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BACKGROUND

Recently, there is growing interest in how quantum entanglement
can assist classical networks.
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BACKGROUND

Recently, there is growing interest in how quantum entanglement
can assist classical networks.

Single user:

o Entanglement resources do not increase the capacity of a
classical channel [Bennett et al. 2002]

* ... but can increase the zero-error capacity [Leung et al., 2012]
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BACKGROUND (CONT.)

Multi-user:

o multiple-access channel (MAC):
entanglement resources between two transmitters can
increase achievable rates!
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BACKGROUND (CONT.)

Multi-user:

o multiple-access channel (MAC):
entanglement resources between two transmitters can
increase achievable rates!

> pseudo-telepathy examples [Leditzky et al. 2020]
[Seshadri et al. 2022] [Doolittle et al. 2022]

» AVC Bell-violation example (with an adversary) [N6tzel 2020]
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BACKGROUND (CONT.)

o non-signaling correlation can increase achievable rates

» interference channels [Quek and Shor, 2017]
» binary adder channel [Fawzi and Fermé, 2022]
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BACKGROUND (CONT.)

o broadcast: entanglement resources between two receivers
cannot increase achievable rates [Pereg et al. 2021]
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BACKGROUND (CONT.)
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broadcast: entanglement resources between two receivers
cannot increase achievable rates [Pereg et al. 2021]™

... but can improve sensitivity in sensing
[Zhang and Zhuang, 2021]
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BACKGROUND (CONT.)

Conferencing transmitters (very partial list)

o classical channels [Willems, 1983]

o c-q channels [Boche and Notzel, 2014]
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MAIN CONTRIBUTIONS

We consider communication over a two-user classical MAC with
entanglement resources shared between the transmitters, a
priori before communication begins.

m the capacity region of the general MAC
m show that previous results can be obtained as a special case

m As opposed to the classical setting [Dueck 1978], the capacity
region is remains the same, whether we consider a
message-average or a maximal error criterion
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MAIN CONTRIBUTIONS

We consider communication over a two-user classical MAC with
entanglement resources shared between the transmitters, a
priori before communication begins.

m the capacity region of the general MAC
m show that previous results can be obtained as a special case

m As opposed to the classical setting [Dueck 1978], the capacity
region is remains the same, whether we consider a
message-average or a maximal error criterion

m Conferencing transmitters
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Channel Model




CODING WITH ENTANGLEMENT RESOURCES

We consider a classical multiple-access channel, Py |y, x,.
Usually, in the classical model,
m Encoder 1 maps the message m; to a codeword =
Encoder 2 maps the message ms to a codeword z7%

Fioll, My — AP
fg :{1, A ,]\/fg} — XQTL
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CODING WITH ENTANGLEMENT RESOURCES

We consider a classical multiple-access channel, Py |y, x,.
Usually, in the classical model,
m Encoder 1 maps the message m; to a codeword =
Encoder 2 maps the message ms to a codeword z7%

Fioll, My — AP
fg :{1, - ,]\/fg} — XQTL

m The codewords z7, x5 are sent through n channel uses of
Py x, x,
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CODING WITH ENTANGLEMENT RESOURCES

We consider a classical multiple-access channel, Py |y, x,.

Usually, in the classical model,
m Encoder 1 maps the message m; to a codeword =

Encoder 2 maps the message ms to a codeword z7%

fi{l,... M} — AT
fg :{1, A ,]\/fg} — XQn
m The codewords z7, x5 are sent through n channel uses of
PY\XL,XQ
m The decoder maps the channel output y™ to an estimation

(11, M)
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CODING WITH ENTANGLEMENT RESOURCES (CONT.)

Here, the senders share an entangled state ¥, , a priori.

mi "
T
E, F1
|)
B .
i)
my | 7

PY|X17X2

Yn

Decoder

Ty, Ty
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CODING WITH ENTANGLEMENT RESOURCES (CONT.)

Hence, an (M;, M5, n) code for the classical MAC with entangled
transmitters consists of

m an entangled state U g, g, that is shared between the
transmitters.
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CODING WITH ENTANGLEMENT RESOURCES (CONT.)

Hence, an (M;, M5, n) code for the classical MAC with entangled
transmitters consists of

m an entangled state U g, g, that is shared between the
transmitters.

m two message sets [M;] and [Ms)]
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CODING WITH ENTANGLEMENT RESOURCES (CONT.)

