The Multiple-Access Channel With Entangled Transmitters

Uzi Pereg

ECE, Technion

Joint Work with Christian Deppe and Holger Boche

Helen Diller **Quantum Center**

Recently, there is growing interest in how quantum entanglement can assist classical networks.

Recently, there is growing interest in how quantum entanglement can assist classical networks.

Single user:

◦ Entanglement resources do not increase the capacity of a classical channel [Bennett et al. 2002]

Recently, there is growing interest in how quantum entanglement can assist classical networks.

Single user:

- Entanglement resources do not increase the capacity of a classical channel [Bennett et al. 2002]*
- * ... but can increase the zero-error capacity [Leung et al., 2012]

Multi-user:

- multiple-access channel (MAC): entanglement resources between two transmitters can increase achievable rates!
	- ▶ pseudo-telepathy examples [Leditzky et al. 2020] [Seshadri et al. 2022] [Doolittle et al. 2022]
	- \triangleright AVC Bell-violation example (with an adversary) [Nötzel 2020]

Multi-user:

- multiple-access channel (MAC): entanglement resources between two transmitters can increase achievable rates!
	- ▶ pseudo-telepathy examples [Leditzky et al. 2020] [Seshadri et al. 2022] [Doolittle et al. 2022]
	- ▶ AVC Bell-violation example (with an adversary) [Nötzel 2020]
- non-signaling correlation can increase achievable rates
	- ▶ interference channels [Quek and Shor, 2017]
	- binary adder channel [Fawzi and Fermé, 2022]
- broadcast: entanglement resources between two receivers cannot increase achievable rates [Pereg et al. 2021]
- ** ... but can improve sensitivity in sensing [Zhang and Zhuang, 2021]

BACKGROUND (CONT.)

- non-signaling correlation can increase achievable rates
- broadcast: entanglement resources between two receivers cannot increase achievable rates [Pereg et al. 2021]
- ** ... but can improve sensitivity in sensing [Zhang and Zhuang, 2021]

BACKGROUND (CONT.)

- non-signaling correlation can increase achievable rates
- broadcast: entanglement resources between two receivers cannot increase achievable rates [Pereg et al. 2021]**
- ** ... but can improve sensitivity in sensing [Zhang and Zhuang, 2021]

Background (Cont.)

Conferencing transmitters (very partial list)

- classical channels [Willems, 1983]
	- [−] uncertainty [Maric et al., 2005]
	- [−] AWGN [Wigger, 2008] [Bross et al., 2012]
	- [−] jamming and secrecy [Wiese and Boche, 2014]
	- [−] reliability [Steinberg, 2014] [Huleihel and Steinberg, 2017]
	- [−] cloud radio-access network [Dikshtein et al. 2022]
- c-q channels [Boche and Nötzel, 2014]

− · · ·

We consider communication over a two-user classical MAC with entanglement resources shared between the transmitters, a priori before communication begins.

- the capacity region of the *general* MAC
- \blacksquare show that previous results can be obtained as a special case
- As opposed to the classical setting [Dueck 1978], the capacity region is remains the same, whether we consider a message-average or a maximal error criterion

We consider communication over a two-user classical MAC with entanglement resources shared between the transmitters, a priori before communication begins.

- the capacity region of the *general* MAC
- \blacksquare show that previous results can be obtained as a special case
- As opposed to the classical setting [Dueck 1978], the capacity region is remains the same, whether we consider a message-average or a maximal error criterion
- **Conferencing transmitters**

Channel Model

Coding with Entanglement Resources

We consider a classical multiple-access channel, $P_{Y|X_1X_2}.$

Usually, in the classical model,

Encoder 1 maps the message m_1 to a codeword x_1^n Encoder 2 maps the message m_2 to a codeword x_2^n

$$
f_1: \{1, ..., M_1\} \to \mathcal{X}_1^n
$$

 $f_2: \{1, ..., M_2\} \to \mathcal{X}_2^n$

CODING WITH ENTANGLEMENT RESOURCES

We consider a classical multiple-access channel, $P_{Y|X_1X_2}.$

Usually, in the classical model,

Encoder 1 maps the message m_1 to a codeword x_1^n Encoder 2 maps the message m_2 to a codeword x_2^n

$$
f_1: \{1, \ldots, M_1\} \to \mathcal{X}_1^n
$$

$$
f_2: \{1, \ldots, M_2\} \to \mathcal{X}_2^n
$$

The codewords x_1^n, x_2^n are sent through n channel uses of $P_{Y|X_1,X_2}$

CODING WITH ENTANGLEMENT RESOURCES

We consider a classical multiple-access channel, $P_{Y|X_1X_2}.$

Usually, in the classical model,

Encoder 1 maps the message m_1 to a codeword x_1^n Encoder 2 maps the message m_2 to a codeword x_2^n

$$
f_1: \{1, \ldots, M_1\} \to \mathcal{X}_1^n
$$

$$
f_2: \{1, \ldots, M_2\} \to \mathcal{X}_2^n
$$

The codewords x_1^n, x_2^n are sent through n channel uses of $P_{Y|X_1,X_2}$

The decoder maps the channel output y^n to an estimation $(\widehat{m}_1, \widehat{m}_2)$

Here, the senders share an entangled state $\Psi_{E_1E_2}$ a priori.

