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Communication Over Quantum Channels With
Parameter Estimation

Uzi Pereg , Member, IEEE

Abstract— Communication over a random-parameter
quantum channel when the decoder is required to reconstruct
the parameter sequence is considered. We study scenarios that
include either strictly-causal, causal, or non-causal channel
side information (CSI) available at the encoder, and also when
CSI is not available. This model can be viewed as a form
of quantum metrology, and as the quantum counterpart of
the classical rate-and-state channel with state estimation at
the decoder. Regularized formulas for the capacity-distortion
regions are derived. In the special case of measurement channels,
single-letter characterizations are derived for the strictly-causal
and causal settings. Furthermore, in the more general case of
entanglement-breaking channels, a single-letter characterization
is derived when CSI is not available. As a consequence, we obtain
regularized formulas for the capacity of random-parameter
quantum channels with CSI, generalizing previous results by
Boche et al., 2016, on classical-quantum channels. Bosonic
dirty paper coding is introduced as a consequence, where we
demonstrate that the optimal coefficient is not necessarily that
of minimum mean-square error estimation as in the classical
setting.

Index Terms— Quantum communication, Shannon theory,
state estimation, rate-and-state channel, bosonic channel, writing
on dirty paper, encoding constraints.

I. INTRODUCTION

A FUNDAMENTAL task in classical information theory
is to determine the ultimate transmission rate of com-

munication. Various settings of practical significance can be
described by a channel pY |X,S that depends on a random para-
meter S ∼ q(s) when there is channel side information (CSI)
available at the transmitter [2]–[4]. For example, a cognitive
radio in a wireless system may be aware of the channel
state and network configuration [5]. Other applications include
memory storage where the writer knows the fault locations [6],
digital watermarking [7], and spread-spectrum communication
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[8], [9], where the CSI represents the host data or a pseudo-
random sequence to be modulated.

In the rate-and-state (RnS) model [10], the receiver is not
only required to recover the message, but also to estimate
the parameter sequence with limited distortion. For example,
in digital multicast [10], the message represents digital control
information that is multicast on top of an existing analog
transmission, which is also estimated by the receiver. Addi-
tional applications can be found in [3] and references therein.
The capacity-distortion tradeoff region with strictly-causal CSI
and with causal CSI was determined by Choudhuri et al. [3],
and without CSI by Zhang et al. [11], [12]. Inner and outer
bounds on the tradeoff region with non-causal CSI were
derived by Sutivong in [13], with full characterization in the
Gaussian case [10]. The RnS channel with feedback was
recently considered by Bross and Lapidoth [14].

The field of quantum information is rapidly evolving in both
practice and theory [15]–[19]. Quantum information theory is
the natural extension of classical information theory. Neverthe-
less, this generalization reveals astonishing phenomena with
no parallel in classical communication [20]. For example, two
quantum channels, each with zero quantum capacity, can have
a nonzero quantum capacity when used together [21]. This
property is known as super-activation.

Communication through quantum channels can be sep-
arated into different categories. The Holevo-Schumacher-
Westmoreland (HSW) Theorem provides a regularized
(“multi-letter”) formula for the capacity of a quantum chan-
nel [22], [23]. Although calculation of such a formula is
intractable in general, it provides computable lower bounds,
and there are special cases where the capacity can be com-
puted exactly. The reason for this difficulty is that the
Holevo information is not necessarily additive [24], [25]. Shor
has demonstrated additivity for the class of entanglement-
breaking channels [26], in which case the HSW theorem
provides a single-letter computable formula for the capac-
ity. This class includes both classical-quantum channels and
measurement (quantum-classical) channels [27, Section 4.6.7].
A similar difficulty occurs with transmission of quantum
information [28].

As for quantum channels with random parameters,
Boche, Cai, and Nötzel [1] addressed the classical-quantum
channel with CSI at the encoder. The capacity was deter-
mined given causal CSI, and a regularized formula was
provided given non-causal CSI. Warsi and Coon [29]
used an information-spectrum approach to derive multi-letter
bounds for a similar setting, where the side information
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Fig. 1. The beam-splitter relation of the single-mode bosonic channel.
The channel input is an electromagnetic field mode with an annihilation
operator â, and the output is another mode with the annihilation operator
b̂ =

√
η â+

√
1 − η ê, where ê is associated with the environment noise and

the parameter η is the transmissivity, where 0 ≤ η ≤ 1.

has a limited rate. Anshu et al. [30] have recently consid-
ered the fully quantum wiretap channel with CSI as well.
The entanglement-assisted capacity of a quantum channel
with non-causal CSI was determined by Dupuis [31], [32],
and with causal CSI by the author [33], [34]. One-shot
communication with CSI is considered in [35] as well. Luo and
Devetak [36] considered channel simulation with source side
information (SSI) at the decoder, and also solved the quantum
generalization of the Wyner-Ziv problem [37]. Quantum data
compression with SSI is also studied in [38]–[40]. State-
dependent channels with environment assistance are consid-
ered in [41]–[43]. The dual setting of state masking, where the
channel state is hidden from the receiver, was recently consid-
ered in [44]. Quantum relay channels are treated in [45], [46]
using a decode-forward communication scheme with block
Markov coding. Parameter estimation of quantum channels
was previously studied from the algorithmic point of view in
different settings [47]–[49].

Optical communication forms the backbone of the Inter-
net [50]–[52]. The bosonic channel is a simple quantum-
mechanical model for optical communication over free space
or optical fibers [53], [54], and it can be viewed as the
quantum counterpart of the classical channel with additive
white Gaussian noise (AWGN). An optical communication
system consists of a modulated source of photons, the optical
channel, and an optical detector. For a single-mode bosonic
channel, the channel input is an electromagnetic field mode
with an annihilation operator â, and the output is another mode
with the annihilation operator b̂. The input-output relation in
the Heisenberg picture [55] is given by

b̂ =
√
η â+

�
1 − η ê (1)

where ê is associated with the environment noise and the
parameter η is the transmissivity, 0 ≤ η ≤ 1, which depends
on the length of the optical fiber and its absorption length [56]
(see Figure 1). For a lossy bosonic channel, the noise mode ê
is in a Gibbs thermal state. Modulation is performed such that
the unitary displacement operator D(α) = exp(αâ† −α∗â) is
applied to the vacuum state |0��0| [53].

In this paper, we consider a random-parameter quantum
channel when the decoder is required to reconstruct the
parameter sequence in a lossy manner, i.e. with limited
distortion. Here, we give two applications for this model:
digital multicast using quantum communication channels, and
classical watermarking with a quantum embedding. In the
watermarking application, an authentication message is mixed
within classical host data (“stegotext”), and this mixture is

encoded into a quantum state that is sent to an authenticator.
The random parameters in this setting represent the host data,
while their estimation at the decoder corresponds to a scenario
where the host data itself contains desirable information.
Our setting can also be interpreted as a form of quantum
metrology [57], where the decoder performs measurements on
the received (quantum) systems in order to estimate classical
noise parameters, while exploiting the entanglement generated
by the encoder.

The scenarios that are studied in the present work include
either strictly-causal, causal, or non-causal channel side infor-
mation (CSI) available at the encoder, as well as the case where
CSI is not available. With strictly-causal CSI, Alice knows the
past parameters at each time instance; given causal CSI, she
knows the past and present parameters; and with non-causal
CSI, the entire sequence of random parameters is available to
her a priori. This model can be viewed as the quantum analog
of the classical RnS channel. We derive regularized formulas
for the capacity-distortion tradeoff regions. In the special
case of measurement channels, single-letter characterizations
are established for the strictly-causal and causal settings.
Furthermore, in the more general case of entanglement-
breaking channels, a single-letter characterization is derived
when CSI is not available. As a consequence, we obtain
regularized formulas for the capacity of random-parameter
quantum channels with strictly-causal, causal, or non-causal
CSI, generalizing the previous results by Boche et al. [1] on
classical-quantum channels.

Considering entanglement-breaking channels without CSI,
we use a different approach from that of Shor [26]. As opposed
to Shor [26], we do not show additivity of the capacity
formula, but rather extend the methods of Wang et al. [58]
to prove the converse part in a more direct manner. To prove
achievability with strictly-causal CSI, we extend the classical
block Markov coding method from [3] to the quantum setting,
and then apply the quantum packing lemma [59] for decoding
the message, and the classical covering lemma for the recon-
struction of the parameter sequence. The gentle measurement
lemma [60], [61] alleviates the proof, as it guarantees that
multiple decoding measurements can be performed without
collapsing the quantum state and such that the output state
after each measurement is almost the same. Thus, we can
separate between measurements for recovering the message
and for sequence reconstruction. Achievability with causal
CSI is proved using similar techniques with the addition of
a quantum “Shannon-strategy” encoding operation [62] [34,
Section IV.D]. To prove achievability with non-causal CSI,
we use an extension of the classical binning technique [6] to
the quantum setting.

Furthermore, we introduce the bosonic dirty paper setting
as a special case. We consider the single-mode lossy bosonic
channel with a coherent-state protocol and a non-ideal dis-
placement operation in the modulation process:

|ζ1ζ2 · · · ζn� = D(α1 + s1)|0� ⊗ · · · ⊗D(αn + sn)|0� (2)

where the parameter si represents classical interference in the
transmission equipment, which the transmitter becomes aware
of, while the receiver is not. It is assumed that the input has an
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average power constraint 1
n

�n
i=1 |αi|2 ≤ NA. Alternatively,

this can be viewed as a watermarking model with a quantum
embedding. Given a classical host data sequence s1, . . . , sn,
Alice encodes an authentication message m into a water-
mark (αi(m, s1, . . . , sn))ni=1. Next, Alice performs a quantum
embedding of the watermark; she prepares a watermarked
state |ζ1ζ2 · · · ζn� as in (2), and transmits it to the authenticator
Bob through the optical fiber. The capacity of the random-
parameter bosonic channel represents the optimal rate at which
the authenticator can recover the messages with high fidelity.

First, we consider homodyne and heterodyne detection.
Both of those settings reduce to a classical random-parameter
channel with either real or complex-valued Gaussian noise.
Thereby, we observe that based on Costa’s dirty-paper solu-
tion, the effect of the classical interference can be canceled,
and the capacity is the same regardless of the intensity of
the interference. Then, we consider joint detection, in which
case, the problem does not reduce to that of a classical
description. We derive a dirty-paper coding lower bound based
on the above results, with a general coefficient t (see (77)).
Considering the special case of a pure-loss bosonic channel,
we show that the optimal coefficient is not necessarily that
of minimum mean-square error (MMSE) estimation value as
in (78).

The paper is organized as follows. In Section II, we give the
definitions and present the models. In Section III, we provide
a brief review of related work on channels without ran-
dom parameters, regularization, additivity, and entanglement-
breaking channels; as well as a comparison between Shor’s
original approach for single-letterization, based on additivity,
and the alternative argument that extends the methods in [58].
In Section IV, we state our main results on the random-
parameter quantum channel with parameter estimation at the
decoder. In Section V, we consider bosonic dirty paper coding
as a consequence of the main results. Section VI is dedicated
to summary and discussion, where we summarize our main
results and conclude with remarks on the comparison between
the classical and quantum dirty-paper settings. The proofs are
given in the appendix.

II. DEFINITIONS

A. Notation, States, and Information Measures

We use the following notation conventions. Calligraphic
letters X ,Y,Z, . . . are used for finite sets. Lowercase letters
x, y, z, . . . represent constants and values of classical random
variables, and uppercase letters X,Y, Z, . . . represent classical
random variables. The distribution of a random variable X is
specified by a probability mass function (pmf) pX(x) over
a finite set X . We use xj = (x1, x2, . . . , xj) to denote a
sequence of letters from X . A random sequence Xn and its
distribution pXn(xn) are defined accordingly. For a pair of
integers i and j, 1 ≤ i ≤ j, we write a discrete interval as
[i : j] = {i, i+ 1, . . . , j}.

The state of a quantum system A is given by a den-
sity operator ρ on the Hilbert space HA. Unless mentioned
otherwise, we assume that the Hilbert spaces have finite
dimensions. A density operator is an Hermitian, positive

semidefinite operator, with unit trace, i.e. ρ† = ρ, ρ � 0, and
Tr(ρ) = 1. The state is said to be pure if ρ = |ψ��ψ|, for
some vector |ψ� ∈ HA, where �ψ| = (|ψ�)†. A measurement
of a quantum system is any set of operators {Λj} that forms
a positive operator-valued measure (POVM), i.e. the operators
are positive semi-definite and

�
j Λj = �, where � is the

identity operator. According to the Born rule, if the system is
in state ρ, then the probability of the measurement outcome j
is given by pA(j) = Tr(Λjρ). The qubit Pauli basis is denoted
by {�,X,Y,Z}.

Define the quantum entropy of the density operator ρ as

H(ρ) � − Tr[ρ log(ρ)] (3)

which is the same as the Shannon entropy associated with the
eigenvalues of ρ. Given a bipartite state σAB on HA ⊗ HB ,
define the quantum mutual information by

I(A;B)σ = H(σA) +H(σB) −H(σAB). (4)

The conditional quantum entropy and mutual informa-
tion are defined by H(A|B)σ = H(σAB) − H(σB) and
I(A;B|C)σ = H(A|C)σ + H(B|C)σ − H(A,B|C)σ ,
respectively.

A pure bipartite state is called entangled if it cannot be
expressed as the tensor product of two states in HA and
HB . The maximally entangled state between two systems of
dimension D is defined by |ΦAB� = 1∘

D

�D−1
j=0 |j�A ⊗ |j�B ,

where {|j�A}D−1
j=0 and {|j�B}D−1

j=0 are respective orthonormal
bases. Note that I(A;B)|Φ��Φ| = 2 · log(D).

B. Quantum Channels With Random Parameters

A quantum channel maps a quantum state at the sender
system to a quantum state at the receiver system. Here,
we consider a model of channel uncertainty, where the channel
is governed by a random parameter that changes over time.
Formally, let {N (s)

A→B, s ∈ S} be a collection of linear, com-
pletely positive, and trace-preserving (CPTP) maps, indexed
by s, each corresponds to a quantum physical evolution. It is
assumed that the channel has a product form, i.e. if the systems
An = (A1, . . . , An) are sent through n channel uses, then the
input state ρAn undergoes the tensor product mapping

N (sn)
An→Bn ≡

n�
i=1

N (si)
A→B. (5)

We consider a quantum channel with a memoryless ran-
dom parameter sequence, where the parameter sequence
(S1, S2, . . .) is i.i.d. ∼ q(s). That is, the joint distribution of
the parameter sequence is given by Pr(Sn = sn) = qn(sn) ≡�n
i=1 q(si). Therefore, without CSI, the input-output relation

is

ρBn =
�
sn∈Sn

qn(sn)N (sn)
An→Bn(ρAn)

=

��
s∈S

q(s)N (s)
A→B

�⊗n

(ρAn). (6)

The sender and the receiver are often referred to as Alice
and Bob.
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Equivalently, the random-parameter quantum channel can
be defined by a CPTP map NSA→B with a bi-partite input,
such that the component S is a classical system in a given
fixed state, i.e.

ρS =
�
s∈S

q(s)|s��s| (7)

where {|s�}s∈S is an orthonormal basis of the Hilbert
space HS . Given CSI at the encoder, i.e. when Alice has
access to the parameter sequence, or a part of it, then the
input system An can be correlated with Sn as well.

We will also consider the quantum-classical special case.

Definition 1: A measurement channel (or, q-c channel)
MA→Y has the following form,

MA→Y (ρA) =
�
y∈Y

Tr(ΛyρA)|y��y| (8)

for some POVM {Λy} and orthonormal vectors {|y�}.
A random-parameter channel is called a measurement channel
when the collection of CPTP maps consists of q-c channels.
We denote the random-parameter measurement channel by
MSA→Y to distinguish it from the general channel NSA→B .