Hence, an (M;, M5, n) code for the classical MAC with entangled
transmitters consists of

m Encoder 1 performs a measurement on Ej.
Encoder 2 performs a measurement on Fb.

Each has a collection of POVMs,
{FG atexr} and  {F§?, oy € a7}

one for each message.
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CODING WITH ENTANGLEMENT RESOURCES (CONT.)

Hence, an (M;, M5, n) code for the classical MAC with entangled
transmitters consists of

m a decoding function g : Y™ — [M;] x [Ma].
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CODING WITH ENTANGLEMENT RESOURCES (CONT.)

Thus, the joint input distribution is
p(zt, 28 |my, ma) = Tr [(Fg,m) ® F£?2)> \I/EIEQ} )
The conditional probability of error given (my, ms),

Pr(error|my, mg) =

Z Z p(x?737721|m17m2)P{/1\X17X2 (y" |2}, z5)
n

yrg(y™)#(mi,ma) | 27,05
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CODING WITH ENTANGLEMENT RESOURCES (CONT.)

The maximal probability of error is thus

P™ = max Pr(error|m;, ms)

mi,mo

Def: A rate pair (R1, Rs) is achievable if there exists a sequence
of (My, M,,n) codes such that L log(M;,) > Ry, for k € {1,2}, and
lim P =0

€
n—oo

Def: The capacity region Cet of the classical MAC with entangled
transmitters is defined as the closure of the set of achievable
pairs (Ry, Rs).
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CODING WITH ENTANGLEMENT RESOURCES (CONT.)

Remarks

m In communication, we often think of entanglement as the
quantum version of common randomness
(sharing a random key).

m Entanglement can generate common randomness.
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CODING WITH ENTANGLEMENT RESOURCES (CONT.)

Remarks

m The capacity region with common randomness is the same as
without it. That is, sharing a random key does not increase
(asymptotically optimal) achievable rates in this setting.

m Entanglement improves achievable rates.
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MAIN RESULT

Define the rate regions

Rer(Pyix,x,) =
(R1,R2) : Ry < I(Vi;Y Vo)
U Ry < I(Va;Y|VoW1)
PVPV, [VgPVo |V » PA1Ag » L1® Lo Ri+ Ry < I(ViVp;Y|Vp)
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MAIN RESULT

Define the rate regions

Rer(Pyix,x,) =

(Ri,R2) : Ry < I(V1;Y[Wa)

U Ry <I(Va;Y[VoWh)

PVPVy [VoPVa |V » PA A » L1® L2 Ri+ Ry < I(V1Vp;Y|Vp)

and

Oer(Pyx,x,) =

(Ri,R2) : Ry < I(V1;Y[Wa)

U Ry <I(Va;Y[VpW)

PVyVy Vs PA L Ag s L1@L2 R+ Ry < I(‘/l‘/Q;Y‘VO)
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MAIN RESULT

Define the rate regions

Rer(Pyx,x,) =

(RlvRQ) : Rl S I(‘/17Y|‘/0‘/2)

U Ry < I(Va;Y[VoVi)

VieWooVa, paa,, Li®L2 R+ Ry < I(Vlvg,Y‘Vb)

and

Oer(Pyx,x,) =

(R1,R2) : Ry < I(V1;Y|VuVa)

U Ry < 1V Y1)

PVyVyVa s PALAg » L1®Lo Ri+ Ry <I(ViVa;Y|Vp)
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MAIN RESULT (CONT.)

The union is over the set of all
m entangled states ¢4, 4,
m classical auxiliary variables (Vo, V1, Va) ~ pvypvi (v Pra v

m collection of POVMs {L;(z1|vg, v1) @ Lo(x2|vg, v2)}, for
vo € Vo, v € Vi, k € {1,2}.
Given such a state, variables, and POVMs, (Vj, V1, Vo, X1, X3,Y)
are distributed as

Vo (V0)Pva v (V1[00)Pvs g, (V2] V0)
- Tr [(L1(21|vo, v1) ® La(w2|vo, v2)) ¢ A, A,

Py x, x,(y|T1, 02)
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MAIN RESULT (CONT.)