Hence, an (M_1, M_2, n) code for the classical MAC with entangled transmitters consists of

- an entangled state $\Psi_{E_1E_2}$ that is shared between the transmitters.
- \blacksquare two message sets $[M_1]$ and $[M_2]$
- **Encoder 1 performs a measurement on** E_1 **.**

Encoder 2 performs a measurement on E_2 .

Each has a collection of POVMs,

$$
\left\{F_{x_1^n}^{(m_1)},\; x_1^n\in\mathcal{X}_1^n\right\}\;\,\text{and}\quad\left\{F_{x_2^n}^{(m_2)},\; x_2^n\in\mathcal{X}_2^n\right\}
$$

one for each message.

Hence, an (M_1, M_2, n) code for the classical MAC with entangled transmitters consists of

- an entangled state $\Psi_{E_1E_2}$ that is shared between the transmitters.
- **u** two message sets $[M_1]$ and $[M_2]$
- **Encoder 1 performs a measurement on** E_1 **.**

Encoder 2 performs a measurement on E_2 .

Each has a collection of POVMs,

$$
\left\{F_{x_1^n}^{(m_1)},\; x_1^n\in\mathcal{X}_1^n\right\}\;\,\text{and}\quad\left\{F_{x_2^n}^{(m_2)},\; x_2^n\in\mathcal{X}_2^n\right\}
$$

one for each message.

Hence, an (M_1, M_2, n) code for the classical MAC with entangled transmitters consists of

- an entangled state $\Psi_{E_1E_2}$ that is shared between the transmitters.
- \blacksquare two message sets $[M_1]$ and $[M_2]$
- **Encoder 1 performs a measurement on** E_1 **.** Encoder 2 performs a measurement on E_2 . Each has a collection of POVMs,

$$
\left\{F_{x_1^n}^{(m_1)}\,,\;x_1^n\in\mathcal{X}_1^n\right\}\;\,\text{and}\quad\left\{F_{x_2^n}^{(m_2)}\,,\;x_2^n\in\mathcal{X}_2^n\right\}
$$

one for each message.

Hence, an (M_1, M_2, n) code for the classical MAC with entangled transmitters consists of

- an entangled state $\Psi_{E_1E_2}$ that is shared between the transmitters.
- \blacksquare two message sets $[M_1]$ and $[M_2]$
- **Encoder 1 performs a measurement on** E_1 **.**

Encoder 2 performs a measurement on E_2 .

Each has a collection of POVMs,

 $\left\{ x_{1}^{(m_{1})}\,,\ x_{1}^{n}\in\mathcal{X}_{1}^{n}\right\}$ and $\quad\left\{ F_{x_{2}^{n}}^{(m_{2})}\right\}$

one for each message.

Thus, the joint input distribution is

$$
p(x_1^n, x_2^n | m_1, m_2) = \text{Tr}\left[\left(F_{x_1^n}^{(m_1)} \otimes F_{x_2^n}^{(m_2)} \right) \Psi_{E_1 E_2} \right]
$$

The conditional probability of error given (m_1, m_2) ,

$$
\begin{aligned} &\Pr(\text{error}|m_1,m_2) = \\ &\sum_{y^n:g(y^n)\neq (m_1,m_2)}\left[\sum_{x_1^n,x_2^n}p(x_1^n,x_2^n|m_1,m_2)P_{Y|X_1,X_2}^n(y^n|x_1^n,x_2^n)\right] \end{aligned}
$$

.

The maximal probability of error is thus

$$
P_e^{(n)} = \max_{m_1,m_2} \Pr(\text{error}|m_1,m_2)
$$

Def: A rate pair (R_1, R_2) is achievable if there exists a sequence of (M_1, M_2, n) codes such that $\frac{1}{n} \log(M_k) \geq R_k$ for $k \in \{1, 2\}$, and

$$
\lim_{n \to \infty} P_e^{(n)} = 0
$$

Def: The capacity region C_{FT} of the classical MAC with entangled transmitters is defined as the closure of the set of achievable pairs (R_1, R_2) .

