB ;Bn|K)ω + nεn, (107)

where the equality holds since GB and (K,K ′) are in a
product state. To complete the regularized converse proof, set
Xn = f(K) and An1 ≡ (K ′, GB), where f is an arbitrary
one-to-one function from [1 : 2nR] to Xn. This concludes the
proof of Theorem 5. □

APPENDIX D
PROOF OF THEOREM 7

Consider quantum communication over NA→B with unre-
liable entanglment assistance.

A. Achievability Proof

In the proof we follow Dupuis’ methods [67], originally
applied to the quantum broadcast channel.

At first we restrict the entanglement resources to a given
rate Re. That is, we assume |HGA

| = |HGB
| ≤ 2nRe . We are

going to show that any rate pair (Q,Q′) is achievable with
unreliable entanglement assistance if

0 ≤ Q < H(A1|A2)ω (108a)
Q < I(A1⟩B)ω (108b)
Q+Q′ +Re < H(A2)ω (108c)
Q+Q′ −Re < I(A2⟩B)ω (108d)

for some φA1A2A, where A1, A2 are arbitrary systems, and
ωA1A2B = NA→B (φA1A2A).

Let |ϕA1A2AJ⟩ be a purification of φA1A2A. Then, the
corresponding channel output is

|ωA1A2BEJ⟩ = UNA→BE |ϕA1A2AJ⟩ , (109)

where UNA→BE is a Stinespring dilation such that
UNA→BE(ρA) = UNA→BEρA (UNA→BE)†.

Given a quantum message state θM ⊗ ξM̄ , let K and K̄ be
reference systems that purify the message systems M and M̄ ,
respectively, i.e. such that the systems M , M̄ , K, and K̄ have
a pure joint state |θMK⟩⊗ |ξM̄K̄⟩, with |HK | = |HM | = 2nQ

and |HK̄ | = |HM̄ | = 2n(Q+Q′). Suppose that given reliable
entanglement assistance, Alice and Bob share an entangled
state |ΦGAGB

⟩ of dimension |HGA
| = |HGB

| = 2nRe .
Let V (1)

M→An
1

and V
(2)

M̄GA→An
2

be arbitrary full-rank partial
isometries. That is, each operator has 0-1 singular values with
a rank of 2nQ and 2n(Q+Q′), respectively. Denote

|ψ(1)
An

1K
⟩ = V

(1)
M→An

1
|θMK⟩ , (110)

|ψ(2)

An
2GBK̄

⟩ = V
(2)

M̄GA→An
2
(|ξK̄M̄ ⟩ ⊗ |ΦGA,GB

⟩) . (111)
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1) Decoupling Inequalities: First, we establish decoupling
inequalities. We introduce the following notation of operators
and channels. For every pair of Hilbert spaces HA and HB

with orthonormal bases {|iA⟩} and {|jB⟩}, respectively, define
the operator opA→B(|ψAB⟩) by

opA→B(|iA⟩ ⊗ |jB⟩) ≡ |jB⟩⟨jB |iA. (112)

While the operation above depends on the choice of bases,
we will not specify these since it is not important for our
purposes. To generalize this definition to any state |ψAB⟩,
consider its decomposition |ψAB⟩ =

∑
i,j ai,j |iA⟩⊗|jB⟩, and

define opA→B(|ψAB⟩) =
∑
i,j ai,jopA→B(|iA⟩ ⊗ |jB⟩).

Consider the operators

ΠA2→A1AJ =
√
|HA2 |opA2→A1AJ

(ϕA1A2AJ), (113)

ΠA1→A2AJ =
√
|HA1 |opA1→A2AJ

(ϕA1A2AJ). (114)

Given a pair of unitaries, U (1)
An

1
and U (2)

An
2

, define the following
quantum states,

|ωU
(2)

An
1A

nJnK̄GB
⟩ = Π⊗nA2→A1AJ

U
(2)
An

2
|ψ(2)

An
2GBK̄

⟩ , (115)

|ωU
(1)

An
2A

nJnK⟩ = Π⊗nA1→A2AJ
U

(1)
An

1
|ψ(1)
An

1K
⟩ . (116)

The corresponding channel outputs are then

|ωU
(2)