A more general class of channels is that of entanglement-
breaking channels. The definition is given below.

Definition 2: A quantum channel EA→B is called entangle-
ment breaking if for every input state ρAA� , where A	 is an
arbitrary reference system, the channel output is separable, i.e.

(EA→B ⊗ �)(ρAA�) =
�
x∈X

pX(x)ψxB ⊗ ψxA� (9)

for some probability distribution pX(x) and pure states ψxB
and ψxA� . We say that a random-parameter channel NSA→B is
entanglement-breaking if each N (s)

A→B is entanglement break-
ing, for s ∈ S.

Every entanglement-breaking channel EA→B can be rep-
resented as a serial concatenation of a measurement channel
followed by a classical-quantum channel [27, Corollary 4.6.1].
That is, if EA→B is entanglement breaking, then there exists
a pair of channels, PY→B and MA→Y , such that

EA→B = PY→B ◦MA→Y (10)

where Y is classical.

C. Coding

We define a code to transmit classical information. We will
address four CSI scenarios. With strictly-causal CSI, Alice
knows, the past random parameters Si−1; given causal CSI,
she knows the past and present parameters Si; with non-causal
CSI, the entire sequence Sn is available to her a priori; and
without CSI, Alice is ignorant. In all of those cases, Bob is
unaware of the random parameters, and he has two tasks to
perform. He is required to decode the message and to recon-
struct the parameter sequence Sn with a limited distortion. Let
d : S × 	S → [0,∞) be a bounded distortion function, with

dmax ≡ maxs,ŝ d(s, ŝ). Denote the average distortion between
a parameter sequence sn and a reconstruction sequence ŝn by

dn(sn, ŝn) � 1
n

n�
i=1

d(si, ŝi). (11)

Definition 3: A (2nR, n) code with strictly-causal CSI at
the encoder consists of the following: a message set [1 : 2nR],
where 2nR is assumed to be an integer, a sequence of
encoding maps (channels) F (i)

MSi−1→Ai for i ∈ [1 : n], and
a decoding POVM {Λm,ŝ

n

Bn }m∈[1:2nR],ŝn∈Ŝn . The encoding

maps must be consistent in the sense that the states ρm,s
i−1

Ai ≡
F (i)
M,Si−1→Ai(m, si−1) satisfy TrAn

i+1
(ρm,s

n−1

An ) = ρm,s
i−1

Ai for

i ∈ [1 : n]. We denote the code by (F ,Λ).
The communication scheme is depicted in Figure 2. The

sender Alice has the systems An and the receiver Bob has the
systems Bn. Alice chooses a classical message m ∈ [1 : 2nR].
At time i ∈ [1 : n], Alice has the sequence of past parameters
si−1 ∈ Si−1, and can thus prepare the state ρm,s

i−1

Ai
and

transmit the system Ai over the channel NSA→B .
Bob receives the channel output systems Bn and performs

the POVM {Λm,ŝ
n

Bn }m∈[1:2nR],ŝn∈ �Sn . The conditional proba-
bility of decoding error, given that the message m was sent,
is given by

P
(n)
e|m(F ,Λ) =

Tr

⎡⎣�−
�
ŝn∈ �Sn

Λm,ŝ
n

Bn

�
sn∈Sn

qn(sn)N (sn)
An→Bn(ρm,s

n−1

An )

⎤⎦ .
(12)

The average distortion for the code (F ,Λ) is

Δ(n)(F ,Λ) ��
sn∈Sn

�
ŝn∈ �Sn

dn(sn, ŝn) Pr
�
Sn = sn, Ŝn = ŝn

�
(13)

where

Pr
�
Sn = sn, Ŝn = ŝn

�
= qn(sn)·

1
2nR

2nR�
m=1

2nR�
m̂=1

Tr
�
Λm̂,ŝ

n

Bn N (sn)
An→Bn(ρm,s

n−1

An )
�
. (14)

A (2nR, n, ε,D) rate-distortion code satisfies
P

(n)
e|m(F ,Λ) ≤ ε for all m ∈ [1 : 2nR], and Δ(n)(F ,Λ) ≤ D.

A rate R > 0 is called achievable with distortion D if
for every ε > 0 and sufficiently large n, there exists a
(2nR, n, ε,D) code. The capacity-distortion region Cs-c(N )
is defined as the set of achievable pairs (R,D) with
strictly-causal CSI.

Alternatively, one may fix the average distortion constraint
D > 0 and consider the optimal transmission rate. The
capacity-distortion function Cs-c(N , D) is defined as the
supremum of achievable rates R for a given distortion D.
Note that Cs-c(N , dmax) reduces to the standard definition
of the capacity of a quantum channel, without a distortion
requirement or parameter estimation by the decoder.
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Fig. 2. Coding for a quantum channel NSA→B that depends on a random parameter S ∼ q(s), with strictly-causal side information at the encoder and
parameter estimation at the decoder. The quantum systems of Alice and Bob are marked in red and blue, respectively. Alice chooses a classical message m.

At time i, given the parameter sequence si−1, her encoder E prepares a state ρm,si−1

Ai
, and then transmits the system Ai over the quantum channel NSA→B.

Bob receives the channel output systems Bn and performs a measurement. The outcome is the estimated message m̂ and reconstruction sequence ŝn. With
causal side information or non-causal side information, Si−1 is replaced by Si or Sn, respectively.

We also address the causal and the non-causal setting. In the
causal setting, Alice has the present parameter value Si as
well, and prepares ρm,s

n

An such that ρm,s
n

Ai ≡ E(i)
MSi→Ai(m, si).

Whereas, in the non-causal setting, Alice has the entire para-

meter sequence Sn a priori, and can thus prepare ρm,s
n

An of
any form. Without CSI, Alice sends a sequence in the state
ρmAn = EM→An(m) that is independent of the parameter
sequence. We use the subscripts ‘s-c’, ‘caus’, or ‘n-c’ to indi-
cate whether CSI is available at the encoder in a stictly-causal,
causal, or non-causal manner, respectively. The notation is
summarized in the table in Figure 3.

III. RELATED WORK

In this section, we briefly review known results for a
quantum channel that does not depend on a random parameter
and has no distortion constraint, i.e. N (s)

A→B = EA→B for
s ∈ S, and D = dmax. We also bring a general discus-
sion on regularization, additivity, and entanglement-breaking
channels. We compare between Shor’s original approach for
single-letterization, based on additivity, and an alternative
argument that follows from the methods by Wang et al. [58].
In the sequel, we will use those observations in our capacity-
distortion analysis in the absence of CSI.

A. HSW Theorem

Consider a channel EA→B without random parameters.
Define

χ(E) � max
pX (x),|τx

A�
I(X ;B)ρ (15)

with ρXB ≡
�

x∈X pX(x)|x��x| ⊗ E(|φxA��φxA|) and |X | ≤
|HA|2. The objective functional I(X ;B)ρ is referred to
as the Holevo information with respect to the ensemble
{pX(x), E(|φxA��φxA|)} and the channel EA→B , while the
formula χ(E) itself is sometimes referred to as the Holevo
information of the channel [27]. Next, we cite the HSW
Theorem, which provides a regularized capacity formula for a
quantum channel without parameters or distortion requirement.

Theorem 1 (See [22], [23], [26]):

1) The capacity of a quantum channel EA→B without para-
meters is given by

C(E , dmax) = lim
k→∞

1
k
χ
�
E⊗k� . (16)

2) If EA→B is entanglement-breaking, then

C(E , dmax) = χ(E). (17)

In the second part of the lemma, we included Shor’s result
for the class of entanglement-breaking channels [26] (see
Definition 2). We note that this class includes both classical-
quantum channels and measurement channels. In particular,
the capacity of a measurement channel M(0)

A→Y without para-
meters is given by

C(M(0), dmax) = max
pX (x),|τx

A�
I(X ;Y ) (18)

with pY |X(y|x) = �φxA|Λy|φxA�.
Remark 1: The setting of a random-parameter quantum

channel NSA→B without side information and with D =
dmax is equivalent to that of a channel that does not depend
on a parameter, with EA→B =

�
s∈S q(s)N

(s)
A→B (see (6)).

On the other hand, with side information at the encoder, this
equivalence does not hold, as the channel input is correlated
with the parameter sequence.

B. Regularization

From a practical perspective, the Holevo information for-
mula in (15) is generally considered to be “easy to compute”,
given the channel statistics, since there are efficient algo-
rithms to solve this convex optimization problem numerically,
as e.g. in [63], up to a given precision and provided that
the dimensions of the Hilbert spaces, HA and HB , are not
too large. Yet, in Shannon theory, it is generally desirable
to establish a single-letter computable capacity formula [64].
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Fig. 3. Notation of channel capacity-distortion regions and functions with and without CSI. The notation of the capacity-distortion regions is given in the
first row, and of the capacity-distortion functions in the second row. The columns indicate the type of CSI that is available at the encoder.

Beyond computability, the disadvantage of a regularized multi-
letter formula, of the form

lim
n→∞

1
n

I(E⊗n), (19)

is that such characterization is not unique (see
[27, Section 13.1.3]). Nonetheless, it should be emphasized
that regularized characterizations are yet significant, since in
many cases, the capacity can still be computed. Furthermore,
there are interesting properties that can be derived even
without a closed-form expression for the capacity [21], [44].

From a technical mathematical perspective, the difficulty in
proving a single-letter converse part for a quantum channel is
the hybrid nature of the Holevo mutual information I(X ;B)ρ,
which involves a classical auxiliary variable X and a quantum
system B (see Theorem 1). Specifically, consider a channel
EA→B without a random parameter. From the familiar exercise
of Fano’s inequality and the chain rule, one obtains the bound

R− εn ≤ 1
n

n�
i=1

I(M ;Bi|Bi−1)ρ

≤ 1
n

n�
i=1

I(M,Bi−1;Bi)ρ (20)

where εn tends to zero as n → ∞ [22], [23]. In the attempt
to establish an upper bound on the achievable rates in terms
of the Holveo information I(X ;B)ρ, one is free to choose the
auxiliaryX in the converse proof, in principle. Yet, X needs to
satisfy a certain Markov property, and more importantly in our
discussion, X must be classical. Thereby, we cannot identify
the auxiliary sequence Xi with (M,Bi−1). We note that
this stands in contrast to the entanglement-assisted capacity
formula [65] [44, Remark 5], where the auxiliary can be
quantum. A deeper perspective is given in Subsection III-C
below.

Remark 2: One may look at the regularization problem
from a different angle. In the book by Nielsen and Chuang
[66, Chapter 12], the single-letter Holevo information is asso-
ciated with the product-state capacity. Specifically, the authors
consider a simplified setting where the encoder is constrained
such that the channel input must be a product state. This
means that not only entanglement is prohibited, but classical
correlation is not allowed either. In this remark, we propose a
more general encoding constraint, which makes more sense
for a practical system. For example, the model is suitable
when the transmitter has access to multiple small or moderate-
size quantum computers without interaction between them,
where each computer has b qubits. In addition, in some qubit
architectures, the physical limitations do not allow all qubits
to “talk to each other”. That is, one cannot apply a quantum

gate to any pair of qubits, but only to qubits that are at
certain proximity to each other. In order to account for those
limitations, we impose the following encoding constraint.
Assume that the encoder’s quantum systems An are partitioned
into sub-blocks of size b, such that the input state has the form

ρAn = ρAb
1
⊗ ρA2b

b+1
⊗ · · · ⊗ ρAn

(�−1)b+1
(21)

with � ≡ n
b . As usual, the capacity Cb(E) under encoding

constraint b > 0 is defined as the supremum of the achievable
rates with codes that satisfy the constraint above. Following the
lines of [66, Chapter 12], it can be shown that the capacity of a
quantum channel EA→B , without parameters, under encoding
constraint b > 0, is given by

Cb(E) =
1
b
χ(E⊗b) (22)

where χ(E) ≡ maxpX ,|τx
A� I(X ;B)ρ is the Holevo informa-

tion of the channel EA→B . Observe that this capacity formula
is computable, since b > 0 is assumed to be a small constant.
One may think of the formula on the RHS of (22) as finite
regularization. By taking the limit b → ∞, we recover the
HSW theorem without encoding constraints.

C. Additivity

Additivity is a central problem in the field of quantum
Shannon theory [22]. An information measure I(E) is called
additive if the information of a product of two channels is
equal to the sum of the respective informations. That is, for
every pair of channels E and G,

I(E ⊗ G) = I(E) + I(G). (23)

It is well-known that this property holds for the Shannon
capacity formula of a classical channel EX→Y . The merit of
this property is that regularized capacity formulas reduce to
a single-letter computable formula when the corresponding
information measure is additive.

For more than a decade, it was believed by many researchers
that the Holevo information χ(E), as defined in (15), is also
additive and that entanglement between input states does
not increase the classical capacity of a quantum channel
[66, p. 554]. If the Holevo information of a channel is
additive, then the regularization in the HSW characteriza-
tion can be removed and the capacity can be expressed as
C(E , dmax) = χ(E) (see Theorem 1). In fact, Fukuda and
Wolf [67] established that n-fold additivity of the Holevo
information is equivalent to its pairwise additivity. That is,
when considering I(E) = χ(E), we have that I(E⊗n) =
n · I(E) holds for every quantum channel EA→B if and only
if (23) holds for every pair of quantum channels EA1→B1
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and GA2→B2 . Nevertheless, the additivity conjecture has been
refuted as Hastings [24] demonstrated strict super-additivity
of quantum channels in 2009. That is, it was shown that there
exist two channels EA1→B1 and GA2→B2 such that the Holevo
informations satisfy χ(E ⊗ G) > χ(E) + χ(G).

Remark 3: The super-additivity of the Holevo informa-
tion implies that the Holevo information does not provide
a full characterization of the capacity, i.e. C(E , dmax) �=
χ(E) in general. However, it does not imply that the oper-
ational capacity can be super-additive. As pointed out in
[25, Section 8.4], it is an open problem whether there exist
two channels EA1→B1 and GA2→B2 such that the operational
capacity satisfies C(E⊗G, dmax) > C(E , dmax)+C(G, dmax).

D. Entanglement-Breaking Channels

Given the HSW characterization, it is straightforward to
obtain a single-letter formula for measurement channels
and classical-quantum channels. Shor [26] considered the
more general class of entanglement-breaking channels, which
includes both measurement and classical-quantum channels.
To obtain a single-letter characterization, Shor [26] has shown
that the Holevo information of an entanglement-breaking
channel is additive. On the other hand, we do not show
additivity, but rather extend the methods of Wang et al. [58],
and prove the converse part in a more direct manner. We note
that Shor’s approach in [26] has more insight than ours, as it
characterizes the fundamental properties of an entanglement-
breaking channel. Yet, we believe that the alternative argument
is easier to extend to more complex models, including channel
uncertainty.

First, we demonstrate this argument for a channel EA→B

without parameters. Consider the bound in (20). As mentioned
in Subsection II-B, if EA→B is an entanglement-breaking
channel, then it can be presented as a concatenation of a mea-
surement channel, followed by a state-preparation channel, i.e.

EA→B = PY→B ◦MA→Y (24)

where Y is classical. Therefore, by the quantum data
processing theorem due to Schumacher and Nielsen [68]
[27, Theorem 11.9.4], I(M,Bi−1;Bi)ρ ≤ I(M,Y i−1;Bi)ρ.
Since the sequence Y n−1 is classical, we can identify the
auxiliary sequence as Xi = (M,Y i−1), hence

R − εn ≤ 1
n

n�
i=1

I(Xi;Bi)ρ (25)

which is bounded by the single-letter Holevo information of
the channel.