Remarks

- In communication, we often think of entanglement as the quantum version of common randomness (sharing a random key).
- Entanglement can generate common randomness.
- \blacksquare The capacity region with common randomness is the same as
- **Entanglement improves achievable rates.**

Remarks

- \blacksquare In communication, we often think of entanglement as the
- **Entanglement can generate common randomness.**
- The capacity region with common randomness is the same as without it. That is, sharing a random key does not increase (asymptotically optimal) achievable rates in this setting.
- Entanglement improves achievable rates.

Main Results

Define the rate regions

$$
\mathcal{R}_{ET}(P_{Y|X_1X_2}) = \bigcup_{P_{V_0P_{V_1|V_0P_{V_2|V_0}}}, \varphi_{A_1A_2}, L_1 \otimes L_2} \left\{ \begin{array}{rcl} (R_1, R_2) : & R_1 & \leq I(V_1; Y|V_0V_2) \\ & R_2 & \leq I(V_2; Y|V_0V_1) \\ & R_1 + R_2 & \leq I(V_1V_2; Y|V_0) \end{array} \right\}
$$

Define the rate regions

$$
\mathcal{R}_{ET}(P_{Y|X_1X_2}) = \bigcup_{P_{V_0}P_{V_1|V_0}P_{V_2|V_0}, \varphi_{A_1A_2}, L_1 \otimes L_2} \left\{ \begin{array}{rcl} (R_1, R_2) : & R_1 & \leq I(V_1; Y|V_0V_2) \\ & R_2 & \leq I(V_2; Y|V_0V_1) \\ & R_1 + R_2 & \leq I(V_1V_2; Y|V_0) \end{array} \right\}
$$

and

$$
\mathcal{O}_{\text{ET}}(P_{Y|X_1X_2}) = \bigcup_{p_{V_0V_1V_2, \varphi_{A_1A_2}, L_1 \otimes L_2} \left\{ \begin{array}{rcl} (R_1, R_2) : & R_1 & \le I(V_1; Y|V_0V_2) \\ & R_2 & \le I(V_2; Y|V_0V_1) \\ & R_1 + R_2 & \le I(V_1V_2; Y|V_0) \end{array} \right\}
$$

Define the rate regions

$$
\mathcal{R}_{ET}(P_{Y|X_1X_2}) = \bigcup_{V_1 \triangleleft V_0 \triangleleft V_2, \varphi_{A_1A_2}, L_1 \otimes L_2} \left\{ \begin{array}{rcl} (R_1, R_2) & : & R_1 & \le I(V_1; Y|V_0V_2) \\ & R_2 & \le I(V_2; Y|V_0V_1) \\ & R_1 + R_2 & \le I(V_1V_2; Y|V_0) \end{array} \right\}
$$

and

$$
\mathcal{O}_{\text{ET}}(P_{Y|X_1X_2}) = \bigcup_{p_{V_0V_1V_2, \varphi_{A_1A_2}, L_1 \otimes L_2} \left\{ \begin{array}{rcl} (R_1, R_2) & : & R_1 & \le I(V_1; Y|V_0V_2) \\ & R_2 & \le I(V_2; Y|V_0V_1) \\ & R_1 + R_2 & \le I(V_1V_2; Y|V_0) \end{array} \right\}
$$

The union is over the set of all

e entangled states $\varphi_{A_1A_2}$

classical auxiliary variables $(V_0,V_1,V_2)\sim p_{V_0}p_{V_1\mid V_0}p_{V_2\mid V_0}$

■ collection of POVMs $\{L_1(x_1|v_0, v_1) \otimes L_2(x_2|v_0, v_2)\}$, for $v_0 \in \mathcal{V}_0, v_k \in \mathcal{V}_k, k \in \{1, 2\}.$

Given such a state, variables, and POVMs, $(V_0, V_1, V_2, X_1, X_2, Y)$ are distributed as

$$
p_{V_0}(v_0)p_{V_1|V_0}(v_1|v_0)p_{V_2|V_0}(v_2|v_0) \n\cdot \text{Tr} [(L_1(x_1|v_0, v_1) \otimes L_2(x_2|v_0, v_2)) \varphi_{A_1A_2}] \n\cdot P_{Y|X_1, X_2}(y|x_1, x_2)
$$

MAIN RESULT (CONT.)

Lemma

The union above is exhausted by auxiliary variables V_0 , V_1 , V_2 with $|\mathcal{V}_0| \leq 3$, $|\mathcal{V}_k| \leq 3(|\mathcal{X}_1||\mathcal{X}_2| + 2)$, $k = 1, 2$, and pure states $\varphi_{A_1A_2} \equiv |\phi_{A_1A_2}\rangle\langle\phi_{A_1A_2}|.$

The proof of the lemma is based on purification, perturbation, and the support lemma (Fenchel-Eggleston-Carathéodory):

Any point in the convex closure of a connected compact set within \mathbb{R}^d belongs to the convex hull of d points in the set.