An
1B

nEnJnK̄GB
⟩ = (UNA→BE)⊗n |ωU

(2)

An
1A

nJnK̄GB
⟩ , (117)

|ωU
(1)

An
2B

nEnJnK⟩ = (UNA→BE)⊗n |ωU
(1)

An
2A

nJnK⟩ . (118)

Now, consider the operators

ΠU(2)

An
1→AnJnK̄GB

=√
|HA1 |

nopAn
1→AJK̄GB

(ωU
(2)

An
1A

nJnK̄GB
), (119)

ΠU(1)

An
2→AnJnK =

√
|HA2 |

nopAn
2→AnJnK(ωU

(1)

An
2A

nJnK),

(120)

ΠA1A2→AJ =
√
|HA1 | |HA2 |opA1A2→AJ(ϕA1A2AJ), (121)

and define the quantum channels T U(2)

An
1→EnJnK̄GB

,

T U(1)

An
2→EnJnK , and TA1A2→EJ , by

T U
(2)

An
1→EnJnK̄GB

(ρAn
1
) =

TrBn

[
UNA→BE(ΠU(2)

An
1→AnJnK̄GB

(ρAn
1
))

]
, (122)

T U
(1)

An
2→EnJnK(ρAn

2
) =

TrBn

[
UNA→BE(ΠU(1)

An
2→AnJnK(ρAn

2
))

]
, (123)

TA1A2→EJ(ρA1A2) =

TrB
[
UNA→BE(ΠA1A2→AJ(ρA1A2))

]
. (124)

According to [67, Lemma 2.7], opA→B(ψAB) |ϕAC⟩ =
opA→C(ϕAC) |ψAB⟩, hence

T U
(2)

An
1→EnJnK̄GB

(U (1)
An

1
ψ

(1)
An

1K
) = T U

(1)

An
2→EnJnK(U (2)

An
2
ψ

(2)

An
2 K̄GB

)

= T ⊗nA1A2→EJ(U (1)
An

1
ψ

(1)
An

1K
⊗ U

(2)
An

2
ψ

(2)

An
2 K̄GB

). (125)

Applying the decoupling theorem, Theorem 9, to the chan-
nels in (122)-(123), we obtain∫

UAn
1

∥∥T U(2)

An
1→EnJnK̄GB

(U (1)
An

1
ψ

(1)
An

1K
)

− θK ⊗ ωU
(2)

EnJnK̄GB

∥∥
1
d U

(1)
An

1

≤ 2−
1
2

[
Hε

min(An
1 |E

nJnK̄GB)
ωU(2)−nQ

]
+ 12ε (126)

and∫
UAn

2

∥∥T U(1)

An
2→EnJnK(U (2)

An
2
ψ

(2)

An
2 K̄GB

)

− ξK̄ ⊗ ωU
(1)

EnJnK

∥∥
1
d U

(2)
An

2

≤ 2−
1
2

[
Hε

min(An
2 |E

nJnK)
ωU(1)−n(Q+Q′−Re)

]
+ 12ε. (127)

Using (125), we can rewrite those decoupling inequalities as∫
UAn

1

∥∥T ⊗nA1A2→ED(U (1)
An

1
ψ

(1)
An

1K
⊗ U

(2)
An

2
ψ

(2)

An
2 K̄GB

)

− θK ⊗ ωU
(2)

EnJnK̄GB

∥∥
1
d U

(1)
An

1

≤ 2−
1
2

[
Hε

min(An
1 |E

nJnK̄GB)
ωU(2)−n(Q−α1n)

]
, (128)

and∫
UAn

2

∥∥T ⊗nA1A2→EJ(U (1)
An

1
ψ

(1)
An

1K
⊗ U

(2)
An

2
ψ

(2)

An
2 K̄GB

)

− ξK̄ ⊗ ωU
(1)

EnJnK

∥∥
1
d U

(2)
An

2

≤ 2−
1
2

[
Hε

min(An
2 |E

nJnK)
ωU(1)−n(Q+Q′−Re+α2n)

]
, (129)

where αjn → 0 as n → ∞. The last bounds tend to zero
provided that

Q <
1
n
Hε

min(An1 |EnJnK̄GB)
ωU(2) − α1n, (130)