In the sequel, we will use this argument to establish a
single-letter characterization of the capacity-distortion region
in the absence of CSI (see Subsection IV-D and Part 2 of
Appendix F).

IV. MAIN RESULTS

We state our results on the random-parameter quantum
channel NSA→B with and without CSI at the encoder. The
analysis is based on the information-theoretic tools that are
presented in Appendix A.

A. Strictly-Causal Side Information

We begin with our main result on the random-parameter
quantum channel with strictly-causal CSI. That is, at time i,
Alice has access to the parameters of the past, Si−1. Define
the rate-distortion region

Rs-c(N ) �

�⎧⎪⎨⎪⎩
(R,D) : R ≤ I(Z,X ;B)ρ − I(Z;S|X)

D ≥
�

s,ŝ,x,z

q(s)pX(x)pZ|X,S(z|x, s)

·Tr(ΓŝB|x,zρ
s,x
B )d(s, ŝ)

⎫⎪⎬⎪⎭
(26)

where the union is over the set of all distributions
pX(x)pZ|X,S(z|x, s), state collection {θxA}, and set of POVMs
{ΓŝB|x,z}, with

ρs,xB = N (s)
A→B(θxA) (27)

ρSZXB =
�
s∈S

�
z∈Z

�
x∈X

q(s)pX(x)pZ|X,S(z|x, s)|s��s|

⊗ |z��z| ⊗ |x��x| ⊗ ρs,xB . (28)

Before we state the capacity-distortion theorem, we give the
following lemma. In principle, one may use the property below
in order to compute the region Rs-c(N ) for a given channel.

Lemma 2: The union in (26) can be restricted to pure states
θxA = |φxA��φxA|, with |X | ≤ |HA|2+1 and |Z| ≤ |HA|2+ |S|.

The restriction to pure states follows by state purifica-
tion, and the cardinality bounds are based on the Fenchel-
Eggleston-Carathéodory lemma [69], using similar arguments
as in [70]. The details are given in Appendix B.

Our main result is given below.

Theorem 3:

1) The capacity-distortion region of a random-parameter
quantum channel NSA→B with strictly-causal CSI at the
encoder is given by

Cs-c(N ) =
∞�
k=1

1
k
Rs-c(N⊗k). (29)

2) For a random-parameter measurement channel MSA→Y ,

Cs-c(M) = Rs-c(M). (30)

The proof of Theorem 3 is given in Appendix C. To prove
achievability, we extend the classical block Markov coding
to the quantum setting, and then apply the quantum packing
lemma for decoding the message, and the classical covering
lemma for the reconstruction of the parameter sequence.
The gentle measurement lemma [60] alleviates the proof,
as it guarantees that multiple decoding measurements can be
performed without “destroying” the quantum state, i.e. such
that the output state after each measurement is almost the
same.

Remark 4: Observe that the bound on the rate in the
definition of Rs-c(N ) in (26) can also be written as

R ≤ I(X ;B)ρ − [I(Z;S|X) − I(Z;B|X)ρ] , (31)
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by the mutual information chain rule. As the expression in the
square brackets above is nonnegative, by the data processing
inequality, it follows that the rate is bounded by the capacity
of the channel without CSI, i.e. the Holevo information (see
Subsection III-A). We will come back to this point when we
consider the capacity when the receiver is not required to
estimate the channel parameters in Subsection IV-E.

Remark 5: The expression in the square brackets in (31)
can be interpreted as the penalty that the encoder pays for
the transmission to contain a (partial) representation of the
parameter sequence. Luo and Devetak [36] have considered
the source compression setting with SSI. In their setting,
a classical memoryless source Sn is compressed, and then
reconstructed at the decoder with distortion D, using quantum
side information systems Bn. Based on their results, the rate-
distortion function r(D, ρSB) for this source compression
setting is given by r(D, ρSB) = limk→∞

1
k r(D, ρ⊗kSB), where

r(D, ρSB) =
min

pZ̃|S(z|s), {Γŝ
B|z} :�

s,ŝ,z

q(s)pZ̃|S(z|s)Tr(Γŝ
B|z�ρs

B)d(s,ŝ)≤D

[I(Z 	;S) − I(Z 	;B)ρ]

(32)

(see Theorem 4.2 in [36]). Thereby, in our setting, the
encoder’s penalty can be interpreted as the average compres-
sion rate of the parameter sequence with the channel output as
the decoder’s SSI. The more Z is correlated with the channel
parameter S, the parameter estimation will be better, i.e. with
a lower distortion. Yet, the penalty may be larger, resulting in
a lower communication rate.

We illustrate our results with the following example. We will
use the dephasing channel as a running example, and come
back to it in the next sections as well.

Example 1: Consider a random-parameter dephasing chan-
nel that is specified by

N (0)(ρ) = ρ (33)

N (1)(ρ) = ZρZ (34)

with a binary random parameter S ∼ Bernoulli(ε), where
ε ∈ [0, 1] is a given constant, i.e. q(1) = 1 − q(0) = ε.
In other words, given a parameter sequence Sn, the parameter
Si acts as a switch that controls the phase flip operation at
time i. Observe that without CSI, the decoder receives the
average output of the standard dephasing channel, i.e. N (ρ) ≡
(1−ε)ρ+εZρZ. Given CSI at the encoder, however, the input
state is correlated with the channel parameters. Furthermore,
our decoder needs to recover the message and estimate whether
there was a phase flip at each time. The natural measure
for the distortion between the binary parameter sequence and
its reconstruction is the following: d(s, ŝ) = s + ŝ mod 2.
Namely, d(s, ŝ) = 1 if ŝ �= s, and d(s, ŝ) = 0 if ŝ = s.

Clearly, if the encoder sends a constant transmission
|+�⊗ · · ·⊗ |+�, then the decoder can determine whether there
was a phase flip at each instance and recover the parameters
without distortion. Yet, the rate is zero as well. On the other
hand, by restricting the transmission to the computational

basis, we can communicate without error, since the states
|0� and |1� are unaffected by the phase flips. Thereby, if one
is not interested in parameter estimation, the rate R = 1 can
achieved. Based on Theorem 3, we show that the following
rate-distortion region is achievable for the random-parameter
dephasing channel with strictly-causal CSI at the encoder,

Cs-c(N ) ⊇�
0≤α≤ 1

2

�
(R,D) : R ≤ 1 − [h(α ∗ ε) − h(α)]

D ≥ α

�
, (35)

where a∗b = (1−a)b+a(1−b) denotes the binary convolution
operation, and h(x) = −x log(x) − (1 − x) log(1 − x) is the
binary entropy function. Here, we see the tradeoff between
the communication rate and the distortion. Taking α = 1

2 ,

we obtain the maximal rate R = 1, but the distortion D = 1
2

is that of guessing by a coin flip. On the other hand, for
α = 0, the channel parameters are recovered without
distortion, while the communication rate is bounded by
R = 1 − h(ε). To obtain the achievable region above from
Theorem 3, consider k = 1. Set the distribution of the input
ensemble as X ∼ Bernoulli

�
1
2

�
over the state collection

{|0�, |1�}. Define Z = X + S + V mod 2 with V ∼
Bernoulli (α), such that V , X , and S are statistically inde-
pendent. Given X and Z , the decoder estimates the channel
parameter by Ŝ = X + Z mod 2 = S + V mod 2. This
yields I(X,Z;B)ρ = H(B)ρ − H(B|X,Z)ρ = 1 − 0 = 1,
I(Z;S|X) = H(Z|X) − H(V ) = h(α ∗ ε) − h(α), and
Ed(S, Ŝ) = Pr(V = 1) = α.

Equivalently, we can characterize the capacity-distortion
function.

Corollary 4:

1) The capacity-distortion function of a random-parameter
quantum channel NSA→B with strictly-causal CSI at the
encoder is given by

Cs-c(N , D) = lim
k→∞

1
k

max
p

Xk (xk)p
Zk|Xk,Sk (zk|xk,sk),

|τxk

Ak �, {Γŝk

Bk|xk,zk} : Edk(Sk,Ŝk)≤D

[I(Zk, Xk;Bk)ρ − I(Zk;Sk|Xk)] (36)

with

ρSkZkXkBk =
�

sk,xk,zk

qk(sk)pXk(xk)

· pZk|Xk,Sk(zk|xk, sk)|sk��sk|
⊗ |zk��zk| ⊗ |xk��xk|

⊗ N (sk)

Ak→Bk(|φxk

Ak��φx
k

Ak |). (37)

2) For a random-parameter measurement channel MSA→Y ,

Cs-c(M, D) = max
pX (x)pZ|X,S(z|x,s),

|τx
A�, {Γŝ

Y |x,z} : Ed(S,Ŝ)≤D

[I(Z,X ;Y ) − I(Z;S|X)] (38)

with pY |X,S(y|x, s) = �φxA|Λ
(s)
y |φxA�.
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The corollary follows from Lemma 2 and Theorem 3. For
example, following the derivation in Example 1, the capacity-
distortion function of the random-parameter dephasing channel
is bounded from below by

Cs-c(N , D) ≥ 1 − [h(D ∗ ε) − h(D)] (39)

for 0 ≤ D ≤ 1
2 .

B. Causal Side Information

Next, we consider the random-parameter quantum channel
with causal CSI, where Alice has access to the past and present
random parameters, i.e. Si−1 and Si. Define the rate-distortion
region

Rcaus(N , D) �

�⎧⎪⎨⎪⎩
(R,D) : R ≤ I(Z,X ;B)ρ − I(Z;S|X)

D ≥
�

s,ŝ,x,z

q(s)pX(x)pZ|X,S(z|x, s)

·Tr(ΓŝB|x,zρ
s,x
B )d(s, ŝ)

⎫⎪⎬⎪⎭
(40)

where the union is over the set of all distributions
pX(x)pZ|X,S(z|x, s), states {θxG}, quantum channels F (s)

G→A,
and set of POVMs {ΓŝB|x,z}, with

ηx,sA = F (s)
G→A(θxG) (41)

ρs,xB = N (s)
A→B(ηs,xA ) (42)

ρSZXB =
�
s∈S

�
z∈Z

�
x∈X

q(s)pX(x)pZ|X,S(z|x, s)|s��s|

⊗ |z��z| ⊗ |x��x| ⊗ ρs,xB . (43)

The union in (26) can also be restricted to pure states θz,xG =
|φz,xG ��φz,xG | based on the same arguments as in the proof of
Lemma 2.

Observe that the difference between the characterizations
with strictly-causal and causal CSI, in Rs-c(N ) and Rcaus(N ),
respectively, is that the channel input is θxA in the former,
and F (s)

G→A(θxG) in the latter (cf. (27) and (41)). That is, the
input state here depends on the random parameter through the
auxiliary channel F (s)

G→A in (41). Further interpretation and
intuition for the role of this auxiliary channel will be given
in Remark 6 and Examples 2 and 3. Now, we give our main
result on the random-parameter quantum channel with causal
CSI.

Theorem 5:

1) The capacity-distortion region of a random-parameter
quantum channel NSA→B with causal CSI at the encoder
is given by

Ccaus(N ) =
∞�
k=1

1
k
Rcaus(N⊗k). (44)

2) For a random-parameter measurement channel MSA→Y ,

Ccaus(M) = Rcaus(M). (45)

To prove achievability, we apply the coding techniques

from the proof of Theorem 3 to the virtual channel V(s)
G→B ,

defined by

V(s)
G→B(ρG) = N (s)

A→B

�
F (s)
G→A(ρG)

�
. (46)

The proof outline for Theorem 5 is given in Appendix D.

Remark 6: Shannon [62] has shown that the capacity of a
random-parameter classical channel WSX→Y with causal CSI
at the encoder is given by

Ccaus(W , dmax) = max
pT

I(T ;Y ) (47)

with X = T (S), where T : S → X is an auxiliary function,
which is commonly referred to as a Shannon strategy. The
maximization in the formula above is over the distribution
of the Shannon strategy. In Shannon’s achievability scheme,
the strategy maps a parameter value Si = s to a classical
input Xi = T (s) [71, Remark 7.6]. The auxiliary random-
parameter channel F (s) in (41) can be viewed as the quantum
counterpart of the classical Shannon-strategy (see discussions
in previous work by the author [34, Section IV.D] on further
relations between Shannon strategies and quantum channels
with causal CSI). The effect of the quantum Shannon strategy
is demonstrated in the examples below.

In a similar manner as in the previous subsection, we can
equivalently characterize the capacity-distortion function,
Ccaus(N , D). We omit this characterization to save space.
Causal CSI may lead to a significant advantage compared to
strictly-causal CSI, as demonstrated in the example below.

Example 2: Consider the random-parameter qubit dephas-
ing channel from Example 1. Observe that knowing the current
parameter Si, at time i, the encoder can revert the dephasing
using the following strategy: Perform F (0)(ρ) = N (0)(ρ) = ρ
and F (1)(ρ) = N (1)(ρ) = ZρZ. By Theorem 5, the capacity-
distortion region of the random-parameter dephasing channel
with causal CSI is given by

Ccaus(N ) =
�

(R,D) : R ≤ 1
D ≥ 0

�
. (48)

The converse part is immediate, since the classical trans-
mission rate over a qubit channel is always bounded by 1.
To show the direct part using Theorem 5, consider k = 1.
Set X ∼ Bernoulli

�
1
2

�
over the input ensemble {|±�}, and

Z ≡ 0. The decoder performs a measurement in the ±-basis.
Given X and a measurement outcome Y , choose Ŝ = Y +X
mod 2 = S.

Example 3: Consider a random-parameter qubit depolariz-
ing channel that is specified by

N (0)(ρ) = ρ (49)

N (1)(ρ) = XρX (50)

N (2)(ρ) = YρY (51)

N (3)(ρ) = ZρZ (52)

with the following parameter distribution,

q(0) = 1 − ε, q(1) = q(2) = q(3) =
ε

3
(53)

where ε ∈ [0, 3
8 ] is a given constant. In other words, the

parameter Si chooses a Pauli operator that is applied to the ith

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on August 31,2024 at 11:27:22 UTC from IEEE Xplore.  Restrictions apply. 



368 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

input system. We note that without CSI, the average channel
is the same as the standard depolarizing channel, i.e.

NA→B(ρ) ≡
�
s

q(s)N (s)(ρ)

= (1 − ε)ρ+
ε

3
(XρX + YρY + ZρZ)

= (1 − p)ρ+ pπ (54)

where π = �

2 is the maximally mixed state, and
p ≡ 4ε

3 is interpreted as the probability of depolarization
(see [27, Section 4.7.4]). Here, the decoder needs to recover
the message and estimate which Pauli operator was applied.
For the distortion to be measured by the Hamming distance
between the parameter sequence and its reconstruction, let
d(s, ŝ) = 1 if ŝ �= s, and d(s, ŝ) = 0 if ŝ = s.

Knowing the current parameter Si, at time i, the encoder
can revert the operation of the channel using the following
strategy: Perform F (0)(ρ) = N (0)(ρ) = ρ, F (1)(ρ) =
N (1)(ρ) = XρX, F (2)(ρ) = N (2)(ρ) = YρY, and F (3)(ρ) =
N (3)(ρ) = ZρZ. Therefore, if one ignores the parameter
estimation requirement, then the rate R = 1 can be achieved.
By Theorem 5, the following region is achievable for the
random-parameter depolarizing channel with causal CSI,

Ccaus(N ) ⊇�
0≤α≤ε

⎧⎨⎩
(R,D) : R ≤ 1 − [H(1 − ε, ε3 ,

ε
3 ,

ε
3 )

−H(1 − α, α3 ,
α
3 ,

α
3 )]

D ≥ α

⎫⎬⎭ . (55)

Once more, we see the tradeoff between the communication
rate and the distortion. If we want the transmission to describe
the parameter sequence without distortion, then this costs
H(S) = H(1−ε, ε3 ,

ε
3 ,

ε
3 ). Thereby, taking α = 0, we achieve

R = 1 −H(1 − ε, ε3 ,
ε
3 ,

ε
3 ) and D = 0. At the other extreme,

taking α = ε, we obtain the maximal rate R = 1, but the
distortion D = ε is that of ignorantly guessing ‘0, 0, . . . , 0’.