MAIN RESULT (CONT.)

Lemma

The union above is exhausted by auxiliary variables V_0 , V_1 , V_2 with $|\mathcal{V}_0| \leq 3$, $|\mathcal{V}_k| \leq 3(|\mathcal{X}_1||\mathcal{X}_2| + 2)$, $k = 1, 2$, and pure states $\varphi_{A_1A_2} \equiv |\phi_{A_1A_2}\rangle\langle\phi_{A_1A_2}|.$

The proof of the lemma is based on purification, perturbation, and the support lemma (Fenchel-Eggleston-Carathéodory):

Any point in the convex closure of a connected compact set within \mathbb{R}^d belongs to the convex hull of d points in the set.

Lemma

The union above is exhausted by auxiliary variables V_0 , V_1 , V_2 with $|\mathcal{V}_0| \leq 3$, $|\mathcal{V}_k| \leq 3(|\mathcal{X}_1||\mathcal{X}_2| + 2)$, $k = 1, 2$, and pure states $\varphi_{A_1A_2} \equiv |\phi_{A_1A_2}\rangle\langle\phi_{A_1A_2}|.$

The proof of the lemma is based on purification, perturbation, and the support lemma (Fenchel-Eggleston-Carathéodory):

Any point in the convex closure of a connected compact set within \mathbb{R}^d belongs to the convex hull of d points in the set.

Remark

■ To compute the region, one also needs to bound the dimension of A_1 and A_2

Remark

■ To compute the region, one also needs to bound the dimension of A_1 and A_2

■ It is **impossible**.

Tsirelson conjecture: the set of correlation families

$$
\left\{p(x_1, x_2|v_1, v_2) = \text{Tr}(L_1(x_1|v_1) \otimes L_2(x_2|v_2))\right\}
$$

with growing dimensions $\dim(\mathcal{H}_{A_k})$ is a closed set
Tsirelson conjecture: the set of correlation families

$$
\left\{p(x_1, x_2|v_1, v_2) = \text{Tr}(L_1(x_1|v_1) \otimes L_2(x_2|v_2))\right\}
$$

with growing dimensions $\dim(\mathcal{H}_{A_k})$ is a closed set

Theorem [Slofstra 2019] [Ji et al. 2021]

The Tsirelson conjecture is false.

Tsirelson conjecture: the set of correlation families

$$
\left\{p(x_1, x_2|v_1, v_2) = \text{Tr}(L_1(x_1|v_1) \otimes L_2(x_2|v_2))\right\}
$$

with growing dimensions $\dim(\mathcal{H}_{A_k})$ is a closed set

Theorem [Slofstra 2019] [Ji et al. 2021]

The Tsirelson conjecture is false.

Proof shows that there exists a family of refereed games such that it is undecidable to determine if [∃] a perfect strategy for a game in the family.

Main Result (Cont.)

Theorem

The capacity region of the classical MAC $P_{Y|X_1,X_2}$ with entangled transmitters is bounded by $\mathcal{R}_{ET}(P) \subseteq \mathcal{C}_{ET}(P) \subseteq \mathcal{O}_{ET}(P)$. Furthermore,

$$
\mathcal{C}_{\text{ET}}(P) = \bigcup_{n=1}^{\infty} \frac{1}{n} \mathcal{R}_{\text{ET}}(P^{\otimes n})
$$

Main Result (Cont.)

Theorem

The capacity region of the classical MAC $P_{Y|X_1,X_2}$ with entangled transmitters is bounded by $\mathcal{R}_{ET}(P) \subseteq \mathcal{C}_{ET}(P) \subseteq \mathcal{O}_{ET}(P)$. Furthermore,

$$
\mathcal{C}_{\text{ET}}(P) = \bigcup_{n=1}^{\infty} \frac{1}{n} \mathcal{R}_{\text{ET}}(P^{\otimes n})
$$

In the achievability proof:

- Prepare $\varphi_{A_1}^{\otimes n}$ A_1A_2
- Generate i.i.d. v_0^n , $v_1^n(m_1)$, $v_2(m_2)$
- Measure x_k^n using POVM $\bigotimes^n L_k(x_{k,i} | v_{0,i}, v_{k,i}(m_k)), k \in \{1,2\}$ $i=1$

X TECHNION

MAIN RESULT (CONT.)

Our lemma and theorem imply the following.

Corollary (lower bound)

A rate pair (R_1, R_2) is achievable with entanglement at rate θ_E if

 $R_1 \leq I(V_1; Y | V_0 V_2)$, $R_2 \leq I(V_2; Y | V_0 V_1)$, $R_1 + R_2 \leq I(V_1 V_2; Y | V_0)$

for $|\phi_{A_1A_2}\rangle$ with $H(A_1)_{\phi} = H(A_2)_{\phi} \le \theta_E$,

some distribution of (V_0, V_1, V_2) and measurements $L_1 \otimes L_2$.