Lemma

The union above is exhausted by auxiliary variables V;, V4, V5
with [Vo| < 3, |[Vi| < 3(|X1||X2| + 2), k = 1,2, and pure states

PALA; = |¢A1A2><¢A1A2 ‘
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MAIN RESULT (CONT.)

Lemma

The union above is exhausted by auxiliary variables V;, V4, V5
with [Vo| < 3, |[Vi| < 3(|X1||X2| + 2), k = 1,2, and pure states
PA A = |¢A1A2><¢A1A2"

The proof of the lemma is based on purification, perturbation,
and the support lemma (Fenchel-Eggleston-Carathéodory)

Ay &) Helen Diller
14 Y TECHNION | | 1) 0 antum Center



MAIN RESULT (CONT.)

Lemma

The union above is exhausted by auxiliary variables V;, V4, V5
with [Vo| < 3, |[Vi| < 3(|X1||X2| + 2), k = 1,2, and pure states
PA A = |¢A1A2><¢A1A2"

support lemma (Fenchel-Eggleston-Carathéodory):

Any point in the convex closure of a connected compact set
within R belongs to the convex hull of d points in the set.
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MAIN RESULT (CONT.)

Remark

m To compute the region, one also needs to bound the
dimension of 4; and A4,
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MAIN RESULT (CONT.)

Remark

m To compute the region, one also needs to bound the
dimension of 4; and A4,

m It is impossible.

Helen Diller
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MAIN RESULT (CONT.)

Tsirelson conjecture: the set of correlation families
{p($1,$2|v1, v2) = Tr(Li(z1]v1) ® L2($2|U2))}

with growing dimensions dim(# 4, ) is a closed set
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MAIN RESULT (CONT.)

Tsirelson conjecture: the set of correlation families
{p(ajl,m2|vl, vg) = Tr(Li(x1]v1) ® LQ([II2|’02))}

with growing dimensions dim(# 4, ) is a closed set

Theorem [Slofstra 2019] [Ji et al. 2021]

The Tsirelson conjecture is false.
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MAIN RESULT (CONT.)

Tsirelson conjecture: the set of correlation families
{p(w1,1;2|vl, vg) = Tr(Li(x1]v1) ® Lg(m2|v2))}

with growing dimensions dim(# 4, ) is a closed set

Theorem [Slofstra 2019] [Ji et al. 2021]

The Tsirelson conjecture is false.

m Proof shows that there exists a family of refereed games
such that it is undecidable to determine if 3 a perfect
strategy for a game in the family.

Helen Diller
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MAIN RESULT (CONT.)

Theorem

The capacity region of the classical MAC Pyx, x, with entangled
transmitters is bounded by Rer(P) C Cer(P) € Ogr(P).
Furthermore,

Cer(P U RET (PeM)

Helen Diller

Y TECHNION | | 1) 0 antum Center



MAIN RESULT (CONT.)

Theorem

The capacity region of the classical MAC Pyx, x, with entangled
transmitters is bounded by Rer(P) C Cer(P) € Ogr(P).
Furthermore,

Cer(P U RET (PeM)

In the achievability proof:
m Prepare ",
m Generate i.i.d. vf, v} (my), v2(m2)

m Measure z}' using POVM ® Li(zyi | voi, vk,i(mg)), k € {1,2}

Hl Diller
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MAIN RESULT (CONT.)

Our lemma and theorem imply the following.

Corollary (lower bound)

A rate pair (R1, R) is achievable with entanglement at rate 0 if
Ry <I(V1;Y|WVa2), Ry < I(Vo;Y|VoVi), R1+ Ry < I(V1Va; Y| V)

for ’¢A1A2> with H(A1)¢ = H(A2)¢ < QE,

some distribution of (1, V4, V2) and measurements L; ® Lo.
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MAIN RESULT (CONT.)

Our lemma and theorem imply the following.

Corollary (lower bound)

A rate pair (R1, R) is achievable with entanglement at rate 0 if
Ry <I(Vi;Y|WWa), Ry < I(Va;Y|VoVi), Ry + Ry < I(ViVa; Y|Vh)

for ’¢A1A2> with H(A1)¢ = H(A2)¢ < GE,

some distribution of (1, V4, V2) and measurements L; ® Lo.