To show achievability of the region above by Theorem 5, set
the distribution of the input ensemble as X ∼ Bernoulli

�
1
2

�
over a qubit basis, and apply F (s) to the basis vectors as
specified above. Let �S ∼ (1−α, α3 ,

α
3 ,

α
3 ) and T be statistically

independent random variables such that S = �S + T mod 4,
for some 0 ≤ α ≤ ε. Define Z = X + S + �S mod 4.
Given X and Z , the decoder chooses Ŝ = Z −X mod 4 =
S+ �S mod 4. This yields I(X,Z;B)ρ = H(B)ρ−H(B|X,
S + �S)ρ = 1 − 0 = 1, I(Z;S|X) = H(S) − H(S|T ) =
H(S) − H(�S) = H(1 − ε, ε3 ,

ε
3 ,

ε
3 ) − H(1 − α, α3 ,

α
3 ,

α
3 ),

and Ed(S, Ŝ) = 1 − Pr(Z − X − S mod 4 = 0) =
1 − Pr(�S = 0) = α.

C. Non-Causal Side Information

We consider the random-parameter quantum channel with
non-causal CSI. Define the rate-distortion region

Rn-c(N ) �

�⎧⎪⎨⎪⎩
(R,D) : R ≤ I(X ;B)ρ − I(X ;S)

D ≥
�
s,ŝ,x

q(s)pX|S(x|s)

·Tr(ΓŝB|xρ
s,x
B )d(s, ŝ)

⎫⎪⎬⎪⎭ (56)

where the union is over the set of all distributions pX|S(x|s),
states {θxA}, and set of POVMs {ΓŝB|x}, with

ρs,xB = N (s)
A→B(θxA) (57)

ρSXB =
�
s∈S

�
x∈X

q(s)pX|S(x|s)|s��s| ⊗ |x��x| ⊗ ρs,xB . (58)

We note that here, as opposed to the previous characteri-
zations, the auxiliary variable X is allowed to depend on the
random parameter S (cf. (28), (43), and (58)). Our main result
on the random-parameter quantum channel with non-causal
CSI is given below.

Theorem 6: The capacity-distortion region of the random-
parameter quantum channel NSA→B with non-causal CSI at
the encoder is given by

Cn-c(N ) =
∞�
k=1

1
k
Rn-c(N⊗k). (59)

The proof of Theorem 6 is given in Appendix E. To prove
achievability, we use an extension of the classical binning
technique [72] to the quantum setting, and then apply the
quantum packing lemma and the classical covering lemma.
We note that even for a classical channel, a single-letter
characterization of the optimal region with non-causal CSI is
an open problem [14]. As in Subsection IV-A, we can write an
equivalent characterization in terms of the capacity-distortion
function, Cn-c(N , D). We omit this to save space. We illustrate
the results with a simple example below. Theorem 6 is also
the basis for the bosonic dirty-paper analysis in Section V.

Example 4: Consider the following random-parameter qubit
channel,

N (0)(ρ) = ρ (60)

N (1)(ρ) = |ψ��ψ| (61)

with S ∼ Bernoulli(ε), a Hamming distortion function as in
the previous examples, and a given state |ψ�, in the same
qubit space. In other words, the parameter Si chooses whether
the ith input system is projected onto |ψ�. Ignoring the CSI
at the encoder, the model resembles the quantum erasure
channel [73] (see also [27, Section 20.4.3]), except that the
“erasure state” is orthogonal to the qubit space, while |ψ� in
the present example is in the same qubit space. Nonetheless,
we note that if the decoder knows the locations where the
state is projected, then this model is equivalent to the quantum
erasure channel. Without this knowledge at the decoder, it is
less obvious.

By Theorem 6, the following region is achievable for the
random-parameter channel above with non-causal CSI,

Cn-c(N ) ⊇
�

0≤α≤ 1
2

�
(R,D) : R ≤ (1 − ε)h(α)

D ≥ (1 − ε)α

�
.

(62)

Again, we can see the tradeoff between the communication
rate and the distortion. Let |ψ⊥� be an orthogonal state
with respect to |ψ�. Clearly, if the encoder transmits |ψ�
when Si = 1, and |ψ⊥� when Si = 0, then the decoder
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can recover the parameters without distortion, by performing
a measurement in the corresponding basis, i.e. {|ψ�, |ψ⊥�}.
Indeed, for α = 0, we achieve (R,D) = (0, 0). On the other
hand, taking α = 1

2 , we obtain the maximal rate R = 1 − ε,
which is also the capacity of the quantum erasure channel.

To show this, note that the bound on the rate on the RHS
of (56) can also be expressed as

R ≤ H(X |S)−H(X |B)ρ. (63)

Given non-causal CSI at the encoder, we can choose an
auxiliary X that depends on the channel parameter S. Let the
input ensemble be the basis {|ψ�, |ψ⊥�}. The input distribution
is chosen as follows. Let V ∼ Bernoulli(α) be statistically
independent of S. If S = 0, set X = V +1 mod 2. Otherwise,
if S = 1, then X = 0. As for the decoder, given X , set
Ŝ = X+1 mod 2. This yieldsH(X |B)ρ = 0 andH(X |S) =
(1 − ε)H(V ) = (1 − ε)h(α), and Ed(S, Ŝ) = Pr(Ŝ �= S) =
Pr(S = 0, V = 1) = (1 − ε)α.

D. In the Absence of Side Information

Consider the case where Alice does not have access to
the parameter sequence, yet Bob is required to estimate the
sequence with limited distortion. Given our previous analysis,
the proof of a regularized formula in this case is straightfor-
ward. However, here we obtain a single letter formula not
just for measurement channels, but for the whole class of
entanglement-breaking channels. As opposed to Shor [26],
we do not show additivity (see Subsection III-C). Instead,
we prove the converse part in a more direct manner using
the observations that we have presented in Subsection III-D,
which extend the methods by Wang et al. [58].

We give our capacity-distortion theorem for the random-
parameter quantum channel without CSI. Define

R(N ) �
�⎧⎪⎨⎪⎩

(R,D) : R ≤ I(X ;B)ρ
D ≥

�
s,ŝ,x

q(s)pX(x)

·Tr(ΓŝB|xρ
s,x
B )d(s, ŝ)

⎫⎪⎬⎪⎭ (64)

where the union is over the set of all distributions pX(x),
states {θxA}, and set of POVMs {ΓŝB|x}, with

ρs,xB = N (s)
A→B(θxA) (65)

ρSXB =
�
s∈S

�
x∈X

q(s)pX(x)|s��s| ⊗ |x��x| ⊗ ρs,xB . (66)

We note that the union in (56) can be restricted to pure
states θxA = |φxA��φxA| with |X | ≤ |HA|2 + 1, based on the
same arguments as in the proof of Lemma 2.

Theorem 7:

1) The capacity-distortion region of a random-parameter
quantum channel NSA→B without CSI is given by

C(N ) =
∞�
k=1

1
k
R(N⊗k). (67)

2) If NSA→B is entanglement-breaking, then

C(N ) = R(N ). (68)

The proof of Theorem 7 is given in Appendix F. The
proof of the first part follows by similar arguments as for the
previous results, while the proof of the second part is based on
our observations in Subsection III-D. The characterization of
the capacity-distortion function C(N , D) follows as before.

We revisit our running examples of dephasing and depolar-
izing channels.

Example 5: Consider the random-parameter qubit dephas-
ing channel from Examples 1 and 2. By Theorem 7, the
capacity-distortion region of the random-parameter dephasing
channel without CSI is given by

C(N ) =
�

(R,D) : R ≤ 1 − h(ε)
D ≥ 0

�
. (69)

To show achievability, set the distribution of the input
ensemble and measure the parameter estimate as before.
Observe that the region above is the same as in Example 1.
That is, for this channel, the capacity-distortion region with
strictly-causal CSI is the same as without CSI.

Example 6: Consider the random-parameter depolarizing
channel from Example 3. The capacity-distortion region of
the random-parameter depolarizing channel without CSI is
bounded by

C(N ) ⊇
�

(R,D) : R ≤ 1 − h(2ε
3 )

D ≥ 2ε
3

�
. (70)

To derive this achievable region, set the distribution of the
input ensemble as X ∼ Bernoulli

�
1
2

�
over the state collection

{|+�, |−�}. The channel output is then the same as that
of a dephasing channel, as in the previous example. As the
dephasing corresponds to the Pauli operators Y and Z, the
“dephasing probability” is ε0 ≡ 2ε

3 . The decoder performs a
measurement in the ±-basis. Denote the measurement outcome
by Y . If X �= Y , then the decoder knows that the channel
operator was either Y or Z. Then, the decoder chooses Ŝ to
be either 2 or 3 with equal probability. If X = Y , then the
decoder knows that the channel operator is not a dephasing
one, i.e. either � or X, and chooses Ŝ = 0. Thus, the average
distortion is Ed(S, Ŝ) = (1 − ε) · 0 + ε

3 · 1 + 2ε
3 · 1

2 = 2ε
3 .

E. Without Parameter Estimation

We obtain the following results as direct consequences of
Corollary 4 and Theorems 5-6. As mentioned, the standard
definition of the capacity, i.e. when parameter estimation is not
required at the decoder, is equivalent to the capacity-distortion
function for D = dmax. Henceforth, we use the term ‘the
capacity of NSA→B without CSI’ referring to C(N , dmax).
Similarly, Cs-c(N , dmax), Ccaus(N , dmax), and Cn-c(N , dmax)
are the capacities with strictly-causal, causal, and non-causal
CSI, respectively (see Figure 3).

The next corollaries generalize the results of
Boche et al. [1] on classical-quantum channels with CSI.

Corollary 8: The capacity of a random-parameter quantum
channel NSA→B with strictly-causal CSI at the encoder is the
same as without CSI, i.e. Cs-c(N , dmax) = C(N , dmax) =
χ(N ).
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The direct part is immediate, since the encoder can simply
ignore the CSI, while the converse part follows from Remark 4
and the HSW capacity Theorem, Theorem 1, where CSI is not
available.

Next, we consider causal CSI.

Corollary 9:

1) The capacity of a random-parameter quantum channel
NSA→B with causal CSI at the encoder is given by

Ccaus(N , dmax) = lim
k→∞

1
k

sup
p

Xk (xk),

|τxk

Gk �, F(sk)
Gk→Ak

I(Xk;Bk)ρ

(71)

with

ρSkXkBk =
�
sk,xk

qk(sk)pXk(xk)|sk��sk| ⊗ |xk��xk|

⊗ N (sk)

Ak→Bk

�
F (sk)

Gk→Ak(|φxk

Gk��φx
k

Gk |)
�
. (72)

2) For a random-parameter measurement channel MSA→Y ,

Ccaus(M, dmax) = sup
pX (x), |τx

G�, F(s)
G→A

I(X ;Y ) (73)

with pY |X,Z,S(y|x, z, s) = Tr
�
ΛyF (s)(|φxG��φxG|)

�
.

The direct part follows by taking Z = ∅, and the
converse part holds by the argument that we made in
Remark 4 for strictly-causal CSI. In particular, for the depo-
larizing channel in Example 3, Corollary 8 and Corollary 9
imply Cs-c(N , dmax) = 1 − h

�
p
2

�
= 1 − h

�
2ε
3

�
and

Ccaus(N , dmax) = 1. For the random-parameter quantum
channel with non-causal CSI, we recover the result in [30,
Corollary 1, part (c)].

Corollary 10 (See Also [30]): The capacity of a random-
parameter quantum channel NSA→B with non-causal CSI at
the encoder is given by

Cn-c(N , dmax) = lim
k→∞

1
k

sup
p

Xk|Sk (xk|sk), θxk,sk

Ak

[I(Xk;Bk)ρ − I(Xk;Sk)] (74)

with

ρSkXkBk =
�
sk,xk

qk(sk)pXk|Sk(xk|sk)|sk��sk| ⊗ |xk��xk|

⊗ N (sk)

Ak→Bk

�
θx

k,sk

Ak )
�
. (75)

The statement above immediately follows from Theorem 6
as the distortion constraint is inactive for D = dmax. We will
use the last corollary in the bosonic dirty-paper analysis in the
next section.

V. BOSONIC DIRTY PAPER CODING

In this section, we address the special case of a single-mode
bosonic channel with classical interference in the modulation
and with non-causal side information at the transmitter, with-
out parameter estimation at the receiver, i.e. D = dmax. In the
analysis, we will use our result in Corollary 10.

A. Introduction

Consider a classical channel WY |X,S with random para-
meters. Given non-causal CSI at the encoder, the channel is
known as the Gel’fand-Pinsker model [72]. The capacity of
this channel is given by [6]

Cn-c(W,dmax) = max
pU,X|S

[I(U ;Y ) − I(U ;S)] (76)

where U is an auxiliary random variable such that
U (X,S) Y form a Markov chain. The characterization
above can also be obtained from Corollary 10.

A random-parameter Gaussian channel is specified by the
input-output relation Y = X + Z + S, with a real-valued
Gaussian noise Z ∼ NR(0, σ2

Z), an additive interference S
known to the transmitter, and an input power constraint P .
A well-known result by Costa [74] is that the capacity of
the random-parameter Gaussian channel is the same as if
the interference is not there, i.e. C(W ) = 1

2 log
�
1 + P

σ2
Z

�
.

Given that Sn is not known to the receiver, it is far from
obvious that the interference can be canceled out without
sacrificing transmission power. The trivial strategy is to send
X = U−S, such that U represents the transmitted information
and is uncorrelated with S, resulting in an intereference-free
output, Y = U+Z . However, in the Gaussian case, the power
constraint must be accounted for. Thereby, the trivial strategy
above wastes transmission power and can only achieve a rate
of R ≤ 1

2 log
�
1 + max(P−σ2

S ,0)

σ2
Z

�
, which is sub-optimal.

The derivation of the capacity of the random-parameter
Gaussian channel with non-causal CSI requires a more gen-
tle approach, and it is based on Costa’s dirty-paper coding
strategy [74]: Set

U = X + tS (77)

such that X is statistically independent of S. The optimal
choice of the coefficient t turns out to be the same as that
of the minimum mean-square error (MMSE) estimator 	X =
t(X+Z) for X given the noisy observation (X+Z) (see [2,
Section 4.1]), namely,

t =
P

P + σ2
Z

. (78)

Explicit code constructions based on lattice codes were
proposed in [75], [76] and references therein. Furthermore,
efficient algorithms for practical implementation were pre-
sented, based on state-of-the art polar codes [77]–[79], LDPC
codes [80]–[82], and so on.

The bosonic channel is a simple quantum-mechanical model
for optical communication over free space or optical fibers
[53], [54], and it can be viewed as the quantum counterpart
of the classical channel with additive white Gaussian noise
(AWGN). An optical communication system consists of a
modulated source of photons, the optical channel, and an opti-
cal detector. For a single-mode bosonic channel, the channel
input is an electromagnetic field mode with an annihilation
operator â, and the output is another mode with the annihi-
lation operator b̂. The input-output relation in the Heisenberg
picture [55] is given by

b̂ =
√
η â+

�
1 − η ê (79)
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where ê is associated with the environment noise and the
parameter η is the transmissivity, 0 ≤ η ≤ 1, which depends
on the length of the optical fiber and its absorption length [56]
(see Figure 1). For a lossy bosonic channel, the noise mode ê
is in a Gibbs thermal state τ(NE) which consists of a mixture
of coherent states, where

τ(N) ≡
�

C

d2α
e−|α|2

πN
|α��α| (80)

given an average photon number N ≥ 0. Modulation is
performed such that the unitary displacement operatorD(α) =
exp(αâ† − α∗â) is applied to the vacuum state |0��0| [53].