Main Result (Cont.)

Our lemma and theorem imply the following.

Corollary (lower bound)

A rate pair (R_1, R_2) is achievable with entanglement at rate θ_E if $R_1 \leq I(V_1; Y | V_0 V_2)$, $R_2 \leq I(V_2; Y | V_0 V_1)$, $R_1 + R_2 \leq I(V_1 V_2; Y | V_0)$ for $|\phi_{A_1A_2}\rangle$ with $H(A_1)_{\phi} = H(A_2)_{\phi} \le \theta_E$, some distribution of (V_0, V_1, V_2) and measurements $L_1 \otimes L_2$.

Proof: Every pure state $|\phi_{AB}\rangle$ has a Schmidt decomposition,

$$
|\phi_{AB}\rangle = \sum_{x \in \mathcal{X}} \sqrt{p_X(x)} | \psi_x' \rangle \otimes | \psi_x'' \rangle
$$

with $|\mathcal{X}| \leq \min\{\dim(\mathcal{H}_A), \dim(\mathcal{H}_B)\}\$

Consider a refereed game:

A referee selects questions (v_1, v_2) (e.g., uniformly),

- Player 1 responds with w_1 , and
- Player 2 responds with w_2

Consider a refereed game:

A referee selects questions (v_1, v_2) (e.g., uniformly),

- Player 1 responds with w_1 , and
- Player 2 responds with w_2

They win if $(v_1, w_1, v_2, w_2) \in \mathscr{G}$.

A referee selects (i, j) uniformly at random, and asks:

- Alice to fill ith row with even parity, and
- Bob to fill *i*th column with odd parity.

A referee selects (i, j) uniformly at random, and asks:

- Alice to fill ith row with even parity, and
- Bob to fill *i*th column with odd parity.

For example, for $(i, j) = (2, 1)$:

A referee selects (i, j) uniformly at random, and asks:

- Alice to fill ith row with even parity, and
- Bob to fill *i*th column with odd parity.

For example, for $(i, j) = (2, 1)$:

A referee selects (i, j) uniformly at random, and asks:

- Alice to fill ith row with even parity, and
- Bob to fill *j*th column with odd parity.

For example, for $(i, j) = (2, 1)$:

They win if they agree on the overlapping cell.

A referee selects (i, j) uniformly at random, and asks:

- Alice to fill ith row with even parity, and
- Bob to fill *j*th column with odd parity.

For example, for $(i, j) = (2, 1)$:

They win if they agree on the overlapping cell.

A referee selects (i, j) uniformly at random, and asks:

- Alice to fill ith row with even parity, and
- Bob to fill *j*th column with odd parity.

For example, for $(i, j) = (2, 1)$:

They win if they agree on the overlapping cell.

A referee selects (i, j) uniformly at random, and asks:

- Alice to fill ith row with even parity, and
- Bob to fill *i*th column with odd parity.

This is an example of a refereed game.

Using classical strategies:

 \blacksquare It is impossible to win with deterministic strategies.

This is an example of a refereed game.

Using classical strategies:

- It is impossible to win with deterministic strategies.
- Using random strategies, $Pr(\text{winning}) \leq \frac{8}{9}$ 9

This is an example of a refereed game.

Using classical strategies:

This is an example of a refereed game.

Using classical strategies:

Given correlation (shared key), $\Pr(\textsf{winning}) \leq \frac{8}{9}$ 9

This is an example of a refereed game.

Using quantum strategies:

Given entanglement correlation, $Pr(\text{winning}) = 1$

An equivalent formulation of the magic square game with ± 1 :

such that the row and column products are $+1$ and -1 , respectively.

The following quantum strategy wins the game with probability 1:

Prepare
$$
|\psi_{A_1B_1A_2B_2}\rangle = |\Phi_{A_1B_1}\rangle \otimes |\Phi_{A_2B_2}\rangle
$$
, a priori. Hence,

\n
$$
|\psi_{A_1A_2B_1B_2}\rangle = \frac{1}{2}(|00\rangle|00\rangle + |01\rangle|01\rangle + |10\rangle|10\rangle + |11\rangle|11\rangle)
$$

 \blacksquare Measure in the bases as in the table below,

simultaneously. This is possible because the operators in each row/column commute.