Proof: Every pure state |¢45) has a Schmidt decomposition,

\paB) = Z Vox (@) [v)) ® [

reX

with |X| < min{dim(H4), dim(Hp)}
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EXAMPLE 1 [LEDITZKY ET AL. 2020]

Consider a refereed game:

A referee selects questions (v, v9) (e.g., uniformly),
e Player 1 responds with wq, and

e Player 2 responds with w»
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EXAMPLE 1 [LEDITZKY ET AL. 2020]

Consider a refereed game:

A referee selects questions (v, v9) (e.g., uniformly),
e Player 1 responds with wq, and
e Player 2 responds with w»

They win if (vy, w1, ve, we) € 4.
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Peres and Mermin (1990) introduced the magic square game.

A referee selects (i, j) uniformly at random, and asks:
e Alice to fill ith row with even parity, and
e Bob to fill jth column with odd parity.

NiE

Ay &) Helen Diller
20 Y TECHNION | | 1) 0 antum Center



EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Peres and Mermin (1990) introduced the magic square game.

A referee selects (i, j) uniformly at random, and asks:
e Alice to fill ith row with even parity, and
e Bob to fill jth column with odd parity.

For example, for (i,5) = (2,1):

Nl
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Peres and Mermin (1990) introduced the magic square game.

A referee selects (i, j) uniformly at random, and asks:
e Alice to fill ith row with even parity, and
e Bob to fill jth column with odd parity.

For example, for (i,5) = (2,1):

o |

1T111]1
0]
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Peres and Mermin (1990) introduced the magic square game.

A referee selects (i, j) uniformly at random, and asks:
e Alice to fill ith row with even parity, and
e Bob to fill jth column with odd parity.

For example, for (i,5) = (2,1):

0)
1111]1
0]

They win if they agree on the overlapping cell.
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Peres and Mermin (1990) introduced the magic square game.

A referee selects (i, j) uniformly at random, and asks:
e Alice to fill ith row with even parity, and
e Bob to fill jth column with odd parity.

For example, for (i,5) = (2,1):

0)
o|1]1
0]

They win if they agree on the overlapping cell.
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Peres and Mermin (1990) introduced the magic square game.

A referee selects (i, j) uniformly at random, and asks:
e Alice to fill ith row with even parity, and
e Bob to fill jth column with odd parity.

For example, for (i,5) = (2,1):

0)
1/1 1
0]

They win if they agree on the overlapping cell.
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Peres and Mermin (1990) introduced the magic square game.

A referee selects (i, j) uniformly at random, and asks:
e Alice to fill ith row with even parity, and
e Bob to fill jth column with odd parity.

o

o

o| O

T

O‘—\ o
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

This is an example of a refereed game.

. w1
Alice ——»

Bob wo

Using classical strategies:

m It is impossible to win with deterministic strategies.

= ®) Helen Diller
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

This is an example of a refereed game.

. w1
Alice ——»

Bob wo

Using classical strategies:
m It is impossible to win with deterministic strategies.

m Using random strategies, Pr(winning) <

Nello]
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

This is an example of a refereed game.

Alice F——

al

wo

Using classical strategies:
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

This is an example of a refereed game.

Wy
>

wo

Using classical strategies:

m Given correlation (shared key), Pr(winning) < &

= ®) Helen Diller
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

This is an example of a refereed game.

Using quantum strategies:

m Given entanglement correlation, Pr(winning) = 1

= ®) Helen Diller
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

An equivalent formulation of the magic square game with £1:

+1 | +1 | +1
+1]-1] -1
-1/ +1 7

such that the row and column products are +1 and —1,
respectively.

&) Helen Diller
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

The following quantum strategy wins the game with probability 1:
u Prepare W)A]BlAQBQ> = |(I)AlBl> ® ‘<I)A232>r a priori' Hence,

V4,428, B,) = %(\00>|00> +101)[01) + [10)[10) + [11)[11))

m Measure in the bases as in the table below,

X®1 ITeX | XX
XKL | —LIX|YRY
1®Z 11 | ZI®Z

simultaneously. This is possible because the operators in

each row/column commute.

23




EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Magic-Square Channel

Define PY|X1,X2 with

X=X ={1,2,3} x {0,1}?
y: {17273}2

such that given X; = (V4,W1) and X, = (Va, Wh),
Y = (W, Vo) if (X1,X5) = (Vi,W1,Va, W) € Yus
Y ~ Uniform({1,2,3}?) otherwise

where 4,5 is the winning set for the magic-square game.