Q+Q′ −Re <
1
n
Hε

min(An2 |EnJnK)
ωU(1) − α2n. (131)

This is close to what we would like to show. How-
ever, we need the encoder to be an isometry, and
we need to replace ωU

(1)
, ωU

(2)
in the inequalities

above by ω. Applying the decoupling theorem, with
T̄ U(2)

An
1→K̄GB

(ρAn
1
) = TrAnJn [ΠU(2)

An
1→AnJnK̄GB

(ρAn
1
)] and

T̄An
2→C(ρAn

2
) = Tr[ΠAn

2→An
1A

nJn(ρAn
2
)], we obtain∫

UAn
1

∥∥∥TrAnJn

[
ΠU(2)

An
1→AnJnK̄GB

U
(1)
An

1
ψ

(1)
An

1K

]
− θK ⊗ ωU

(2)

K̄GB

∥∥∥
1
d U

(1)
An

1

≤ 2−
1
2

[
Hε

min(An
1 |K̄GB)

ωU(2)−n(Q+α3n)
]
, (132)

and∫
UAn

2

∥∥ωU(2)

K̄GB
− ξK̄ ⊗ ΦGB

∥∥
1
d U

(2)
An

2

=
∫

UAn
2

∥∥T̄An
2→C(U (2)

An
2
ψ

(2)

An
2 K̄GB

)− ξK̄ ⊗ ΦGB

∥∥
1
d U

(2)
An

2

≤ 2−
1
2n[H(A2)ϕ−(Q+Q′+Re+α4n)], (133)
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which tend to zero for

Q <
1
n
Hε

min(An1 |K̄GB)
ωU(2) − α3n, (134)

Q+Q′ +Re < H(A2)ϕ − α4n. (135)

We will use these decoupling properties in order to obtain
the encoding map, by applying Uhlmann’s theorem (see The-
orem 10). However, before that, we give the bounds on the
smoothed min-entropies.

2) Entropy Bounds: We would like to bound the
min-entropies in (130)-(131) and (134). We begin with the
min-entropy Hε

min(An1 |K̄GB)
ωU(2) . Suppose that ϕ̃An

1A
n
2A

nJn

is a state such that∥∥∥ϕ̃An
1A

n
2A

nJn − ϕ⊗nA1A2AJ

∥∥∥
1
≤ 2ε0 (136)

and

Hmin(An1 |An2 )ϕ̃ = Hmin(An1 |An2 )ϕ. (137)

Define

Π̃U(2)

An
2→K̄GB

=√∣∣HAn
2

∣∣opAn
2→K̄GB

(U (2)
An

2
W

(2)

M̄GA→An
2
|ψ(2)

M̄GAGBK̄
⟩) , (138)

hence

|ωU
(2)

An
1A

nJnK̄GB
⟩ = Π̃U(2)

An
2→K̄GB

|ϕ⊗nA1A2AJ
⟩ . (139)

Consider a decomposition of the operator (ϕ̃ − ϕ⊗n) into
its positive and negative parts,

ϕ̃An
1A

n
2A

nJn − ϕ⊗nA1A2AJ
= ∆+ −∆−, (140)

where ∆+, ∆− ⪰ 0 have a disjoint support. Hence, by (137),
Tr(∆±) ≤ 2ε0. We note that∫

UAn
2

Π̃U(2)

An
2→K̄GB

(PAn
2
) dU (2)

An
2

= Tr(PAn
2
) · 1
|HA2 |

n Π̃U(2)

An
2→K̄GB

Π̃U(2)†
An

2→K̄GB
. (141)

Thus,∫
UAn

2

∥∥∥Π̃U(2)

An
2→K̄GB

(ϕ̃An
1A

n
2A

nJn)

− Π̃U(2)

An
2→K̄GB

(ϕ⊗nA1A2AJ
)
∥∥∥

1
dU

(2)
An

2

=
∫

UAn
2

∥∥∥Π̃U(2)

An
2→K̄GB

(∆+ −∆−)
∥∥∥

1
dU

(2)
An

2

≤ Tr
(
Π̃U(2)

An
2→K̄GB

(∆+)
)

+ Tr
(
Π̃U(2)

An
2→K̄GB

(∆−)
)