X TECHNION

Magic-Square Channel

Define $P_{Y|X_1,X_2}$ with

$$
\mathcal{X}_1 = \mathcal{X}_2 = \{1, 2, 3\} \times \{0, 1\}^3
$$

$$
\mathcal{Y} = \{1, 2, 3\}^2
$$

such that given $X_1 = (V_1, W_1)$ and $X_2 = (V_2, W_2)$,

 $Y = (V_1, V_2)$ if $(X_1, X_2) = (V_1, W_1, V_2, W_2) \in \mathscr{G}_{MS}$

 $Y \sim \text{Uniform}(\{1, 2, 3\}^2)$ otherwise

where \mathscr{G}_{MS} is the winning set for the magic-square game.

Without entanglement resources [Seshadri et al. 2022], the sum-rate is bounded by

 $R_1 + R_2 \leq 3.02$

Without entanglement resources [Seshadri et al. 2022], the sum-rate is bounded by

$$
R_1 + R_2 \leq 3.02
$$

Given entanglement between the transmitters, $R_1 + R_2 = 2 \log(3) \approx 3.17$ is achievable [Leditzky et al. 2020]

We can also obtain the capacity region from our theorem:

$$
\mathcal{C}_{\text{ET}} = \left\{ \begin{array}{rcl} (R_1, R_2) & : & R_1 \le \log(3) \\ & R_2 \le \log(3) \end{array} \right\}
$$

as we set

- entangled state: $\Phi_{A_1'A_2'}\otimes \Phi_{A_1''A_2''}$
- auxiliary variables: $V_0 = \emptyset$, $(V_1, V_2) \sim \text{Uniform}(\{1, 2, 3\}^2)$
- **measure** (W_1, W_2) as in the magic-square game and transmit $X_k = (W_k, V_k)$.

Since (X_1, X_2) win the game, we have $Y = (V_1, V_2)$.

We can also obtain the capacity region from our theorem:

$$
\mathcal{C}_{\text{ET}} = \left\{ \begin{array}{rcl} (R_1, R_2) & : & R_1 \le \log(3) \\ & R_2 \le \log(3) \end{array} \right\}
$$

as we set

- entangled state: $\Phi_{A_1'A_2'}\otimes \Phi_{A_1''A_2''}$ (requires $\theta_E=2$)
- auxiliary variables: $V_0 = \emptyset$, $(V_1, V_2) \sim \text{Uniform}(\{1, 2, 3\}^2)$
- **measure** (W_1, W_2) as in the magic-square game and transmit $X_k = (W_k, V_k)$.

Since (X_1, X_2) win the game, we have $Y = (V_1, V_2)$.

Slofstra and Vidick (2018) presented a linear equation game. Consider a $K \times N$ equation system, $\mathbf{Hu} = \mathbf{b}$, over $\mathbf{GF}(2)$.

A referee selects an equation $k \in \{1, \ldots, K\}$ and a variable $j \in \{1, \ldots, N\}$, uniformly at random, and sends to players.

- Player 1 gives $\mathbf{u}_1 \in \{0,1\}^N$ that satisfies Equation $\#k$
- Player 2 give $u_2[i] \in \{0, 1\}$

They win if $H[k, j] = 0$ or $u_1[j] = u_2[j]$.

The MAC $P_{Y \mid X_1, X_2}$ is defined in a similar manner.

 $\widetilde{\Sigma}$ TECHNION |

Theorem [Slofstra and Vidick 2018]

There exist linear equation systems such that

- quantum strategies can outperform classical strategies
- the minimal entanglement dimension to win w.p. $1 e^{-T}$ satisfies

$$
Ce^{T/6} \le d_{E,\min} \le C'e^{T/2}
$$

for $T > 0$, where $C, C' > 0$ are constants.

It follows that the game can be won with certainty for $d_E \to \infty$, but not for $d_E < \infty$.

Achieving the capacity region

$$
\mathcal{C}_{\text{ET}} = \left\{ \begin{array}{r} (R_1, R_2) : R_1 \leq \log(K) \\ R_2 \leq \log(N) \end{array} \right\}
$$

requires infinite amount of entanglement [Leditzky et al. 2020]

Furthermore, we observe that the following region is achievable with entanglement rate $\theta_E=\frac{1}{2}$ $\frac{1}{2}T + \log(C')$,

$$
R_1 \le (1 - 4e^{-T}) \log(K) - 2(1 + e^{-T})h_2 \left(\frac{e^{-T}}{1 + e^{-T}}\right),
$$

$$
R_2 \le (1 - 4e^{-T}) \log(N) - 2(1 + e^{-T})h_2 \left(\frac{e^{-T}}{1 + e^{-T}}\right)
$$

for all $T > 0$, where $h_2(p)$ is the binary entropy function.