B. Model and Results

We consider the single-mode lossy bosonic channel with a
coherent-state protocol and a non-ideal displacement operation
in the modulation process:

|ζ� = D(α+ s)|0� = |α+ s�. (81)

This model can viewed as the quantum counterpart of
the classical random-parameter Gaussian channel. Based on
Costa’s writing-on-dirty-paper result [74], the effect of the
channel parameter can be canceled even when the decoder
has no side information, and regardless of the input power
constraint. For both homodyne and heterodyne detection with
a coherent-state protocol, the model reduces to a classical
channel with either real or complex-valued Gaussian noise.
Thereby, by applying Costa’s dirty-paper coding strategy,
we observe that the effect of the classical interference can
be canceled for those channels as well. Then, we consider the
bosonic channel with joint detection, for which the classical
results do not apply, and derive a dirty-paper coding lower
bound. Furthermore, considering the special case of a pure-loss
bosonic channel, we demonstrate that the optimal coefficient
for dirty paper coding is not necessarily the MMSE estimator
coefficient as in the classical setting. We denote the random-
parameter bosonic channel by B. To simplify the notation,
we use the short notation Cn-c(B) ≡ Cn-c(B, dmax) for the
capacity of the random-parameter bosonic channel, without
parameter estimation.

We begin with homodyne and heterodyne detection. A
homodyne measurement of a quadrature observable is imple-
mented in practice by combining the target quantum mode
with an intense local oscillator at a 50:50 beam splitter, and
measuring the photocurrent difference of the outgoing modes
using two photodetectors [83]. When homodyne detection is
used with a coherent-state protocol, the resulting channel Bhom

is the random-parameter classical Gaussian channel

Y =
√
η(α+ S) + Zhom (82)

with a real-valued Gaussian parameter S ∼ NR(0, NS) and
noise Zhom ∼ NR

�
0, 1

4 [2(1 − η)NE + 1]
�

[84]. Using the
dirty-paper coding scheme, we take α ∼ NR(0, NA) and
U = α + t0S with t0 = NA

NA+NE
, such that α and S are

uncorrelated. The effect of the interference is thus removed,
and the capacity is given by

Cn-c(Bhom) =
1
2

log
 

1 +
4ηNA

2(1 − η)NE + 1

!
(83)

as without interference.

In heterodyne detection, two quadratures are measured by
combining the measured mode with a vacuum mode into a
50:50 beam splitter, and homodyning the quadratures of the
outcome modes [53]. Heterodyne detection is described by a
random-parameter channel Bhet with complex-valued Gaussian
noise, specified by

Y =
√
η(α+ S) + Zhet (84)

with complex-valued circularly-symmetric Gaussian random
parameter S ∼ NC(0, 1

2NS) and noise Zhet ∼ NC(0, 1
2 [(1−η)

NE + 1]) [84]. Similarly, we use dirty-paper coding with
α ∼ NC(0, 1

2NA) and U = α+ t0S, achieving the capacity

Cn-c(Bhet) = log
 

1 +
ηNA

(1 − η)NE + 1

!
(85)

as without interference.
At last, we consider the case where the decoder can perform

an arbitrary quantum measurement on the output systems
B1, . . . , Bn together. For joint detection [55], the channel
does not have a classical description. Based on Corollary 10,
the capacity of a random-parameter quantum channel B with
CSI at the transmitter, is given by the regularized formula
Cn-c(B) = limn→∞

1
nCn-c(B⊗n), with

Cn-c(B) = sup
pX|S , θ

x,s
A

[I(X ;B)ρ − I(X ;S)]. (86)

Previously, we have assumed that the space dimensions
are finite. Yet, this result is now extended to the bosonic
channel with infinite-dimension Hilbert spaces following the
discretization limiting argument by Guha et al. [85]. Using
the dirty-paper coding strategy, we obtain the lower bound
Cn-c(Bjoint) ≥ RDPC(t),

RDPC(t) ≡ I(γ;B) − I(γ;S)
"""
γ=α+tS

= g(η(NA +NS) + (1 − η)NE)

− g

 
η(1 − t)2NANS
NA + t2NS

+ (1 − η)NE

!
− log

 
NA + t2NS

NA

!
(87)

where the subscript ‘DPC’ stands for ‘dirty-paper coding’, and
g(N) is the von Neumann entropy of the thermal state τ(N),

g(N) =

#
(N + 1) log(N + 1) −N log(N) N > 0,
0 N = 0.

(88)

The second equality in (87) holds since the channel input
is associated with ζ ≡ α+ S = γ + (1 − t)S (see (81)), and
the conditional variance of the channel parameter S given γ
is

var(S|γ) =
$
1 − (cov(γ, S))2

var(S)var(γ)

%
var(S) =

NANS
NA + t2NS

.

In particular, consider the special case of a pure-loss bosonic
channel, where NE = 0. In this case,

RDPC(t) = g(η(NA +NS)) − g

 
η(1 − t)2NANS
NA + t2NS

!
− log

 
NA + t2NS

NA

!
. (89)
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Fig. 4. The dirty-paper coding lower bound for the pure-loss bosonic channel
with joint detection and a coherent-state protocol.

To demonstrate, suppose that NA = NS = 2 and η = 1
2 .

Then, we have

RDPC(t) = g(2) − g

 
(1 − t)2

1 + t2

!
− log(1 + t2). (90)

Ignoring the CSI, we obtain a rate RDPC(t = 0) = g(2) −
g(1) = 3 log 3 − 4 = 0.7549. Whereas, using the dirty-paper
coding scheme with the MMSE coefficient t0 = 2

2+0 = 1,
we obtain a better rate: RDPC(t = 1) = 3 log 3 − 2 − log 2 =
1.7549. The optimal value for dirty-paper coding turns out to
be tmax = 0.8065, for which

RDPC(tmax) = 1.8750. (91)

See Figure 4. The rate above is higher than the homodyne
and heterodyne-detection capacities, C(Ehom) = 0.5849 and
C(Ehet) = 1, respectively. However, this rate is lower than the
joint-detection capacity without interference (NS = 0), which
is given by g(1) = 2.

Our results can be further extended to other optical channels.
In particular, the random-parameter thermal amplifier channel
A with an amplification gain κ > 1 has the input-output
relation b̂ =

√
κ â(s) +

√
κ− 1 ê† [55], [86]. In a similar

manner, we obtain the dirty-paper coding lower bound

C(A) ≥ max
t∈[0,1]

&
g(κ(NA +NS) + (κ− 1)NE)

− g

 
κ(1 − t)2NANS
NA + t2NS

+ (κ− 1)NE

!
− log

 
NA + t2NS

NA

!'
. (92)

C. Concluding Remarks

We conclude with the following remarks on the comparison
between the classical and quantum dirty-paper settings:

1) Costa [74] provided the intuitive analogy of ‘writing on
dirty paper’. When a writer (Alice) is given a dirty paper,
she knows the location and intensity of the dirt spots
before writing. On the other hand, the reader (Bob) sees
a mixture of the written text (channel input) and the
dirt (channel parameter) without prior knowledge. In our
setting, the dirt is the interference si in the modulation
displacement D(αi + si). Alternatively, in the quantum
watermarking scheme that we have described above, the
dirt is the host covertext.

2) The classical capacity result can be derived using the
dirty-paper coding strategy in (77)-(78) following the
observation that U − tY = X − t(X + Z) is the error
of the MMSE estimation of X given V = X +Z , hence
it is statistically independent of the observation. Thereby,
(U − tY ) is jointly independent of (V, S). This, in turn,
implies that (U − tY ) and Y = V + S are statistically
independent, leading to H(U |Y ) = H(U − tY ) =
H(X |V ) which can be used in order to show that

I(U ;Y ) − I(U ;S) = H(U |S) −H(U |Y ) = I(X ;V )
(93)

(see further details in [2] [71, Section 7.7]). For a bosonic
channel with joint detection, we can also write the capac-
ity in terms of H(X |S)−H(X |B)ρ, with conditioning on
the channel output. However, conditioning on a quantum
system does not necessarily carry the meaning of an
observation as in the classical setting [87].

3) While dirty-paper coding was originally introduced to
treat a channel with random parameters [74], the tech-
nique is useful in multi-user setups of wireless communi-
cations as well, such as the multiple-input multiple-output
(MIMO) broadcast fading channel [88]. It is only natural
to apply and extend our results to multi-mode bosonic
networks.

VI. SUMMARY AND DISCUSSION

We have considered a quantum channel N (s)
A→B that depends

on a classical random parameter S ∼ q(s), when the decoder
is required to reconstruct the parameter sequence in a lossy
manner, i.e. with limited distortion. This model can be viewed
as the quantum analog of the classical rate-and-state (RnS)
channel.

We consider two applications for this model: digital mul-
ticast using quantum communication channels, and classical
watermarking with a quantum embedding. The first application
is digital multicast, where the message represents digital
control information that is multicast on top of an existing
analog transmission, which is also estimated by the receiver.
In the watermarking application, an authentication message
m is mixed within classical host data Sn (“stegotext”), and
this mixture is encoded into a quantum state that is sent to
an authenticator. The estimation of the channel parameters at
the decoder corresponds to a scenario where the host data Sn

itself contains desirable information. Our model can also be
interpreted as a form of quantum metrology [57], where the
decoder performs measurements on the received (quantum)
systems in order to estimate classical noise parameters, while
exploiting the entanglement generated by the encoder.

The scenarios that we studied in the present work include
either strictly-causal, causal, or non-causal channel side infor-
mation (CSI) available at the encoder, as well as the case
where CSI is not available. With strictly-causal CSI, Alice
knows, the past random parameters Si−1; given causal CSI,
she knows the past and present parameters Si; with non-
causal CSI, the entire sequence Sn is available to her a
priori; and without CSI, Alice is ignorant. In all of those
cases, Bob is unaware of the random parameters, and he
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has two tasks to perform. He is required to decode the
message and to reconstruct the parameter sequence Sn with
a limited distortion, D. We derived regularized formulas for
the capacity-distortion tradeoff regions. In the special case
of measurement channels, single-letter characterizations were
established for the strictly-causal and causal settings. Fur-
thermore, in the more general case of entanglement-breaking
channels, a single-letter characterization was derived when CSI
is not available. We also demonstrated the results in multiple
examples, such as random-parameter dephasing channels and
depolarizing channels.

While reviewing previous work in Section III, we
reviewed single-letterization and regularization, additivity, and
entanglement-breaking channels; and we compared between
Shor’s original approach for single-letterization, based on
additivity, and the alternative argument that follows from [58].
Later, we used this alternative argument in the analysis for
our setting. In particular, considering entanglement-breaking
channels without CSI, we used a different approach from that
of Shor [26]. As opposed to Shor [26], we did not show
additivity of the capacity formula, but rather extended the
methods of Wang et al. [58] to prove the converse part in a
more direct manner. This more direct approach has less insight
compared to Shor’s additivity argument, and yet, we believe
that it can be easier to extend to complex settings, as with
parameter estimation at the decoder.

To prove achievability with strictly-causal CSI, we extended
the classical block Markov coding method from [3] to the
quantum setting, and then applied the quantum packing lemma
for decoding the message, and the classical covering lemma
for the reconstruction of the parameter sequence. The gentle
measurement lemma alleviates the proof, as it guarantees that
multiple decoding measurements can be performed without
collapsing the quantum state and such that the output state after
each measurement is almost the same. Thus, we can separate
between measurements for recovering the message and for
sequence reconstruction. Achievability with causal CSI was
proved using similar techniques with the addition of a quantum
“Shannon-strategy” encoding operation. To prove achievability
with non-causal CSI, we used an extension of the classical
binning technique [6] to the quantum setting.

Furthermore, we introduced bosonic dirty-paper coding.
We considered the single-mode lossy bosonic channel with a
coherent-state protocol and a non-ideal displacement operation
in the modulation process. The channel parameters in our
model represent classical interference in the transmission
equipment, which the transmitter becomes aware of, while
the receiver is not. Alternatively, this can be viewed as a
watermarking model with a quantum embedding. Given a
classical host data sequence s1, . . . , sn, Alice encodes an
authentication message m into a watermark (αi(m, s1, . . . ,
sn))ni=1. Next, Alice performs a quantum embedding of the
watermark; she prepares a watermarked state |ζ1ζ2 · · · ζn�
where ζi ≡ D(αi + si)|0� = |αi + si�, and transmits it to the
authenticator Bob through the optical fiber. The capacity of
the random-parameter bosonic channel represents the optimal
rate at which the authenticator can recover the messages with
high fidelity.

First, we considered homodyne and heterodyne detection.
Both of those settings reduce to a classical random-parameter
channel with either real or complex-valued Gaussian noise.
Thereby, we observed that based on Costa’s dirty-paper solu-
tion, the effect of the classical interference can be canceled,
and the capacity is the same regardless of the intensity of the
interference. Then, we considered joint detection, in which
case, the problem does not reduce to that of a classical descrip-
tion. We derived a dirty-paper coding lower bound based on
the results above, using an auxiliary γ = α+tS with a general
coefficient t ∈ [0, 1], such that α ∼ NC(0, NA

2 ) is statistically
independent of the channel parameter S. Considering the
special case of a pure-loss bosonic channel, we showed that
the optimal coefficient is not necessarily the MMSE value
t0 = NA

NA+NE
.

As a consequence of our main results, we obtained regular-
ized formulas for the capacity of random-parameter quantum
channels with strictly-causal, causal, or non-causal CSI, gen-
eralizing the previous results by Boche et al. [1] on classical-
quantum channels. We believe that this could open the door
to extend other important classical side-information models to
quantum communication.

APPENDIX A
INFORMATION THEORETIC TOOLS

To derive our results, we use the quantum version of
the method of types properties and techniques. The basic
definitions and lemmas that are used in this paper are given
below.

A. Classical Types

The type of a classical sequence xn is defined as the
empirical distribution P̂xn(a) = N(a|xn)/n for a ∈ X , where
N(a|xn) is the number of occurrences of the symbol a in the
sequence xn. The set of all types over X is then denoted by
Pn(X ). The type class associated with a type P̂ ∈ Pn(X ) is
defined as the set of sequences of that type, i.e.

T (P̂ ) ≡
(
xn ∈ Xn : P̂xn = P̂

)
. (94)

For a pair of sequences xn and yn, we give simi-
lar definitions in terms of the joint type P̂xn,yn(a, b) =
N(a, b|xn, yn)/n for a ∈ X , b ∈ Y , where N(a, b|xn, yn)
is the number of occurrences of the symbol pair (a, b)
in the sequence (xi, yi)ni=1. Given a sequence yn ∈ Yn,
we further define the conditional type P̂xn|yn(a|b) =
N(a, b|xn, yn)/N(b|yn) and the conditional type class

T (P̂ |yn) ≡
(
xn ∈ Xn : P̂xn,yn(a, b) = P̂yn(b)P̂ (a|b)

)
.

(95)

Given a probability distribution pX ∈ P(X ), the δ-typical
set is defined as

Aδ(pX) ≡
�
xn ∈ Xn :"""P̂xn(a) − pX(a)

""" ≤ δ if pX(a) > 0

P̂xn(a) = 0 if pX(a) = 0, ∀ a ∈ X
�

(96)

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on August 31,2024 at 11:27:22 UTC from IEEE Xplore.  Restrictions apply. 



374 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

The covering lemma is a powerful tool in classical infor-
mation theory [89].