≤ 4ε0, (142)

which, in turn, implies∫
UAn

2

dF

(
Π̃U(2)

An
2→K̄GB

(ϕ̃An
1A

n
2A

nJn) ,

Π̃U(2)

An
2→K̄GB

(ϕ⊗nA1A2AJ
)
)
dU

(2)
An

2
≤ 2

√
ε0, (143)

based on the relation between the fidelity and trace distance
[58, Corollary 9.3.1]. We deduce that∫

UAn
2

H
2
√
ε0

min (An1 |K̄GB)
ωU(2) dU

(2)
An

2
≥ Hε0

min(An1 |An2 )ϕ.

(144)

For ε0 = ε2

4 , we obtain∫
UAn

2

1
n
Hε

min(An1 |K̄GB)
ωU(2) dU

(2)
An

2
≥ H(A1|A2)ϕ − α5n.

(145)

By the same considerations,∫
UAn

1

1
n
Hε

min(An2 |EnJnK)
ωU(1) dU

(1)
An

1

≥ H(A2|EDA1)ω − α6n

= −H(A2|B)ω − α6n

= I(A2⟩B)ω − α6n , (146)

and ∫
UAn

2

1
n
Hε

min(An1 |EnJnK̄GB)
ωU(2) dU

(2)
An

2

≥ H(A1|EDA2)ω − α7n

= I(A1⟩B)ω − α7n. (147)

Therefore, there exist unitaries U (1)
An

1
and U

(2)
An

2
that satisfy

the following inequalities,∥∥∥TrAnJn

[
ΠU(2)

An
1→AnJnK̄GB

U
(1)
An

1
ψ

(1)
An

1K

]
− θK ⊗ ωU

(2)

K̄GB

∥∥∥
1

≤ 2−
1
2n[H(A1|A2)ϕ−Q−βn], (148)∥∥T ⊗nA1A2→EJ(U (1)

An
1
ψ

(1)
An

1K
⊗ U

(2)
An

2
ψ

(2)

An
2 K̄GB

)

− θK ⊗ ωU
(2)

EnJnK̄GB

∥∥
1

≤ 2−
1
2n[I(A1⟩B)ω−Q−βn], (149)∥∥T ⊗nA1A2→EJ(U (1)

An
1
ψ

(1)
An

1K
⊗ U

(2)
An

2
ψ

(2)

An
2 K̄

)− ξK̄ ⊗ ωU
(1)

EnJnK

∥∥
1

≤ 2−
1
2n[I(A2⟩B)ω−(Q+Q′−Re)−βn], (150)∥∥ωU(2)

K̄GB
− ξK̄ ⊗ ΦGB

∥∥
1

=
∥∥T̄ ⊗nA2→C(U (2)

An
2
ψ

(2)

An
2 K̄GB

)− ξK̄ ⊗ ΦGB

∥∥
1

≤ 2−
1
2n[H(A2)ϕ−(Q+Q′+Re)−βn] , (151)

for some βn that tends to zero as n → ∞, as the first
inequality follows from (132) and (145), the second from (128)
and (147), the third is due to (129) and (146), and the last holds
by (133).

3) Encoding: By the triangle inequality, (148) and (151)
yield∥∥∥TrAnJn

[
ΠU(2)

An
1→AnJnK̄GB

U
(1)
An

1
ψ

(1)
An

1K

]
− θK ⊗ ξK̄ ⊗ ΦGB

∥∥∥
1

≤ δenc(n),
(152)
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where

δenc(n) ≡ 2−
1
2n[H(A1|A2)ϕ−Q−βn]

+ 2−
1
2n[H(A2)ϕ−(Q+Q′+Re)−βn]. (153)

Based on Uhlmann’s theorem, it follows that there exists an
isometry FMM̄GA→AnJn such that∥∥∥ΠU(2)

An
1→AnJnK̄GB

U
(1)
An

1
ψ

(1)
An

1K

− FMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)
∥∥∥

1

≤ 2
√
δenc(n). (154)

4) Decoding Without Assistance: By applying the isometric
extension of the channel to the states on the LHS of (154) and
using the triangle inequality and the monotonicity of the trace
distance under quantum channels, we obtain∥∥∥T U(2)