 $\widetilde{\nabla}$ TECHNION

Achieving the capacity region

$$
\mathcal{C}_{\text{ET}} = \left\{ \begin{array}{r} (R_1, R_2) : R_1 \leq \log(K) \\ R_2 \leq \log(N) \end{array} \right\}
$$

requires infinite amount of entanglement [Leditzky et al. 2020]

Furthermore, we observe that the following region is achievable with entanglement rate $\theta_E=\frac{1}{2}$ $\frac{1}{2}T + \log(C')$,

$$
R_1 \le (1 - 4e^{-T}) \log(K) - 2(1 + e^{-T})h_2 \left(\frac{e^{-T}}{1 + e^{-T}}\right),
$$

$$
R_2 \le (1 - 4e^{-T}) \log(N) - 2(1 + e^{-T})h_2 \left(\frac{e^{-T}}{1 + e^{-T}}\right)
$$

for all $T > 0$, where $h_2(p)$ is the binary entropy function.

X TECHNION

In network information theory, the channel capacity may depend on the error criterion.

Maximal error: $P_e^{(n)} = \max\limits_{m_1,m_2} \Pr({\sf error}|m_1,m_2)$

4 Average error:
$$
\overline{P}_e^{(n)} = \frac{1}{M_1 M_2} \sum_{m_1, m_2} \Pr(\text{error}|m_1, m_2)
$$

In network information theory, the channel capacity may depend on the error criterion.

Maximal error: $P_e^{(n)} = \max\limits_{m_1,m_2}\Pr(\textsf{error}|m_1,m_2)$ m_1, m_2

1 Average error:
$$
\overline{P}_e^{(n)} = \frac{1}{M_1 M_2} \sum_{m_1, m_2} \Pr(\text{error}|m_1, m_2)
$$

Let C and \overline{C} denote the corresponding capacity regions for the classical MAC $P_{Y|X_1,X_2}$.

In general, $C \subset \overline{C}$.

Maximal vs. Average Error (Cont.)

Without entanglement resources,

In the single-user case (say, $\mathcal{X}_2 = \emptyset$), [Shannon 1948] [Wolfowitz 1957]

$$
\mathcal{C}=\overline{\mathcal{C}}
$$

 $C \neq \overline{C}$

However, for some $P_{Y \mid X_1, X_2}$ [Dueck 1978]

$$
Y = (X_2, Z)
$$
\n
$$
X_1 \t Z \t X_1 \t Z
$$
\n
$$
0 \t 0 \t 0 \t 0 \t 0 \t 0 \t 0
$$
\n
$$
Y = (X_2, Z)
$$
\n
$$
2 \t 2 \t 2 \t 0 \t 2 \t 2 \t 0
$$
\n
$$
3 \t 3 \t 3 \t 2 \t 1
$$
\n
$$
X_2 = 0 \t X_2 = 1
$$

Maximal vs. Average Error (Cont.)

Without entanglement resources,

In the single-user case (say, $\mathcal{X}_2 = \emptyset$), [Shannon 1948] [Wolfowitz 1957]

$$
\mathcal{C}=\overline{\mathcal{C}}
$$

 $C\subsetneq \overline{C}$

However, for some $P_{Y \mid X_1, X_2}$ [Dueck 1978]

$$
Y = (X_2, Z)
$$
\n

X_1	Z	X_1	Z
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
1	0	0	
2	0	0	
3	0	0	
4	0	0	
5	0	0	
6	0	0	
7	0	0	
8	0	0	
9	0	0	
1	0	0	
2	0	0	
3	0	0	
4	0	0	
5			

Given entanglement resources, we observe that

$$
\mathcal{C}_{ET}=\overline{\mathcal{C}}_{ET}
$$

Proof follows [Cai 2014] and resembles the robustification technique [Ahlswede 1986]:

- [−] We use the entanglement to generate a shared random key at rate $R_{\text{keV}} \approx 0$.
- [−] The average over the key "replaces" the message average.
Entanglement and Conferencing

Suppose the senders can communicate with each other classically over rate-limited links ("bit-pipes") and share an entangled state $\Psi_{E_1E_2}$ a priori.

33**INION**

Observations: Classical Conferencing

- Both entanglement and common randomeness are static resources of *non-signaling correlation*, which cannot be used in order to send information.
- Conferencing is "stronger" in the sense that it is a *dynamic*
- \blacksquare Q: is conferencing at a low rate necessarily better than
	- A: No

Observations: Classical Conferencing

- **Both entanglement and common randomeness are static**
- Conferencing is "stronger" in the sense that it is a *dynamic* resource of cooperation.
- Q: is conferencing at a low rate necessarily better than A: No

Observations: Classical Conferencing

- **Both entanglement and common randomeness are static**
- Conferencing is "stronger" in the sense that it is a *dynamic* resource of cooperation.
- Q: is conferencing at a low rate necessarily better than entanglement at a high rate?