Lemma 11 (Classical Covering Lemma [89]
[71, Lemma 3.3]): Let Xn ∼

�n
i=1 pX(xi), δ > 0,

and let Zn(m), m ∈ [1 : 2nR], be conditionally independent
random sequences distributed according to

�n
i=1 pZ(zi).

Suppose that the sequence Xn is pairwise independent of the
sequences Zn(m), m ∈ [1 : 2nR]. Then,

Pr
�
(Zn(m), Xn) /∈ Aδ(pZ,X) for all m ∈ [1 : 2nR]

�
≤

exp
�
−2n(R−I(Z;X)−εn(δ)

�
(97)

where εn(δ) tends to zero as n→ ∞ and δ → 0.

Let Xn ∼
�n
i=1 pX(xi) be an information source sequence,

encoded by an index m at compression rate R. Based on the
covering lemma above, as long as the compression rate is
higher than I(Z;X), a set of random codewords, Zn(m) ∼�n
i=1 pZ(zi), contains with high probability at least one

sequence that is jointly typical with the source sequence.
Though originally stated in the context of lossy source

coding, the classical covering lemma is useful in a variety
of scenarios [71], including the random-parameter channel
with non-causal CSI. In this case, the parameter sequence
Sn ∼

�n
i=1 q(si) plays the role of the “source sequence”.

B. Quantum Typical Subspaces

Moving to the quantum method of types, suppose that
the state of a system is generated from an ensemble
{pX(x), |x�}x∈X , hence, the average density operator is

ρ =
�
x∈X

pX(x)|x��x|. (98)

Consider the subspace spanned by the vectors |xn�,
xn ∈ T (P̂ ), for a given type P̂ ∈ Pn(X ). Then, the projector
onto the subspace is given by

ΠAn(P̂ ) ≡
�

xn∈T (P̂ )

|xn��xn|. (99)

Note that the dimension of the subspace of type class P̂ is
given by Tr(ΠAn(P̂ )) = |T (P̂ )|. By classical type properties
[89, Lemma 2.3] (see also [27, Property 15.3.2]),

(n+ 1)|X |2nH(ρ) ≤ Tr(ΠAn(P̂ )) ≤ 2nH(ρ). (100)

The projector onto the δ-typical subspace is defined as

Πδ(ρ) ≡
�

xn∈Aδ(pX)

|xn��xn|. (101)

Based on [90] [66, Theorem 12.5], for every ε, δ > 0 and
sufficiently large n, the δ-typical projector satisfies

Tr(Πδ(ρ)ρ⊗n) ≥ 1 − ε, (102)

2−n(H(ρ)+cδ)Πδ(ρ)

� Πδ(ρ) ρ⊗n Πδ(ρ) �
2−n(H(ρ)−cδ)Πδ(ρ), (103)

Tr(Πδ(ρ)) ≤ 2n(H(ρ)+cδ) (104)

where c > 0 is a constant.

We will also need the conditional δ-typical subspace. Con-
sider a state

σ =
�
x∈Y

pX(x)ρxB (105)

with

ρxB =
�
y∈Y

pY |X(y|x)|ψx,y��ψx,y|. (106)

Given a fixed sequence xn ∈ Xn, divide the index set [1 : n]
into the subsets In(a) = {i : xi = a}, a ∈ X , and define the
conditional δ-typical subspace S δ(σB|xn) as the span of the
vectors |ψxn,yn� = ⊗ni=1|ψxi,yi� such that

yIn(a) ∈ A(|In(a)|)
δ (pY |X=a), for a ∈ X . (107)

The projector onto the conditional δ-typical subspace is
defined as

Πδ(σB |xn) ≡
�

|ψxn,yn �∈S δ(σB |xn)

|ψxn,yn��ψxn,yn |. (108)

Based on [90] [27, Section 15.2.4], for every ε	, δ > 0 and
sufficiently large n,

Tr(Πδ(σB |xn)ρx
n

Bn) ≥ 1 − ε	, (109)

2−n(H(B|X�)σ+c�δ)Πδ(σB |xn)

� Πδ(σB |xn) ρx
n

Bn Πδ(σB |xn) �
2−n(H(B|X�)σ−c�δ)Πδ(σB |xn), (110)

Tr(Πδ(σB |xn)) ≤ 2n(H(B|X�)σ+c�δ) (111)

where c	 > 0 is a constant, ρx
n

Bn =
*n

i=1 ρ
xi

Bi
, and the classical

random variable X 	 is distributed according to the type of xn.
Furthermore, if xn ∈ Aδ(pX), then

Tr(Πδ(σB)ρx
n

Bn) ≥ 1 − ε	. (112)

(see [27, Property 15.2.7]). We note that the conditional
entropy in the bounds above can also be expressed as

H(B|X 	)σ =
1
n
H(Bn|Xn = xn)σ ≡ 1

n
H(Bn)ρxn . (113)

C. Quantum Packing Lemma

To prove achievability for the HSW Theorem (see
Theorem 1), one may invoke the quantum packing
lemma [27], [59]. Suppose that Alice employs a codebook that
consists of 2nR codewords xn(m), m ∈ [1 : 2nR], by which
she chooses a quantum state from an ensemble {ρxn}xn∈Xn .
The proof is based on random codebook generation, where
the codewords are drawn at random according to an input
distribution pX(x). To recover the transmitted message, Bob
may perform the square-root measurement [22], [23] using
a code projector Π and codeword projectors Πxn , xn ∈ Xn,
which project onto subspaces of the Hilbert space HBn .

The lemma below is a simplified, less general, version of the
quantum packing lemma by Hsieh, Devetak, and Winter [59].

Lemma 12 (Quantum Packing Lemma [59, Lemma 2]): Let

ρ =
�
x∈X

pX(x)ρx (114)
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where {pX(x), ρx}x∈X is a given ensemble. Furthermore,
suppose that there is a code projector Π and codeword
projectors Πxn , xn ∈ Aδ(pX), that satisfy for every α > 0
and sufficiently large n,

Tr(Πρxn) ≥ 1 − α (115)

Tr(Πxnρxn) ≥ 1 − α (116)

Tr(Πxn) ≤ 2ne0 (117)

Πρ⊗nΠ � 2−n(E0−α)Π (118)

for some 0 < e0 < E0 with ρxn ≡
*n

i=1 ρxi . Then,
there exist codewords xn(m), m ∈ [1 : 2nR], and a POVM
{Λm}m∈[1:2nR] such that

Tr
�
Λmρxn(m)

�
≥ 1 − 2−n[E0−e0−R−εn(α)] (119)

for all m ∈ [1 : 2nR], where εn(α) tends to zero as n → ∞
and α→ 0.

In our analysis, where there is CSI at the encoder, we apply
the packing lemma such that the quantum ensemble encodes
both the message m and a compressed representation of the
parameter sequence sn.

D. Gentle Measurement

The gentle measurement lemma is a useful tool. As will be
seen, it guarantees that we can perform multiple measurements
such that the state of the system remains almost the same after
each measurement.

Lemma 13 (See [60], [61]): Let ρ be a density operator.
Suppose that Λ is a meaurement operator such that 0 � Λ � �.
If

Tr(Λρ) ≥ 1 − ε (120)

for some 0 ≤ ε ≤ 1, then the post-measurement state ρ	 ≡∘
Λρ

∘
Λ

Tr(Λρ) is 2
√
ε-close to the original state in trace distance, i.e.

�ρ− ρ	�1 ≤ 2
√
ε. (121)

The lemma is particularly useful in our analysis since the
POVM operators in the quantum packing lemma satisfy the
conditions of the lemma for large n (see (119)).

APPENDIX B
PROOF OF LEMMA 2

Consider the region Rs-c(N ) as defined in (26).

A. Purification

To prove that a union over pure states is sufficient, we show
that for every rate R0 that can be achieved with distortion D,
there exists a rate R1 ≥ R0 that can be achieved with pure
states and the same distortion. Fix pX(x)pZ|X,S(z|x, s), {θxA},
and {ΓŝB|x,z}. Let

R0 = I(X,Z;B)ρ − I(Z;S|X) (122)

D0 =
�
s∈S

�
x∈X

�
z∈Z

�
ŝ∈�S

q(s)pX(x)pZ|X,S(z|x, s)

· Tr(ΓŝB|x,zρ
s,x
B )d(s, ŝ) (123)

and consider the spectral decomposition,

θxA =
�
w∈W

pW |X(w|x)φx,wA (124)

where PW |X(w|x) is a conditional probability distribution,
and φx,wA are pure. Consider the extended state

ρSXZWA =
�

s,x,z,w

q(s)pX(x)pZ|X,S(z|x, s)

· pW |X(w|x)|s��s| ⊗ |x��x| ⊗ |z��z| ⊗ |w��w| ⊗ φx,wA .
(125)

Now, observe that the union in the RHS of (26) includes
the rate-distortion pair (R1, D1) that is given by

R1 = I(X,W,Z;B)ρ − I(Z;S|X,W ) (126)

D1 =
�

s,x,z,w,ŝ

q(s)pX(x)pZ|X,S(z|x, s)pW |X(w|x)

· Tr
�
ΓŝB|x,zN (s)(φx,wA )

�
d(s, ŝ) (127)

which is obtained by plugging X 	 = (X,W ) instead
of X , and the pure states φx,wA instead of θxA. That
is, (R1, D1) ∈ Rs-c(N ). According to (125), the ran-
dom variables S (X,Z) W form a Markov chain,
thus I(W ;S|X,Z) = 0. By the chain rule, it fol-
lows that I(Z;S|X,W ) = I(Z;S|X) + I(W ;S|X,Z) −
I(W ;S|X) = I(Z;S|X), hence R1 = I(X,W,Z;B)ρ −
I(Z;S|X) ≥ I(X,Z;B)ρ − I(Z;S|X) = R0. As for the
distortion level, we have by linearity that

D1 =
�
s,x,z,ŝ

q(s)pX(x)pZ|X,S(z|x, s)

· Tr

�
ΓŝB|x,zN (s)

��
w

pW |X(w|x)φx,wA

��
d(s, ŝ)

= D0 (128)

where the last equality is due to (123) and (124). Thereby, the
union can be restricted to pure states.

B. Cardinality Bounds

To bound the alphabet size of the random vari-
ables X and Z , we use the Fenchel-Eggleston-Carathéodory
lemma [69] and similar arguments as in [70]. Let

L0 = |HA|2 + 1 (129)

L1 = |HA|2 + |S|. (130)

First, fix q(s) and pZ|X,S(z|x, s), and consider the ensemble
{pX(x)pZ|X,S(z|x, s), θxA}. An Hermitian matrix can be spec-
ified by |HA| real values for the diagonal and 1

2 |HA|(|H|A−1)
complex numbers for the non-diagonal entries, or, |HA|2 real
parameters in total. Since a density matrix is Hermitian and
also has a unit trace, every quantum state θA has a unique
parametric representation u(θA) of dimension |HA|2−1. Then,
define a map f0 : X → RL0 by

f0(x) =
�
u(θxA), −H(B|X = x, Z)ρ +H(S|X = x, Z),

E[d(S, Ŝ)|X = x]
�
. (131)
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The map f0 can be extended to probability distributions as
follows,

F0 : pX �→
�
x∈X

pX(x)f0(x) =�
u(θA), −H(B|X,Z)ρ +H(S|X,Z), Ed(S, Ŝ)

�
(132)

where θA =
�
x pX(x)θxA. According to the Fenchel-

Eggleston-Carathéodory lemma [69], any point in the convex
closure of a connected compact set within Rd belongs to
the convex hull of d points in the set. Since the map F0 is
linear, it maps the set of distributions on X to a connected
compact set in R

L0 . Thus, for every pX , there exists a
probability distribution pX̄ on a subset X ⊆ X of size
L0, such that F0(pX̄) = F0(pX). We deduce that alphabet
size can be restricted to |X | ≤ L0, while preserving θA
and ρB ≡

�
s q(s)N (s)(θA); I(X,Z;B)ρ − I(Z;S|X) =

H(B)ρ −H(B|X,Z)ρ +H(S|X,Z)−H(S); and Ed(S, Ŝ).
We move to the alphabet size of Z . Fix pX,S|Z , where

pX,S|Z(x, s|z) ≡
q(s)pX(x)pZ|X,S(z|x, s)�

s�∈S q(s	)
�
x�∈S pX(x	)pZ|X,S(z|x	, s	) . (133)

Define the map f1 : Z → RL1 by

f1(z) =
�
pS|Z(·|z), −H(B|X,Z = z)ρ +H(S|X,Z = z),

E[d(S, Ŝ)|Z = z]
�
. (134)

Now, the extended map is

F1 : pZ �→
�
z∈Z

pZ(z)f1(z) =�
q(·), −H(B|X,Z)ρ +H(S|X,Z), Ed(S, Ŝ)

�
. (135)

By the Fenchel-Eggleston-Carathéodory lemma [69], for
every pZ , there exists pZ̄ on a subset Z ⊆ Z of size L1,
such that F1(pZ̄) = F1(pZ). We deduce that alphabet size
can be restricted to |Z| ≤ L1, while preserving q(s), ρB ,
I(X,Z;B)ρ − I(Z;S|X), and Ed(S, Ŝ).

APPENDIX C
PROOF OF THEOREM 3

Consider a random-parameter quantum channel NSA→B

with strictly-causal CSI.
Part 1:

A. Achievability Proof

We show that for every ζ0, ε0, δ0 > 0, there exists a
(2n(R−ζ0), n, ε0, D+δ0) code for NSA→B with strictly-causal
CSI, provided that (R,D) ∈ Rs-c(N ). To prove achievability,
we extend the classical block Markov coding to the quantum
setting, and then apply the quantum packing lemma and the
classical covering lemma. We use the gentle measurement
lemma [60], which guarantees that multiple decoding mea-
surements can be performed without “destroying” the output
state.

Recall that with strictly-causal CSI, the encoder has access
to the sequence of past parameters s1, s2, . . . , si−1. Let

{pX(x)pZ|X,S(z|x, s), θxA} be a given ensemble, and fix a set
of POVMs {ΓŝB|x,z} such that�
s,ŝ,x,z

q(s)pX(x)pZ|X,S(z|x, s)Tr(ΓŝB|x,zN (s)(θxA))d(s, ŝ)

≤ D. (136)

Define the average states

ρxB =
�
s∈S

q(s)N (s)(θxA), for x ∈ X , (137)

ρB =
�
x∈X

pX(x)ρxB (138)

We will also consider the a posteriori probability distribu-
tion, conditioning on Z = z:

p̂X,S|Z(x, s|z) =
q(s)pX(x)pZ|X,S(z|x, s)�

x�∈X
�
s�∈S q(s	)pX(x	)pZ|X,S(z|x	, s	) . (139)

Then, the corresponding output state is

σx,zB =
�
s∈S

p̂S|Z,X(s|z, x)N (s)(θxA). (140)

We use T transmission blocks, where each block consists
of n input systems. In particular, with strictly-causal CSI,
the encoder has access to the parameter sequences from the
previous blocks. In effect, the jth transmission block encodes
a message mj ∈ [1 : 2nR] and a compression of the parameter
sequence snj−1 from the previous block, for j ∈ [2 : T ].

The code construction, encoding and decoding procedures
are described below.