&) Helen Diller
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Without entanglement resources [Seshadri et al. 2022], the
sum-rate is bounded by

Ri+ Ry < 3.02
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

Without entanglement resources [Seshadri et al. 2022], the
sum-rate is bounded by

Ri+ Ry < 3.02

Given entanglement between the transmitters,
Ry + Ry = 2log(3) =~ 3.17 is achievable [Leditzky et al. 2020]
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

We can also obtain the capacity region from our theorem:

| (R1,R2) : Ry <log(3)
CET‘{ o Riglog(?))}

as we set
m entangled state: ® 4/ 4, @ © 4145
m auxiliary variables: V, = 0, (Vi, Va) ~ Uniform({1,2, 3}?)

m measure (W, Ws) as in the magic-square game
and transmit X = (Wy, Vi).

Since (X1, X2) win the game, we have Y = (17, V5).
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EXAMPLE 1 (CONT.) [LEDITzKY ET AL. 2020]

We can also obtain the capacity region from our theorem:

| (R1,R2) : Ry <log(3)
CET‘{ o Riglog(?))}

as we set
m entangled state: @ 4, ® @ 44y (requires Oy = 2)
m auxiliary variables: Vy = 0, (V1,V2) ~ Uniform({1, 2, 3}?)

m measure (W, Ws) as in the magic-square game
and transmit X = (Wy, Vi).

Since (X1, X2) win the game, we have Y = (17, V5).

Ay &) Helen Diller
26 Y TECHNION | | 1) 0 antum Center



EXAMPLE 2 [LEDITZKY ET AL. 2020]

Slofstra and Vidick (2018) presented a linear equation game.
Consider a K x N equation system, Hu = b, over GF(2).

A referee selects an equation k£ € {1,..., K} and a variable
j €{1,...,N}, uniformly at random, and sends to players.

e Player 1 gives u; € {0,1}" that satisfies Equation #k
e Player 2 give us[j] € {0,1}

They win if H[k, j] = 0 or uy[j] = ua[j].

The MAC Py x, x, is defined in a similar manner.

Ay &) Helen Diller
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EXAMPLE 2 (CONT.) [LEDITZKY ET AL. 2020]

Theorem [Slofstra and Vidick 2018]

There exist linear equation systems such that

m quantum strategies can outperform classical strategies

m the minimal entanglement dimension to win w.p. 1 — e~ 7
satisfies

CGT/G < dE,min < C/BT/Q
for T > 0, where C,C’ > 0 are constants.

It follows that the game can be won with certainty for dg — oo,
but not for dg < .

=) Helen Diller
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EXAMPLE 2 (CONT.) [LEDITZKY ET AL. 2020]

Achieving the capacity region

(R1,R2) : Ry <log(K)
Cor = R ) |

requires infinite amount of entanglement [Leditzky et al. 2020]
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EXAMPLE 2 (CONT.) [LEDITZKY ET AL. 2020]

Achieving the capacity region

(R1,R2) : Ry <log(K)
Cer = (o Rismi(m}

requires infinite amount of entanglement [Leditzky et al. 2020]

Furthermore, we observe that the following region is achievable
with entanglement rate 05 = 37 + log(C"),

-T

< (1—4e M log(K)—2(1+ e Dhy [ -
Ri < (11T log(a) — 20+ (1)

-T

Ra < (1= 4 log(V) — 201+ ¢y (15 )

for all 7' > 0, where hy(p) is the binary entropy function.

len Diller
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MAXIMAL VS. AVERAGE ERROR

In network information theory, the channel capacity may depend
on the error criterion.

m Maximal error: P = max Pr(error|mi, mo)

mi,ma

m Average error: Fé”) = m > Pr(errorjmy, ms)

mi,mao
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MAXIMAL VS. AVERAGE ERROR

In network information theory, the channel capacity may depend
on the error criterion.

m Maximal error: P = max Pr(error|mi, mo)

mi,ma

m Average error: Fé”) = m > Pr(errorjmy, ms)

mi,mao

Let C and C denote the corresponding capacity regions for the
classical MAC Py x, x, -

In general, C C C.
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MAXIMAL VS. AVERAGE ERROR (CONT.)