A: No

Observations: Classical Conferencing

- **Both entanglement and common randomeness are static**
- Conferencing is "stronger" in the sense that it is a *dynamic*
- \blacksquare Q: is conferencing at a low rate necessarily better than entanglement at a high rate?
	- A: No

Now, suppose the senders can communicate over qubit-pipes and share an entangled state $\Psi_{E_1E_2}$ a priori.

Observation: Quantum Conferencing

Each encoder can use superdense coding in order to **double** her conferencing rate.

We have considered communication over a two-user classical multiple-access channel (MAC) with entanglement resources shared between the transmitters before communication begins.

- capacity region for the *general* MAC with entangled transmitters.
- **bounded auxiliary variables,** impossible to bound dimensions for quantum ancillas (Tsirelson problem, MIP*=RE)

Conclusion (Cont.)

Previous examples are a special case:

- \blacktriangleright magic square: strictly higher than classical
- \blacktriangleright linear equations: achievability requires infinite entanglement
- As opposed to the classical case [Dueck 1978], the capacity region with entangled transmitters is the same, whether it is a message-average or a maximal error criterion.

Conclusion (Cont.)

Previous examples are a special case:

- \blacktriangleright magic square: strictly higher than classical
- \blacktriangleright linear equations: achievability requires infinite entanglement
- As opposed to the classical case [Dueck 1978], the capacity region with entangled transmitters is the same, whether it is a message-average or a maximal error criterion.
- Entanglement can increase the conferencing rate over qubit-pipe links

THANK YOU

Given entanglement resources, we observe that

$$
\mathcal{C}_{ET}=\overline{\mathcal{C}}_{ET}
$$

Proof outline: Suppose we have a code with $\overline{P}_e^{(n)} \leq \lambda$. Consider the semi-average error

$$
\overline{Q}_e(m_2) = \frac{1}{M_1} \sum_{m_1} \Pr(\text{error}|m_1, m_2)
$$

Given entanglement resources, we observe that

$$
\mathcal{C}_{ET}=\overline{\mathcal{C}}_{ET}
$$

Proof outline: Suppose we have a code with $\overline{P}_e^{(n)} \leq \lambda$. Consider the semi-average error

$$
\overline{Q}_e(m_2) = \frac{1}{M_1} \sum_{m_1} \Pr(\text{error}|m_1, m_2)
$$

Throw away the worst half of $\{1, \ldots, M_2\}$.

Since the average of $\overline{Q}_e(m_2)$ over the original set is $P_e^{(n)} \leq \lambda$, we have

 $Q_e(m_2) \leq 2\lambda$

for all messages in the remaining set \mathcal{M}'_2 .

Since the average of $\overline{Q}_e(m_2)$ over the original set is $P_e^{(n)} \leq \lambda$, we have

 $Q_e(m_2) \leq 2\lambda$

for all messages in the remaining set \mathcal{M}'_2 .

Let Alice 1 draw a uniformly distributed key $L \in \{1, \ldots, n^2\}$. She can send this key to Bob using a code of length $o(n)$ with a 2λ-error.

Alice 1 uses a sequence of permutations π_1, \ldots, π_{n^2} over the message set $\{1, \ldots, M_1\}$. Given a key $L = \ell$, she encodes using $\mathcal{F}^{\pi_{\ell}(m_1)}$.

For a uniformly distributed permutation π , we have $Pr(\pi(m_1) = m'_1) = \frac{(M_1 - 1)!}{M_1!} = \frac{1}{M_1}$ $\frac{1}{M_1}$. Thus,

$$
\mathbb{E}[\Pr(\text{error}|\pi(m_1), m_2)] = \sum_{m'_1} \Pr(\pi(m_1) = m'_1) \cdot \Pr(\text{error}|m'_1, m_2)
$$

$$
= \frac{1}{M_1} \sum_{m'_1} \Pr(\text{error}|m'_1, m_2)
$$

$$
= \overline{Q}_e^{(n)}(m_2)
$$

$$
\le 2\lambda \qquad \qquad \forall m_2 \in \mathcal{M}'_2
$$

Then, based on the Chernoff bound, for an i.i.d. sequence of uniform permutations π_1, \ldots, π_{n^2} ,

$$
\Pr\left(\frac{1}{n^2}\sum_{\ell=1}^{n^2} \Pr(\text{error}|\pi_\ell(m_1), m_2) > 7\lambda\right) \le e^{-\lambda n^2}
$$

Therefore, there exists a realization π_1, \ldots, π_{n^2} such that

$$
\frac{1}{n^2} \sum_{\ell=1}^{n^2} \Pr(\text{error}|\pi_\ell(m_1), m_2) \le 7\lambda \qquad \forall m_1, m_2 \in \mathcal{M}'_2 \qquad \Box
$$