An
1→EnJnK̄GB

(U (1)
An

1
ψ

(1)
An

1K
)

− TrBn

[
(UNA→BE)⊗nFMM̄GA→AnJn

(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)
]∥∥∥

1
≤ 2

√
δenc(n). (155)

By (125), the inequality above can also be written as∥∥∥T ⊗nA1A2→EJ(U (1)
An

1
ψ

(1)
An

1K
⊗ U

(2)
An

2
ψ

(2)

An
2 K̄GB

)

− TrBn

[
(UNA→BE)⊗nFMM̄GA→AnJn

(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)
]∥∥∥

1
≤ 2

√
δenc(n). (156)

Together with (149), this implies∥∥∥TrBn

[
(UNA→BE)⊗nFMM̄GA→AnJn

(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)
]
− θK ⊗ ωU

(2)

EnJnK̄GB

∥∥∥
1

≤ 2
√
δenc(n) + δ1(n), (157)

where δ1(n) ≡ 2−
1
2n[I(A1⟩B)ω−Q−βn].

Thus, by Uhlmann’s theorem, there exists an isometry
D∗Bn→MJ1

, such that∥∥∥D∗Bn→MJ1
(UNA→BE)⊗nFMM̄GA→AnJn

(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)

− θMK ⊗ ω̂EnJnK̄GBJ1

∥∥∥
1
≤ 2

√
2
√
δenc(n) + δ1(n),

(158)

where ω̂EnJnK̄GBJ1
is an arbitrary purification of ωU

(2)

EnJnK̄GB
.

By tracing over EnJnK̄GBJ1, we deduce that there exist an
encoding map FMM̄GA→An and a decoding map D∗Bn→M ,
such that∥∥∥(D∗Bn→MJ1

◦ N⊗n
A→B ◦ FMM̄GA→An)(θMK ⊗ ξM̄ ⊗ ΦGA

)

− θMK

∥∥∥
1
≤ 2

√
2
√
δenc + δ1(n). (159)

5) Decoding With Entanglement Assistance: The bound
in (156), together with (150), implies∥∥∥TrBnGB

[
(UNA→BE)⊗nFMM̄GA→AnJn

(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)
]
− ξK̄ ⊗ ωU

(1)

EnJnK

∥∥∥
1

≤ 2
√
δenc(n) + δ2(n), (160)

where δ2(n) ≡ 2−
1
2n[I(A2⟩B)ω−(Q+Q′−Re)−βn]. Thus,

by Uhlmann’s theorem, there exists an isometry
DBnGB→M̄G′AG

′
BJ2

, such that∥∥∥DBnGB→M̄G′AG
′
BJ2

(UNA→BE)⊗nFMM̄GA→AnJn

(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB
)− ξM̄K̄ ⊗ ΦGAGB

⊗ ω̂EnJnKJ2

∥∥∥
1

≤ 2
√

2
√
δenc(n) + δ2(n). (161)

By tracing over EnJnKG′AG
′
BJ2, we deduce that

FMM̄GA→An and DBGB→M̄ satisfy∥∥∥DBnGB→M̄ ◦ N⊗n
A→B◦

FMM̄GA→An(θM ⊗ ξM̄K̄ ⊗ ΦGAGB
)− ξM̄K̄

∥∥∥
1

≤ 2
√

2
√
δenc(n) + δ2(n). (162)

As δenc(n), δ1(n), and δ2(n) tend to zero as n→∞ for rates
as in (108), we deduce that the errors tend to zero as well.

Choosing the entanglement rate Re = 1
2 [H(A2)ω +

H(A2|B)ω], it follows that LEA∗(N ) is an achievable rate
region (cf. (28) and (108)). To show that rate pairs in
1
kLEA∗(N⊗k) are achievable as well, we employ the coding
scheme above for the product channel N⊗k, where k is
arbitrarily large. This completes the achievability proof.