Without entanglement resources,

m In the single-user case (say, A5 = (),
[Shannon 1948] [Wolfowitz 1957]

Cc=C
m However, for some Py |y, x, [Dueck 1978]

C#C

Y = (X9, 2)
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MAXIMAL VS. AVERAGE ERROR (CONT.)
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MAXIMAL VS. AVERAGE ERROR (CONT.)

Given entanglement resources, we observe that
Cer = Cer

Proof follows [Cai 2014] and resembles the robustification
technique [Ahlswede 1986]:
— We use the entanglement to generate a shared random key
at rate Ryey ~ 0.
— The average over the key “replaces" the message average.

=) Helen Diller
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ENTANGLEMENT AND CONFERENCING

Suppose the senders can communicate with each other
classically over rate-limited links (“bit-pipes") and share an
entangled state Wy, , a priori.

) P ) S b
v Cu‘ o P Decoder T, T,

m2

&) Helen Diller
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ENTANGLEMENT AND CONFERENCING (CONT.)

Observations: Classical Conferencing

m Both entanglement and common randomeness are static
resources of non-signaling correlation, which cannot be
used in order to send information.
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ENTANGLEMENT AND CONFERENCING (CONT.)

Observations: Classical Conferencing

m Q: is conferencing at a low rate necessarily better than
entanglement at a high rate?

A: No
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ENTANGLEMENT AND CONFERENCING (CONT.)

Now, suppose the senders can communicate over qubit-pipes
and share an entangled state ¥, , a priori.

Pyix, x| y”

mi,m
Decoder 2%
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35 |9 Quantum Center



ENTANGLEMENT AND CONFERENCING (CONT.)

Observation: Quantum Conferencing

Each encoder can use superdense coding in order to double her
conferencing rate.

36 ) Helen Diller
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CONCLUSION

We have considered communication over a two-user classical
multiple-access channel (MAC) with entanglement resources
shared between the transmitters before communication begins.

m capacity region for the general MAC with entangled
transmitters.

m bounded auxiliary variables,
impossible to bound dimensions for quantum ancillas
(Tsirelson problem, MIP*=RE)

37 len Diller
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ConcLusIoN (CONT.)

m Previous examples are a special case:
» magic square: strictly higher than classical

» linear equations: achievability requires infinite entanglement

m As opposed to the classical case [Dueck 1978], the capacity
region with entangled transmitters is the same, whether it is
a message-average or a maximal error criterion.
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» linear equations: achievability requires infinite entanglement

m As opposed to the classical case [Dueck 1978], the capacity
region with entangled transmitters is the same, whether it is
a message-average or a maximal error criterion.

m Entanglement can increase the conferencing rate over
qubit-pipe links
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Given entanglement resources, we observe that
Cer = Cer

Proof outline: Suppose we have a code with an) <\
Consider the semi-average error

1
Q.(mgy) = A Z Pr(error|my, ms)
1

mi

Throw away the worst half of {1,..., Ms}.
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MAXIMAL ERROR ANALYSIS (CONT.)

Since the average of , (m») over the original set is P < ),
we have
Q.(m2) < 2X

for all messages in the remaining set M.,
Let Alice 1 draw a uniformly distributed key L € {1,...,n?}.

She can send this key to Bob using a code of length o(n) with a
2)\-error.



MAXIMAL ERROR ANALYSIS (CONT.)

Alice 1 uses a sequence of permutations 7y, ..., m,2 over the
message set {1,..., M;}. Given a key L = ¢, she encodes using
fﬂg(m])'

For a uniformly distributed permutation =, we have
Pr(m(my) =m)) = (M =1} JVLA Thus,

My!
E[Pr(error|m(my), ma)] Z Pr(m =m}) - Pr(error|m/,my)
7711
1,m2)
my
= Q" (my)

< 2A Vmg € MIQ



MAXIMAL ERROR ANALYSIS (CONT.)

Then, based on the Chernoff bound, for an i.i.d. sequence of
uniform permutations 71, ..., 7,2,

2
1 & 2
Pr <n2 ZPr(errorhrg(ml),mg) > 7)\) <eAn

(=1

Therefore, there exists a realization 7, ..., ,2 such that

2
1 n
3 ZPr(errorhg(ml),mg) <7A Vmy, mg € M} O
=1
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