1) Classical Code Construction: Let δ > 0, Rs > 0,
and �Rs > 0 such that Rs < �Rs. For every j ∈ [2 : T ],
select 2n(R+Rs) independent sequences xnj (mj , �j−1), mj ∈
[1 : 2nR], �j−1 ∈ [1 : 2nRs ], at random according to�n
i=1 pX(xj,i). For every mj ∈ [1 : 2nR] and �j−1 ∈

[1 : 2nRs ], select 2n�Rs conditionally independent sequences
znj (kj |mj , �j−1), kj ∈ [1 : 2n�Rs ], at random according to�n
i=1 pZ|X(zj,i|xj,i(mj , �j−1)). For j = 1, set �0 ≡ 1, and

select xn1 (m1, 1) and zn1 (k1|m1, 1) in the same manner, for
(m1, k1) ∈ [1 : 2nR] × [1 : 2n�Rs ]. We have thus defined the
classical codebooks

B(j) = {(xnj (mj , �j−1), znj (kj |mj , �j−1))}, j ∈ [1 : T ]
(141)

with mj ∈ [1 : 2nR], �j−1 ∈ [1 : 2nRs ], kj ∈ [1 : 2n �Rs ].
Partition the set of indices [1 : 2n �Rs ] into bins K(�j) =

[(�j−1)2n(�Rs−Rs)+1 : �j2n(�Rs−Rs)] of equal size 2n(�Rs−Rs).
2) Encoding and Decoding: To send the messages (mj),

given the parameter sequences (sn1 , . . . , snj−1), Alice performs
the following.

(i) At the end of block j, find an index kj ∈ [1 : 2n�Rs ] such
that (snj , z

n
j (kj |mj , �j−1), xnj (mj , �j−1)) ∈ Aδ(pS,X,Z),

where pS,X,Z(s, x, z) = q(s)pX(x)pZ|X,S(z|x, s).
If there is none, select kj arbitrarily, and if there is more
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than one such index, choose the smallest. Set �j to be
the bin index of kj , i.e. such that kj ∈ K(�j).

(ii) In block j + 1, prepare ρAn
j+1

=
*n

i=1 θ
xj+1,i(mj+1,�j)
A

and send the block Anj+1.

Bob receives the systems Bn1 , . . . , B
n
T in the state

ρBTn =
T�
j=1

n�
i=1

ρ
xj+1,i(mj+1,�j)
B (142)

and decodes as follows.

(i) At the end of block j+1, decode (m̂j+1, �̂j) by applying
a POVM
{Λ1

mj+1,�j
}(mj+1,�j)∈[1:2nR]×[1:2nRs ], which will be spec-

ified later, to the systems Bnj+1, for j = 0, 1, . . . , T − 1.
(ii) Decode k̂j by applying a second POVM

{Λ2
kj |xn(m̂j+1,�̂j)

}kj∈K(�̂j)
, which will also be specified

later, to the systems Bnj .
(iii) Reconstruct the parameter sequence by applying the

POVM Γŝj,i

B|xj,i,zj,i
to the system Bj,i with xj,i ≡

xj,i(m̂j , �̂j−1) and zj,i ≡ zj,i(k̂j |m̂j , �̂j−1), for
j ∈ [1 : T ] and i ∈ [1 : n].

3) Analysis of Probability of Error and Distortion: By
symmetry, we may assume without loss of generality that
Alice sends the message Mj = 1 using Lj = Lj−1 = 1,
for j ∈ [1 : T ]. Consider the following events,

E1(j) = {(Sn, Xn(1, 1), Zn(kj |1, 1)) /∈ Aδ1(pS,X,Z),

for all kj ∈ [1 : 2n �Rs ]} (143)

E2(j) = {(M̂j, L̂j−1) �= (1, 1)} (144)

E3(j) = {K̂j �= Kj} (145)

E4(j) = {dn(Snj , Ŝnj ) > D +
1
2
δ0} (146)

with δ1 ≡ δ/(2|S||Z|). By the union of events bound, the
probability of error is bounded by

P
(Tn)
e|m=1(ρAT n ,ΛBTn)

≤
T�
j=1

Pr (E1(j)) +
T−1�
j=0

Pr (E2(j + 1) | E c
1 (j) ∩ E c

1 (j + 1))

+
T−1�
j=0

Pr (E3(j + 1) | E c
1 (j) ∩ E c

1 (j + 1) ∩ E c
2 (j + 1))

+
T−1�
j=0

Pr
�
E4(j + 1) | E c

1 (j) ∩ E c
1 (j + 1)

∩ E c
2 (j + 1) ∩ E c

3 (j + 1)
�

(147)

where the conditioning on Mj = Lj = Lj−1 = 1 is omitted
for convenience of notation. By the classical covering lemma,
the probability terms Pr (E1(j)) tend to zero as n→ ∞ for

�Rs > I(X,Z;S) + ε1(δ) = I(Z;S|X) + ε1(δ) (148)

where the last equality holds since the random variables X
and S are statistically independent, using the notation εi(δ)
for terms that tend to zero as δ → 0.

To bound the second sum, we use the quantum packing
lemma. Given E c

1 (j), we have that Xn(1, 1) ∈ Aδ/2(pX).
Now, observe that

Πδ(ρB)ρBnΠδ(ρB) � 2−n(H(B)ρ−ε2(δ))Πδ(ρB) (149)

Tr
�
Πδ(ρB |xn)ρx

n

Bn

�
≥ 1 − ε2(δ) (150)

Tr
+
Πδ(ρB|xn)

,
≤ 2n(H(B|X)ρ+ε2(δ)) (151)

Tr
�
Πδ(ρB)ρx

n

Bn

�
≥ 1 − ε2(δ) (152)

for all xn ∈ Aδ1 (pX), by (103), (109), (111), and (112),
respectively. Since the codebooks are statistically independent
of each other, we have by Lemma 12 that there exists a POVM
Λ1
mj+1,�j

such that Pr (E2(j + 1) | E c
1 (j) ∩ E c

1 (j + 1)) ≤
2−n(I(X;B)ρ−(R+Rs)−ε3(δ)), which tends to zero as n → ∞,
provided that

R < I(X ;B)ρ −Rs − ε3(δ). (153)

Moving to the third sum in the RHS of (147), suppose that
E c

2 (j+ 1) occurred, namely the decoder measured the correct
Mj+1 and Lj . Denote the state of the systems Bnj after this
measurement by ρ	Bn

j
. Then, observe that due to the packing

lemma inequality (119), Lemma 13 (the gentle measurement
lemma) implies that the post-measurement state is close to the
original state in the sense that

1
2

---ρ	Bn
j
− ρBn

j

---
1
≤ 2−n

1
2 (I(X;B)ρ−(R+Rs)−ε4(δ)) ≤ ε5(δ)

(154)

for sufficiently large n and rates as in (153). Therefore, the
distribution of measurement outcomes when ρ	Bn

j
is measured

is roughly the same as if the POVM Λ1
mj+1,�j

was never per-
formed. To be precise, the difference between the probability
of a measurement outcome 	kj when ρ	Bn

j
is measured and the

probability when ρBn
j

is measured is bounded by ε5(δ) in
absolute value [27, Lemma 9.11]. Furthermore,

Tr
�
Πδ(ρB |xn, zn)σx

n,zn

Bn

�
≥ 1 − ε6(δ) (155)

Πδ(ρB|xn)ρx
n

BnΠδ(ρB |xn) � 2−n(H(B|X)ρ−ε6(δ))Πδ(ρB |xn)
(156)

Tr
+
Πδ(ρB|xn, zn)

,
≤ 2n(H(B|X,Z)ρ+ε6(δ)) (157)

Tr
�
Πδ(ρB|xn)σx

n,zn

Bn

�
≥ 1 − ε6(δ) (158)

for all (xn, zn) ∈ Aδ/2(pXpZ|X), by (109), (110), (111),
and (112), respectively. Therefore, we have by the packing
lemma that there exists a POVM Λ2

kj |xn such that

Pr (E3(j + 1) | E c
1 (j) ∩ E c

1 (j + 1) ∩ E c
2 (j + 1))

≤ 2−n(I(Z;B|X)ρ−( �Rs−Rs)−ε7(δ)) (159)

which tends to zero as n→ ∞, provided that

Rs > �Rs−I(Z;B|X)ρ + ε7(δ). (160)

It remains to verify that the distortion requirement is satis-
fied. Suppose that E c

3 (j + 1) occurred, namely the decoder
measured the correct Kj+1. Denote the post-measurement
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state by ρ		Bn
j

. As before, the gentle measurement lemma
guarantees that the difference between the probability of a
measurement outcome 	s when ρ		Bn

j
is measured and the prob-

ability when ρ	Bn
j

is measured is bounded by ε5(δ) in absolute
value. Therefore, given E c

1 (j)∩E c
1 (j+1)∩E c

2 (j+1)∩E c
3 (j+1),

the parameter sequence Snj+1 and the reconstruction Ŝnj+1 have
a product distribution that is 2ε5(δ)-close to

Pr
�
S = s, Ŝ = ŝ

�
= q(s)

�
x,z

pX(x)pZ|X(z|x)

· Tr(ΓŝB|x,zN (s)(θxA)). (161)

By (136), the distribution above satisfies Ed(S, Ŝ) ≤ D,
hence the last term tends to zero as n → ∞ by the law of
large numbers. By the law of total expectation,

EdTn(STn, ŜTn)

≤
T�
j=1

Pr (E1(j) ∪ E2(j) ∪ E3(j) ∪ E4(j)) dmax +D +
1
2
δ0.

(162)

Thereby, the asymptotic average distortion is bounded by
(D+ δ0) and the probability of error tends to zero as n→ ∞
for rates that satisfy (148), (153), and (160), which requires

R < I(X ;B)ρ − (I(Z;S|X) − I(Z;B|X)ρ
+ ε1(δ) + ε7(δ)) − ε3(δ)
= I(X,Z;B)ρ − I(Z;S|X)− ε8(δ). (163)

To show that rate-distortion pairs in 1
κRs-c(N⊗κ) are

achievable as well, one may employ the coding scheme above
for the product channel N⊗κ, where κ is arbitrarily large. This
completes the proof of the direct part.

B. Converse Proof

Consider the converse part for the regularized capacity
formula. As can be seen below, a regularized converse is
straightforward. Let M be a uniformly distributed message.
Suppose that at time i ∈ [1 : n], Alice sends ρm,s

i−1

Ai
over

the channel. After Alice sends the systems An through the
channel, Bob receives the systems Bn in the state ρBn =

1
2nR

�2nR

m=1

�
sn∈Sn qn(sn)N (sn)(F(m, sn)) with

FM,Sn→An =
n�
i=1

F (i)
M,Si−1→Ai

. (164)

Then, Bob performs a decoding POVM Λm,ŝ
n

Bn .
Consider a sequence of codes (FMSn→An ,ΛBn) such that

the average probability of error tends to zero and the distortion
requirement holds. That is,

Pr
�
M̂ �= M

�
≤ αn, (165)

and

Δ(n)(F ,Λ) ≤ D. (166)

By Fano’s inequality, (165) implies that H(M |M̂) ≤ nεn,
where εn tends to zero as n→ ∞. Hence,

nR = H(M) ≤ I(M ; M̂)ρ + nεn ≤ I(M ;Bn)ρ + nεn

(167)

where the last inequality follows from the Holevo bound
[66, Theorem 12.1]. Since M and Sn are statistically inde-
pendent, we can write the last bound as

R ≤ 1
n

[I(M ;Bn)ρ − I(M ;Sn)] + εn

=
1
n

[I(Xn, Zn;Bn)ρ − I(Xn, Zn;Sn)] + εn

(168)

for Xn = f(M) and Zn = ∅, where f is an arbitrary one-to-
one map from [1 : 2nR] to Xn.

As for the distortion requirement,

D ≥ Δ(n)(E ,Λ) = Edn(Sn, Ŝn)

= P (n)
e (ρAn ,ΛBn)E[dn(Sn, Ŝn) | M̂ �= M ]

+ (1 − P (n)
e (ρAn ,ΛBn))E[dn(Sn, Ŝn) | M̂ = M ]

≥ (1 − P (n)
e (ρAn ,ΛBn))E[dn(Sn, Ŝn) | M̂ = M ]

≥ (1 − αn)E[dn(Sn, Ŝn) | M̂ = M ] (169)

where we have used the law of total expectation in the second
line, and (165) in the last line. Thus,

D ≥ E[dn(Sn, Ŝn) | M̂ = M ] − αndmax

=
�
sn∈Sn

�
ŝn∈ �Sn

dn(sn, ŝn)qn(sn)

· 1
2nR

2nR�
m=1

Tr
�
Λm,ŝ

n

Bn N (sn)
An→Bn(ρm,s

n

An )
�
− αndmax (170)

=
�
sn∈Sn

�
xn∈Xn

�
ŝn∈�Sn

qn(sn)pXn(xn)

· Tr(Γŝ
n

Bn|xnρ
sn,xn

Bn )dn(sn, ŝn) (171)

with Γŝ
n

Bn|f(m) ≡ Λm,ŝ
n

Bn . This concludes the converse proof
for part 1.

Part 2: Now, we consider the quantum-classical special
case of a measurement channel MSA→Y . The direct part
follows from part 1, taking κ = 1. It remains to prove the
converse part, which we show by extending the methods of
Choudhuri et al. [3].

By (167) and the chain rule for classical mutual information,
we have

nR ≤ I(M ;Y n) + nεn =
n�
i=1

I(M ;Yi|Y ni+1) + nεn. (172)

We can rewrite the bound above as

R− εn

≤ 1
n

n�
i=1

[I(M,Si−1;Yi|Y ni+1) − I(Si−1;Yi|M,Y ni+1)]
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=
1
n

n�
i=1

[I(M,Si−1;Yi|Y ni+1) − I(Y ni+1;Si|M,Si−1)]

≤ 1
n

n�
i=1

[I(M,Si−1, Y ni+1;Yi) − I(Y ni+1;Si|M,Si−1)]

(173)

where the equality follows from the Csiszár sum identity
[71, Section 2.3]. Since the pair (M,Si−1) is statistically inde-
pendent of Si, we have I(Y ni+1;Si|M,Si−1) = I(M,Si−1,
Y ni+1;Si), hence

R− εn ≤ 1
n

n�
i=1

[I(Xi, Zi;Yi) − I(Xi, Zi;Si)] (174)

where we have defined Xi = (M,Si−1) and Zi = Y ni+1. Thus,

R− εn ≤ I(X,Z;Y |J) − I(X,Z;S|J) (175)

with

X ≡ XJ , S = SJ , Y = YJ , Ŝ = ŜJ (176)

where J is uniformly distributed over [1 : n], and inde-
pendent of (M,Sn). Then, defining X 	 = (X, J), we have
that I(X,Z;Y |J) ≤ I(X 	, Z;Y ) and I(X,Z;S|J) =
I(X 	, Z;S) = I(Z;S|X 	), hence R − εn ≤ I(X 	, Z;Y ) −
I(Z;S|X 	).

As for the distortion level,

D ≥ Edn(Sn, Ŝn) =
1
n

n�
i=1

Ed(Si, Ŝi) = Ed(S, Ŝ) (177)

where the first equality holds since the distortion measure
is additive (see (11)), and the second follows from the def-
inition of S and Ŝ in (176). This completes the proof of
Theorem 3.

APPENDIX D
PROOF OF THEOREM 5

Since the proof is similar to that of Theorem 3 in
Appendix C, we only give an outline. The converse proof in
part 1 follows the same arguments, and it is thus omitted. Mov-
ing to the achievability proof, we need to show that for every
ζ0, ε0, δ0 > 0, there exists a (2n(R−ζ0), n, ε0, D+δ0) code for
NSA→B with causal CSI, provided that (R,D) ∈ Rcaus(N ).
Here, the encoder has access to the sequence of past and
present parameters s1, s2, . . . , si. Let {pX(x)pZ|X(z|x), θxG}
be a given ensemble, and fix the channels F (s)

G→A and set of
POVMs {ΓŝB|x,z} such that�
s,ŝ,x,z

q(s)pX(x)pZ|X,S(z|x, s)Tr(ΓŝB|x,zV(s)(θxG))d(s, ŝ)

≤ D. (178)

where the channel V(s)
G→B is defined by

V(s)(ρG) = N (s)(F (s)(ρG)). (179)

Then, define the average states

ρxB =
�
s∈S

q(s)V(s)(ρxG) (180)

ρB =
�
x∈X

pX(x)ρxB (181)

and

σx,zB =
�
s∈S

pS|X,Z(s|x, z)V(s)(θxG) (182)

for x ∈ X and z ∈ Z .
We use T transmission blocks, where each block consists

of n input systems. The code construction, encoding and
decoding procedures are described below.