B. Converse Proof

Consider the converse part. Suppose that Alice and Bob
are trying to generate entanglement between them. An upper
bound on the rate at which Alice and Bob can generate
entanglement also serves as an upper bound on the quantum
rate at which they can communicate qubits, since a noiseless
quantum channel can be used to generate entanglement by
sending one part of an entangled pair. In this task, Alice locally
prepares two maximally entangled pairs,

|ΦMK⟩ ⊗ |ΦM̄K̄⟩ =

 1√
2nQ

2nQ∑
m=1

|m⟩M ⊗ |m⟩K


⊗

 1√
2n(Q+Q′)

2n(Q+Q′)∑
m̄=1

|m̄⟩M̄ ⊗ |m̄⟩K̄

 . (163)

If the entanglement assistance is reliable, then Alice and
Bob share the quantum state |ΦGAGB

⟩, where GA and GB
represent the entanglement resources that Alice and Bob
share, respectively. Then Alice applies an encoding channel
FMM̄GA→An to the quantum message systems MM̄ and her
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share GA of the entanglement resources. The resulting state
is

φKK̄GBAn ≡ FMM̄GA→An(ΦMK ⊗ ΦM̄K̄ ⊗ ΦGAGB
).
(164)

As Alice sends the systems An through the channel, the output
state is

ωKK̄GBBn ≡ N⊗n
A→B(σKK̄GBAn). (165)

If the entanglement assistance is present, then Bob can
access GB . In this case, Bob performs a decoding channel
DGBBn→M̆ , hence

ρKK̄M̆ ≡ DGBBn→M̆ (ρKK̄GBBn). (166)

On the other hand, without assistance, Bob performs D∗
Bn→M̂ ,

producing

ρ∗
KK̄M̂GB

≡ D∗
Bn→M̂ (ρKK̄GBBn). (167)

Since Bob has not received the entanglement resources, the
system GB is not affected by itself.

Consider a sequence of codes (Fn,Dn,D∗n) for entangle-
ment generation given unreliable assistance, such that

1
2

∥∥ρM̆K̄ − ΦM̄K̄

∥∥
1
≤αn, (168)

1
2

∥∥ρ∗
M̂K

− ΦMK

∥∥
1
≤α∗n, (169)

where αn, α∗n tend to zero as n→∞.
By the Alicki-Fannes-Winter inequality [77], [78] [58, The-

orem 11.10.3], (169) implies |H(K|M̂)ρ∗ − H(K|M)Φ| ≤
nεn, or equivalently,

|I(K⟩M̂)ρ∗ − I(K⟩M)Φ| ≤ nεn, (170)

where εn tends to zero as n→∞. Observe that I(K⟩M)Φ =
H(M)Φ −H(KM)Φ = nQ− 0 = nQ. Thus,

nQ =I(K⟩M)Φ
≤I(K⟩M̂)ρ∗ + nεn

≤I(K⟩Bn)ω + nεn, (171)

where the last line follows from (167) and the data processing
inequality for the coherent information [58, Theorem 11.9.3].
In addition,

nQ =H(K)Φ
=H(K|K̄GB)Φ⊗Φ⊗Φ

=H(K|K̄GB)ω, (172)

where the second line follows since K, K̄, GB are in a product
state.

As for decoding with entanglement assistance, (168) implies
|I(K̄; M̄)Φ−I(K̄; M̆)ρ| ≤ nε̄n, by the Alicki-Fannes-Winter
inequality, where ε̄n tends to zero as n→∞. Therefore,

n(Q+Q′) =
1
2
I(K̄; M̄)Φ

≤ 1
2
I(K̄; M̆)ρ + nε̄n

≤ 1
2
I(K̄;GBBn)ω + nε̄n (173)

by the data processing inequality for the quantum mutual
information. By the chain rule, the mutual information above
satisfies

I(K̄;GBBn)ω = I(K̄;Bn|GB)ω + I(K̄;GB)Φ⊗Φ

= I(K̄;Bn|GB)ω
≤ I(K̄GB ;Bn)ω. (174)

The regularized converse follows from (171), (172),
and (173)-(174), as we let An1 and An2 be quantum systems
such that for some isometries W (1)

K→An
1

and W (2)

K̄GB→An
2

,

φAn
1A

n
2A

n =
(
W

(1)
K→An

1
⊗W

(2)

K̄GB→An
2

)
φKK̄GBAn

(
W

(1)
K→An

1
⊗W

(2)

K̄→An
2

)†
. (175)

This completes the proof of Theorem 7. □
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