Classical Code Construction: The classical code construc-
tion is the same as in the previous proof: Select i.i.d sequences
xnj (mj , �j−1) according to pX , and then for every (mj , �j−1),
select conditionally independent sequences znj (kj |mj , �j−1)
according to pZ|X , where mj ∈ [1 : 2nR], �j−1 ∈ [1 : 2nRs ],
kj ∈ [1 : 2n�Rs ]. Partition the set of indices [1 : 2n�Rs ] into bins
K(�j) of equal size 2n(�Rs−Rs).

Encoding and Decoding: To send the messages (mj), given
the parameter sequences (sn1 , . . . , s

n
j ), Alice performs the

following.

(i) Let �0 = 1. At the end of block j, find an index
kj ∈ [1 : 2n�Rs ] such that (snj , z

n
j (kj |mj , �j−1),

xnj (mj , �j−1)) ∈ Aδ(pS,Z,X), where pS,X,Z(s, x, z) =
q(s)pX(x) ·pZ|X,S(z|x, s). If there is none, select kj
arbitrarily, and if there is more than one, choose the
smallest. Set �j to be the bin index of kj , i.e. such that
kj ∈ K(�j).

(ii) In block j + 1, prepare ρAn
j+1

=
*n

i=1 F (sj+1,i)

(θxj+1,i(mj+1,�j)
G ) and send the block Anj+1.

Bob receives the systems Bn1 , . . . , B
n
T in the state

ρBT n =
T�
j=1

n�
i=1

ρ
xj+1,i(mj+1,�j)
B . (183)

Observe that this is the same state as in (142) where the
channel N (s) is replaced by V(s). Thus, Bob can decode
reliably and satisfy the distortion requirement, provided that

R <I(X,Z;B)ρ − I(X,Z;S) − ε(δ). (184)

This concludes the proof of part 1.
Part 2 also follows from a similar derivation as in

Appendix C, except that now, the state of the input system Ai
depends on (m, si−1, si) = (xi, si). Hence, we choose the sys-
tem Gi to be classical, with θxi

Gi
≡ |xi��xi|, and then we define

the channel Fsi

Gi→Ai
as a preparation channel. Specifically,

given the knowledge of xi = (m, si−1) from the state of Gi,
the channel Fsi

Gi→Ai
prepares the state ρm,s

i−1,si

Ai
= ρxi,si

Ai
.

APPENDIX E
PROOF OF THEOREM 6

Consider a random-parameter quantum channel NSA→B

with non-causal CSI at the encoder. We show that for every
ζ0, ε0, δ0 > 0, there exists a (2n(R−ζ0), n, ε0, D + δ0) code
for NSA→B with non-causal CSI, provided that (R,D) ∈
Rn-c(N ). To prove achievability, we use an extension of the
classical binning technique to the quantum setting, and then
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apply the quantum packing lemma and the classical covering
lemma.

Recall that with non-causal CSI, the encoder has access to
the entire sequence of parameters s1, s2, . . . , sn a priori. Let
{pX|S(x|s), θxA} be a given ensemble, and fix a set of POVMs
{ΓŝB|x} such that�
s,ŝ,x,z

q(s)pX|S(x|s)Tr(ΓŝB|xN (s)(θxA))d(s, ŝ) ≤ D. (185)

Define the average states

ρxB =
�
s∈S

q(s)N (s)(ρxA) =
�
s∈S

q(s)σx,sB (186)

with

σx,sB = N (s)(θx,sA ) (187)

for x ∈ X .
The code construction, encoding and decoding procedures

are described below.
Classical Code Construction: Let δ > 0 and �Rs > 0. Select

2n(R+�Rs) independent sequences xn(m, �), m ∈ [1 : 2nR],
� ∈ [1 : 2n�Rs ], at random according to

�n
i=1 pX(xi).

Encoding and Decoding: To send the message m, given the
parameter sequence sn, Alice performs the following.

(i) Find an index � ∈ [1 : 2n�Rs ] such that (sn, xn(m, �)) ∈
Aδ(pS,X), where pS,X(s, x) = q(s)pX|S(x|s). If there
is none, select � arbitrarily, and if there is more than one
such index, choose the smallest.

(ii) Transmit ρm,�An =
*n

i=1 θ
xi(m,�)
A

Bob receives the systems Bn in the state

ρBn =
n�
i=1

ρ
xi(m,�)
B (188)

and decodes as follows.

(i) Decode (m̂, �̂) by applying a POVM
{Λm,�}(m,�)∈[1:2nR]×[1:2n �Rs ], which will be specified
later.

(ii) Reconstruct the parameter sequence by applying the
POVM Γŝi

B|xi
to the system Bi with xi ≡ xi(m̂, �̂), for

i ∈ [1 : n].
Analysis of Probability of Error and Distortion: By sym-

metry, we may assume without loss of generality that Alice
sends the message M = 1 using L. Consider the following
events,

E1 = {(Sn, Xn(1, �)) /∈ Aδ(pS,X), for all � ∈ [1 : 2n �Rs ]}
(189)

E2 = {(M̂, L̂) �= (1, L)} (190)

E3 = {dn(Sn, Ŝn) > D +
1
2
δ0}. (191)

By the union of events bound, the probability of error is
bounded by

P
(n)
e|m=1(ρAn ,ΛBn) ≤ Pr (E1) + Pr (E2 | E c

1 )

+ Pr (E3 | E c
1 ∩ E c

2 ) (192)

where the conditioning on M = 1 is omitted for convenience
of notation. By the classical covering lemma, the first term
tends to zero as n→ ∞ for�Rs > I(X ;S) + ε1(δ). (193)

To bound the second term, we use the quantum packing
lemma. Given E c

1 , we have that Xn(1, L) ∈ Aδ1(pX), with
δ1 � δ|S||Z|. Now, observe that

Πδ(ρB)ρBnΠδ(ρB) � 2−n(H(B)ρ−ε2(δ))Πδ(ρB) (194)

Tr
�
Πδ(ρB |xn)ρx

n

Bn

�
≥ 1 − ε2(δ) (195)

Tr
+
Πδ(ρB|xn)

,
≤ 2n(H(B|X)ρ+ε2(δ)) (196)

Tr
�
Πδ(ρB)ρx

n

Bn

�
≥ 1 − ε2(δ) (197)

for all xn ∈ Aδ1 (pX), by (103), (109), (111), and (112),
respectively. Thus, by Lemma 12, there exists a POVM Λm,�
such that Pr (E2 | E c

1 ) ≤ 2−n(I(X;B)ρ−(R+ �Rs)−ε3(δ)), which
tends to zero as n→ ∞, provided that

R < I(X ;B)ρ − �Rs − ε3(δ). (198)

Moving to the third sum in the RHS of (192), suppose
that E c

2 occurred, i.e. the decoder measured the correct M
and L. Then, due to the packing lemma inequality (119)
and Lemma 13 (the gentle measurement lemma), the post-
measurement state ρ	Bn is close to the original state ρBn in
the sense that

1
2
�ρ	Bn − ρBn�1 ≤ 2−n

1
2 (I(X;B)ρ−(R+Rs)−ε4(δ)) ≤ ε5(δ)

(199)

for sufficiently large n and rates as in (198). Thus, the
difference between the probability of a measurement out-
come ŝ when ρ	Bn is measured and the probability when
ρBn is measured is bounded by ε5(δ) in absolute value
[27, Lemma 9.11].

Therefore, given E c
1 ∩ E c

2 ∩ E c
3 , the parameter sequence

Sn and the reconstruction Ŝn have a product distribution
according to

Pr
�
S = s, Ŝ = ŝ

�
=

q(s)
�
x,z

pX(x)pZ|X(z|x)Tr(ΓŝB|x,zρ
s
B) ± ε5(δ). (200)

By (185), the distribution above satisfies Ed(S, Ŝ) ≤ D,
hence the last term, Pr (E3 | E c

1 ∩ E c
2 ), tends to zero as

n→ ∞ by the law of large numbers. It follows by the law of
total expectation,

Edn(Sn, Ŝn) ≤ Pr (E1 ∪ E2 ∪ E3) dmax +D +
1
2
δ0. (201)

Thereby, the asymptotic average distortion is bounded by
(D+ δ0) and the probability of error tends to zero as n→ ∞
for rates that satisfy (193) and (198), which requires

R <I(X ;B)ρ − I(X ;S)− ε1(δ) − ε3(δ). (202)

To show that rate-distortion pairs in 1
κRn-c(N⊗κ) are

achievable as well, one may employ the coding scheme above
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for the product channel N⊗κ, where κ is arbitrarily large. This
completes the proof of the direct part.

The converse part follows by the same arguments as in the
previous proofs, and it is thus omitted.

APPENDIX F
PROOF OF THEOREM 7

Consider a random-parameter quantum channel NSA→B

without CSI.
Part 1: Given our previous analysis, the proof of part 1

is straightforward. Achievability is shown using the coding
scheme in the proof of Theorem 6 in Appendix E with the
following modifications. The random variable X is statistically
independent of the random parameter, i.e. pX|S is replaced
by pX . The input state does not depend on the random parame-
ter, hence θx,sA is replaced by θxA. Set �Rs → 0. Hence, � ≡ 1,
the encoding stage (i) is no longer necessary, and the error
event E1 can be ignored. Then, by the same considerations as
in Appendix E, we have that the asymptotic average distortion
is bounded by (D + δ0) and the probability of error tends to
zero as n→ ∞, provided that

R < I(X ;B)ρ − ε3(δ). (203)

To show that rate-distortion pairs in 1
κR(N⊗κ) are achiev-

able as well, employ this coding scheme for the product
channel N⊗κ. The details are omitted.

The converse proof also follows similar arguments as in
the previous proofs. Suppose that Alice sends ρmAn over the
channel. Bob receives the systems Bn in the state ρBn =

1
2nR

�2nR

m=1

�
sn∈Sn qn(sn)ρm,s

n

Bn , with

ρm,s
n

Bn ≡ N (sn)(ρmAn) (204)

and then, performs a decoding POVM Λm,ŝ
n

Bn . Now, consider
a sequence of codes (EM→An , ΛBn) such that the average
probability of error tends to zero and the distortion requirement
holds. That is,

P (n)
e (E ,Λ) ≤ αn, (205)

and

Δ(n)(E ,Λ) ≤ D. (206)

By Fano’s inequality, (205) implies that H(M |M̂) ≤ nεn,
where εn tends to zero as n→ ∞. Hence,

nR = H(M) ≤ I(M ; M̂)ρ + nεn ≤ I(M ;Bn)ρ + nεn

(207)

where the last inequality follows from the Holevo bound [66,
Theorem 12.1]. Thus,

R ≤ 1
n
I(M ;Bn)ρ + εn =

1
n
I(Xn;Bn)ρ + εn (208)

for Xn = f(M) where f is an arbitrary one-to-one map from
[1 : 2nR] to Xn.

As for the distortion requirement,

D ≥ Δ(n)(E ,Λ) = Edn(Sn, Ŝn)

= P (n)
e (ρAn ,ΛBn)E[dn(Sn, Ŝn) | M̂ �= M ]

+ (1 − P (n)
e (ρAn ,ΛBn))E[dn(Sn, Ŝn) | M̂ = M ]

≥ (1 − P (n)
e (ρAn ,ΛBn))E[dn(Sn, Ŝn) | M̂ = M ]

≥ (1 − αn)E[dn(Sn, Ŝn) | M̂ = M ] (209)

where we have used the law of total expectation in the second
line, and (205) in the last line. Thus,

D ≥ E[dn(Sn, Ŝn) | M̂ = M ] − αndmax

=
�
sn∈Sn

�
ŝn∈ �Sn

dn(sn, ŝn)qn(sn)

· 1
2nR

2nR�
m=1

Tr
�
Λm,ŝ

n

Bn N (sn)
An→Bn(ρmAn)

�
− αndmax (210)

=
�
sn∈Sn

�
xn∈Xn

�
ŝn∈�Sn

qn(sn)pXn(xn)

· Tr(Γŝ
n

Bn|xnρ
sn,xn

Bn )dn(sn, ŝn) (211)

with Γŝ
n

Bn|f(m) ≡ Λm,ŝ
n

Bn .
The union in (56) is restricted to pure states θxA = |φxA��φxA|

with |X | ≤ |HA|2 +1, based on the same arguments as in the
proof of Lemma 2 in Appendix B. This concludes the converse
proof for part 1.

Part 2: Now, we consider an entanglement-breaking chan-
nel. The direct part follows from part 1, taking κ = 1.
It remains to prove the converse part, which we show by
extending the methods of Wang et al. [58]. By (207), we have

R ≤ 1
n
I(M ;Bn)ρ + εn

=
1
n

n�
i=1

I(M ;Bi|Bi−1)ρ

≤ 1
n

n�
i=1

I(M,Bi−1;Bi)ρ (212)

by the chain rule. Without CSI, the channel input systems An

have no correlation with the channel parameter sequence Sn.
As the channel is memoryless, it follows that Bi and Si−1 are
in a product state. Then,

I(M,Bi−1;Bi)ρ ≤ I(M,Bi−1, Si−1;Bi)ρ
= I(M,Bi−1;Bi|Si−1)ρ + I(Si−1;Bi)ρ
= I(M,Bi−1;Bi|Si−1)ρ (213)

where the last equality holds since I(Si−1;Bi)ρ = 0.
If the random-parameter quantum channel is entanglement

breaking, then N (s)
A→B can be presented as a concatenation

of a measurement channel, followed by a state-preparation
channel, i.e.

N (s)
A→B = P(s)

Ys→B ◦M(s)
A→Ys

where Ys is classical, for s ∈ S (see Subsection II-B).
Therefore, by the quantum data processing theorem due to
Schumacher and Nielsen [68] [27, Theorem 11.9.4],

I(M,Bi−1;Bi|Si−1 = si−1)ρ ≤
I(M,Y i−1

si−1 ;Bi|Si−1 = si−1)ρ. (214)
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By (212)- (214), we have

R− εn ≤ 1
n

n�
i=1

I(M,Y i−1
Si−1 ;Bi|Si−1)ρ

≤ 1
n

n�
i=1

I(Xi;Bi)ρ (215)

with Xi ≡ (M,Y i−1
Si−1 , S

i−1). Define

X ≡ XJ , S ≡ SJ , Ŝ ≡ ŜJ (216)

where J is a classical time-sharing variable that is uniformly
distributed over [1 : n]. Observe that for this choice of X , we
have

ρXB ≡
�
x

pX(x)|x��x| ⊗ N (φxA)

=
1
n

n�
i=1

�
xi

pXi(xi)|xi��xi| ⊗ N (σxi

Ai
) (217)

where σ
m,yi−1

si−1 ,s
i−1

Ai
= ρmAi

. Thus, by (215),

R ≤ I(X ;B|J)ρ + εn ≤ I(X 	;B) + εn (218)

with X 	 ≡ (X, J).
As for the distortion,

D ≥ Edn(Sn, Ŝn) =
1
n

n�
i=1

Ed(Si, Ŝi) = Ed(S, Ŝ) (219)

where the first equality holds since the distortion measure is
additive (see (11)), and the second follows from the definition
of S and Ŝ in (216). This completes the proof of Theorem 7.
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